Advertisement

Regenerative implants for cardiovascular tissue engineering

Published:February 03, 2014DOI:https://doi.org/10.1016/j.trsl.2014.01.014
      A fundamental problem that affects the field of cardiovascular surgery is the paucity of autologous tissue available for surgical reconstructive procedures. Although the best results are obtained when an individual's own tissues are used for surgical repair, this is often not possible as a result of pathology of autologous tissues or lack of a compatible replacement source from the body. The use of prosthetics is a popular solution to overcome shortage of autologous tissue, but implantation of these devices comes with an array of additional problems and complications related to biocompatibility. Transplantation offers another option that is widely used but complicated by problems related to rejection and donor organ scarcity. The field of tissue engineering represents a promising new option for replacement surgical procedures. Throughout the years, intensive interdisciplinary, translational research into cardiovascular regenerative implants has been undertaken in an effort to improve surgical outcome and better quality of life for patients with cardiovascular defects. Vascular, valvular, and heart tissue repair are the focus of these efforts. Implants for these neotissues can be divided into 2 groups: biologic and synthetic. These materials are used to facilitate the delivery of cells or drugs to diseased, damaged, or absent tissue. Furthermore, they can function as a tissue-forming device used to enhance the body's own repair mechanisms. Various preclinical studies and clinical trials using these advances have shown that tissue-engineered materials are a viable option for surgical repair, but require refinement if they are going to reach their clinical potential. With the growth and accomplishments this field has already achieved, meeting those goals in the future should be attainable.

      Abbreviations:

      BM-MNC (bone marrow-derived mononuclear cell), BM-MSC (bone marrow-derived mesenchymal stem cell), ECM (extracellular matrix), EPC (endothelial progenitor cells), FDA (Food and Drug Administration), iPS (inducible pluripotent stem cell), MSC (mesenchymal stem cell), PCL (poly-E-caprolactone), PGA (polyglycolic acid), PGS (poly-glycerol sebacate), PLA (polylactic acid), SIS (small intestine submucosa), SMC (smooth muscle cell), TAH (total artificial heart), TEHV (tissue-engineered heart valve), TEVG (tissue-engineered vascular graft)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vacanti J.P.
        Beyond transplantation: third annual Samuel Jason Mixter lecture.
        Arch Surg. 1988; 123: 545-549
        • Langer R.
        • Vacanti J.P.
        Tissue engineering.
        Science. 1993; 260: 920-926
        • Fuchs J.R.
        • Nasseri B.A.
        • Vacanti J.P.
        Tissue engineering: a 21st century solution to surgical reconstruction.
        Ann Thorac Surg. 2001; 72: 577-591
        • Bell E.
        • Ivarsson B.
        • Merrill C.
        Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro.
        Proc Natl Acad Sci U S A. 1979; 76: 1274-1278
        • Oconnor N.E.
        • Mulliken J.B.
        • Banksschlegel S.
        • Kehinde O.
        • Green H.
        Grafting of burns with cultured epithelium prepared from autologous epidermal-cells.
        Lancet. 1981; 1: 75-78
        • Burke J.F.
        • Yannas I.V.
        • Quinby W.C.
        • Bondoc C.C.
        • Jung W.K.
        Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury.
        Ann Surg. 1981; 194: 413-428
        • Vacanti J.P.
        • Morse M.A.
        • Saltzman W.M.
        • Domb A.J.
        • Perez-Atayde A.
        • Langer R.
        Selective cell transplantation using bioabsorbable artificial polymers as matrices.
        J Pediatr Surg. 1988; 23: 3-9
        • Priya S.G.
        • Jungvid H.
        • Kumar A.
        Skin tissue engineering for tissue repair and regeneration.
        Tissue Eng B. 2008; 14: 105-118
        • Guthrie C.C.
        End-results of arterial restitution with devitalized tissue.
        JAMA. 1919; 73: 186-187
        • Kavey R.E.
        • Daniels S.R.
        • Lauer R.M.
        • et al.
        American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood.
        J Pediatr. 2003; 142: 368-372
        • Orlando G.
        • Soker S.
        • Stratta R.J.
        • Atala A.
        Will regenerative medicine replace transplantation?.
        Cold Spring Harb Perspect Med. 2013; https://doi.org/10.1101/cshperspect.a015693
        • Benveniste G.L.
        Alexis Carrel: the good, the bad, the ugly.
        ANZ J Surg. 2013; 83: 609-611
        • Bello S.O.
        • Peng E.W.
        • Sarkar P.K.
        Conduits for coronary artery bypass surgery: the quest for second best.
        J Cardiovasc Med. 2011; 12: 411-421
        • Blakemore A.H.
        • Voorhees Jr., A.B.
        The use of tubes constructed from Vinyon N cloth in bridging arterial defects: experimental and clinical.
        Ann Surg. 1954; 140: 324-334
        • Hoerstrup S.P.
        • Zund G.
        • Sodian R.
        • Schnell A.M.
        • Grunenfelder J.
        • Turina M.I.
        Tissue engineering of small caliber vascular grafts.
        Eur J Cardiothorac Surg. 2001; 20: 164-169
        • Cittadella G.
        • de Mel A.
        • Dee R.
        • De Coppi P.
        • Seifalian A.M.
        Arterial tissue regeneration for pediatric applications: inspiration from up-to-date tissue-engineered vascular bypass grafts.
        Artif Organs. 2013; 37: 423-434
        • Herring M.B.
        • Dilley R.
        • Jersild Jr., R.A.
        • Boxer L.
        • Gardner A.
        • Glover J.
        Seeding arterial prostheses with vascular endothelium: the nature of the lining.
        Ann Surg. 1979; 190: 84-90
        • Tassiopoulos A.K.
        • Greisler H.P.
        Angiogenic mechanisms of endothelialization of cardiovascular implants: a review of recent investigative strategies.
        J Biomater Sci. 2000; 11: 1275-1284
        • Dixit P.
        • Hern-Anderson D.
        • Ranieri J.
        • Schmidt C.E.
        Vascular graft endothelialization: comparative analysis of canine and human endothelial cell migration on natural biomaterials.
        J Biomed Mater Res. 2001; 56: 545-555
        • Rupnick M.A.
        • Hubbard F.A.
        • Pratt K.
        • Jarrell B.E.
        • Williams S.K.
        Endothelialization of vascular prosthetic surfaces after seeding or sodding with human microvascular endothelial cells.
        J Vasc Surg. 1989; 9: 788-795
        • Graham L.M.
        • Burkel W.E.
        • Ford J.W.
        • Vinter D.W.
        • Kahn R.H.
        • Stanley J.C.
        Immediate seeding of enzymatically derived endothelium in Dacron vascular grafts: early experimental studies with autologous canine cells.
        Arch Surg. 1980; 115: 1289-1294
        • Zilla P.
        • Fasol R.
        • Deutsch M.
        • et al.
        Endothelial-cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report.
        J Vasc Surg. 1987; 6: 535-541
        • Zilla P.
        • Fasol R.
        • Preiss P.
        • et al.
        Use of fibrin glue as a substrate for in vitro endothelialization of PTFE vascular grafts.
        Surgery. 1989; 105: 515-522
        • Graham L.M.
        • Vinter D.W.
        • Ford J.W.
        • Kahn R.H.
        • Burkel W.E.
        • Stanley J.C.
        Cultured autogenous endothelial cell seeding of prosthetic vascular grafts.
        Surg Forum. 1979; 30: 204-206
        • Magometschnigg H.
        • Kadletz M.
        • Vodrazka M.
        • et al.
        Prospective clinical study with in vitro endothelial cell lining of expanded polytetrafluoroethylene grafts in crural repeat reconstruction.
        J Vasc Surg. 1992; 15: 527-535
        • Weinberg C.B.
        • Bell E.
        A blood vessel model constructed from collagen and cultured vascular cells.
        Science. 1986; 231: 397-400
        • Drury J.K.
        • Ashton T.R.
        • Cunningham J.D.
        • Maini R.
        • Pollock J.G.
        Experimental and clinical experience with a gelatin impregnated Dacron prosthesis.
        Ann Vasc Surg. 1987; 1: 542-547
        • Freischlag J.A.
        • Moore W.S.
        Clinical experience with a collagen-impregnated knitted Dacron vascular graft.
        Ann Vasc Surg. 1990; 4: 449-454
        • Massia S.P.
        • Hubbell J.A.
        Tissue engineering in the vascular graft.
        Cytotechnology. 1992; 10: 189-204
        • Shinoka T.
        • Shum-Tim D.
        • Ma P.X.
        • et al.
        Creation of viable pulmonary artery autografts through tissue engineering.
        J Thorac Cardiovasc Surg. 1998; 115 (discussion 45–6): 536-545
        • Shinoka T.
        • Breuer C.K.
        • Tanel R.E.
        • et al.
        Tissue engineering heart valves: valve leaflet replacement study in a lamb model.
        Ann Thorac Surg. 1995; 60: S513-S516
        • Hoerstrup S.P.
        • Sodian R.
        • Sperling J.S.
        • Vacanti J.P.
        • Mayer Jr., J.E.
        New pulsatile bioreactor for in vitro formation of tissueengineered heart valves.
        Tissue Eng. 2000; 6: 75-79
        • Masters K.S.
        • Shah D.N.
        • Leinwand L.A.
        • Anseth K.S.
        Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells.
        Biomaterials. 2005; 26: 2517-2525
        • Mol A.
        • van Lieshout M.I.
        • Dam-de Veen C.G.
        • et al.
        Fibrin as a cell carrier in cardiovascular tissue engineering applications.
        Biomaterials. 2005; 26: 3113-3121
        • Gottlieb D.
        • Kunal T.
        • Emani S.
        • et al.
        In vivo monitoring of function of autologous engineered pulmonary valve.
        J Thorac Cardiovasc Surg. 2010; 139: 723-731
        • O'Brien M.F.
        • Goldstein S.
        • Walsh S.
        • Black K.S.
        • Elkins R.
        • Clarke D.
        The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation.
        Semin Thorac Cardiovasc Surg. 1999; 11: 194-200
        • Dohmen P.M.
        • Costa F.
        • Lopes S.V.
        • et al.
        Results of a decellularized porcine heart valve implanted into the juvenile sheep model.
        Heart Surg Forum. 2005; 8 (discussion E4): E100-E104
        • Matheny R.G.
        • Hutchison M.L.
        • Dryden P.E.
        • Hiles M.D.
        • Shaar C.J.
        Porcine small intestine submucosa as a pulmonary valve leaflet substitute.
        J Heart Valve Dis. 2000; 9 (discussion 74–5): 769-774
        • Zhou J.
        • Hu S.
        • Ding J.
        • Xu J.
        • Shi J.
        • Dong N.
        Tissue engineering of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization.
        Biomed Eng Online. 2013; 12: 87
        • Dijkman P.E.
        • Driessen-Mol A.
        • Frese L.
        • Hoerstrup S.P.
        • Baaijens F.P.
        Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts.
        Biomaterials. 2012; 33: 4545-4554
        • Syedain Z.H.
        • Bradee A.R.
        • Kren S.
        • Taylor D.A.
        • Tranquillo R.T.
        Decellularized tissue-engineered heart valve leaflets with recellularization potential.
        Tissue Eng A. 2013; 19: 759-769
        • Eschenhagen T.
        • Fink C.
        • Remmers U.
        • et al.
        Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system.
        FASEB J. 1997; 11: 683-694
        • Zimmermann W.H.
        • Fink C.
        • Kralisch D.
        • Remmers U.
        • Weil J.
        • Eschenhagen T.
        Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.
        Biotechnol Bioeng. 2000; 68: 106-114
        • Li R.K.
        • Jia Z.Q.
        • Weisel R.D.
        • Mickle D.A.
        • Choi A.
        • Yau T.M.
        Survival and function of bioengineered cardiac grafts.
        Circulation. 1999; 100: II63-II69
        • Zimmermann W.H.
        • Didie M,Wasmeier G.H.
        • et al.
        Cardiac grafting of engineered heart tissue in syngenic rats.
        Circulation. 2002; 106: I151-I157
        • Zimmermann W.H.
        • Melnychenko I.
        • Wasmeier G.
        • et al.
        Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts.
        Nat Med. 2006; 12: 452-458
        • Chachques J.C.
        • Trainini J.C.
        • Lago N.
        • Cortes-Morichetti M.
        • Schussler O.
        • Carpentier A.
        Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study.
        Ann Thorac Surg. 2008; 85: 901-908
        • Tulloch N.L.
        • Muskheli V.
        • Razumova M.V.
        • et al.
        Growth of engineeredhuman myocardium with mechanical loading andvascular coculture.
        Circ Res. 2011; 109: 47-59
        • Akins R.E.
        • Boyce R.A.
        • Madonna M.L.
        • et al.
        Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells.
        Tissue Eng. 1999; 5: 103-118
        • Shimizu T.
        • Yamato M.
        • Isoi Y.
        • et al.
        Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces.
        Circ Res. 2002; 90: e40
        • Matsuura K.
        • Wada M.
        • Shimizu T.
        • et al.
        Creation of human cardiac cell sheets using pluripotent stem cells.
        Biochem Biophys Res Commun. 2012; 425: 321-327
        • Vrtovec B.
        • Poglajen G.
        • Lezaic L.
        • et al.
        Effects of intracoronary CD341 stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up.
        Circ Res. 2013; 112: 165-173
        • Niklason L.E.
        • Gao J.
        • Abbott W.M.
        • et al.
        Functional arteries grown in vitro.
        Science. 1999; 284: 489-493
        • Shin'oka T.
        • Imai Y.
        • Ikada Y.
        Transplantation of a tissueengineered pulmonary artery.
        N Engl J Med. 2001; 344: 532-533
        • Hibino N.
        • McGillicuddy E.
        • Matsumura G.
        • et al.
        Late-term results of tissue-engineered vascular grafts in humans.
        J Thorac Cardiovasc Surg. 2010; 139: 431-436
        • L'Heureux N.
        • Paquet S.
        • Labbe R.
        • Germain L.
        • Auger F.A.
        A completely biological tissue-engineered human blood vessel.
        FASEB J. 1998; 12: 47-56
        • McAllister T.N.
        • Maruszewski M.
        • Garrido S.A.
        • et al.
        Effectiveness of haemodialysis access with an autologous tissueengineered vascular graft: a multicentre cohort study.
        Lancet. 2009; 373: 1440-1446
        • Dahl S.L.
        • Kypson A.P.
        • Lawson J.H.
        • et al.
        Readily available tissue-engineered vascular grafts.
        Sci Transl Med. 2011; 3: 68ra9
        • Rosamond W.
        • Flegal K.
        • Friday G.
        • et al.
        Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
        Circulation. 2007; 115: e69-171
        • Hammermeister K.
        • Sethi G.K.
        • Henderson W.G.
        • Grover F.L.
        • Oprian C.
        • Rahimtoola S.H.
        Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial.
        J Am Coll Cardiol. 2000; 36: 1152-1158
        • Cooley D.A.
        • Frazier O.H.
        The past 50 years of cardiovascular surgery.
        Circulation. 2000; 102 (Iv-87–93)
        • Harken D.E.
        • Soroff H.S.
        • Taylor W.J.
        • Lefemine A.A.
        • Gupta S.K.
        • Lunzer S.
        Partial and complete prostheses in aortic insufficiency.
        J Thorac Cardiovasc Surg. 1960; 40: 744-762
        • Rahimtoola S.H.
        Choice of prosthetic heart valve in adults an update.
        J Am Coll Cardiol. 2010; 55: 2413-2426
        • Carpentier A.
        • Lemaigre G.
        • Robert L.
        • Carpentier S.
        • Dubost C.
        Biological factors affecting long-term results of valvular heterografts.
        J Thorac Cardiovasc Surg. 1969; 58: 467-483
        • Kanter K.R.
        • Budde J.M.
        • Parks W.J.
        • et al.
        One hundred pulmonary valve replacements in children after relief of right ventricular outflow tract obstruction.
        Ann Thorac Surg. 2002; 73 (discussion 6–7): 1801-1806
        • Shinoka T.
        • Ma P.X.
        • Shum-Tim D.
        • et al.
        Tissue-engineered heart valves: autologous valve leaflet replacement study in a lamb model.
        Circulation. 1996; 94: II164-II168
        • Sodian R.
        • Hoerstrup S.P.
        • Sperling J.S.
        • et al.
        Evaluation of biodegradable, three-dimensional matrices for tissue engineering of heart valves.
        ASAIO J. 2000; 46: 107-110
        • Sodian R.
        • Hoerstrup S.P.
        • Sperling J.S.
        • et al.
        Tissue engineering of heart valves: in vitro experiences.
        Ann Thorac Surg. 2000; 70: 140-144
        • Sodian R.
        • Hoerstrup S.P.
        • Sperling J.S.
        • et al.
        Early in vivo experience with tissue-engineered trileaflet heart valves.
        Circulation. 2000; 102: III22-III29
        • Schmidt D.
        • Dijkman P.E.
        • Driessen-Mol A.
        • et al.
        Minimally-invasive implantation of living tissue-engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.
        J Am Coll Cardiol. 2010; 56: 510-520
        • Sutherland F.W.
        • Perry T.E.
        • Yu Y.
        • et al.
        From stem cells to viable autologous semilunar heart valve.
        Circulation. 2005; 111: 2783-2791
        • Weber B.
        • Scherman J.
        • Emmert M.Y.
        • et al.
        Injectable living marrow stromal cell-based autologous tissue-engineered heart valves: first experiences with a one-step intervention in primates.
        Eur Heart J. 2011; 32: 2830-2840
        • Vesely I.
        Heart valve tissue engineering.
        Circ Res. 2005; 97: 743-755
        • Cheung D.T.
        • Weber P.A.
        • Grobe A.C.
        • et al.
        A new method for the preservation of aortic valve homografts.
        J Heart Valve Dis. 2001; 10 (discussion 34–5): 728-734
        • Dohmen P.M.
        • Ozaki S.
        • Verbeken E.
        • Yperman J.
        • Flameng W.
        • Konertz W.F.
        Tissue engineering of an auto-xenograft pulmonary heart valve.
        Asian Cardiovasc Thorac Ann. 2002; 10: 25-30
        • Steinhoff G.
        • Stock U.
        • Karim N.
        • et al.
        Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue.
        Circulation. 2000; 102: III50-III55
        • Breuer C.K.
        • Mettler B.A.
        • Anthony T.
        • Sales V.L.
        • Schoen F.J.
        • Mayer J.E.
        Application of tissue-engineering principles toward the development of a semilunar heart valve substitute.
        Tissue Eng. 2004; 10: 1725-1736
        • Vincent J.
        Heart failure: a disease complex with challenging therapeutics.
        Clin Pharmacol Ther. 2013; 94: 415-421
        • Heidenreich P.A.
        • Albert N.M.
        • Allen L.A.
        • et al.
        Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association.
        Circ Heart Failure. 2013; 6: 606-619
        • Westaby S.
        Cardiac transplantation and ventricular assist devices.
        Medicine. 2010; 38: 490-495
        • Barnard C.N.
        The operation: a human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town.
        South Afr Med J. 1967; 41: 1271-1274
        • La Franca E.
        • Iacona R.
        • Ajello L.
        • Sansone A.
        • Caruso M.
        • Assennato P.
        Heart failure and mechanical circulatory assist devices.
        Global J Health Sci. 2013; 5: 11-19
        • Ott H.C.
        • Matthiesen T.S.
        • Goh S.K.
        • et al.
        Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart.
        Nat Med. 2008; 14: 213-221
        • Cooley D.A.
        • Liotta D.
        • Hallman G.L.
        • Bloodwell R.D.
        • Leachman R.D.
        • Milam J.D.
        Orthotopic cardiac prosthesis for two-staged cardiac replacement.
        Am J Cardiol. 1969; 24: 723-730
        • Meyer A.
        • Slaughter M.
        The total artificial heart.
        Panminerva Med. 2011; 53: 141-154
        • Ward R.A.
        • Wellhausen S.R.
        • Dobbins J.J.
        • Johnson G.S.
        • DeVries W.C.
        Thromboembolic and infectious complications of total artificial heart implantation.
        Ann N Y Acad Sci. 1987; 516: 638-650
        • Parameshwar J.
        • Wallwork J.
        Left ventricular assist devices: current status and future applications.
        Int J Cardiol. 1997; 62: S23-S27
        • Zimmermann W.H.
        • Cesnjevar R.
        Cardiac tissue engineering: implications for pediatric heart surgery.
        Pediatr Cardiol. 2009; 30: 716-723
        • Chung S.
        • King M.W.
        Design concepts and strategies for tissue engineering scaffolds.
        Biotechnol Appl Biochem. 2011; 58: 423-438
        • Naderi H.
        • Matin M.M.
        • Bahrami A.R.
        Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.
        J Biomater Appl. 2011; 26: 383-417
        • Naito Y.
        • Williams-Fritze M.
        • Duncan D.R.
        • et al.
        Characterization of the natural history of extracellular matrix production in tissue-engineered vascular grafts during neovessel formation.
        Cells Tissues Organs. 2012; 195: 60-72
        • Chen G.
        • Ushida T.
        • Tateishi T.
        Scaffold design for tissue engineering.
        Macromol Biosci. 2002; 2: 67-77
        • Cleary M.A.
        • Geiger E.
        • Grady C.
        • Best C.
        • Naito Y.
        • Breuer C.
        Vascular tissue engineering: the next generation.
        Trends Mol Med. 2012; 18: 394-404
        • Patterson J.T.
        • Gilliland T.
        • Maxfield M.W.
        • et al.
        Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again.
        Regen Med. 2012; 7: 409-419
        • Ravi S.
        • Chaikof E.L.
        Biomaterials for vascular tissue engineering.
        Regen Med. 2010; 5: 107-120
        • Hibino N.
        • Yi T.
        • Duncan D.R.
        • et al.
        A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts.
        FASEB J. 2011; 25: 4253-4263
        • Gunatillake P.A.
        • Adhikari R.
        Biodegradable synthetic polymers for tissue engineering.
        Eur Cell Mater. 2003; 5: 1-16
        • Dean E.W.
        • Udelsman B.
        • Breuer C.K.
        Current advances in the translation of vascular tissue engineering to the treatment of pediatric congenital heart disease.
        Yale J Biol Med. 2012; 85: 229-238
        • Naito Y.
        • Lee Y.U.
        • Yi T.
        • et al.
        Beyond burst pressure: initial evaluation of the natural history of the biaxial mechanical properties of tissue engineered vascular grafts in the venous circulation using a murine model.
        Tissue Eng A. 2013; 20: 346-355
        • Wang Y.
        • Kim Y.M.
        • Langer R.
        In vivo degradation characteristics of poly(glycerol sebacate).
        J Biomed Mater Res A. 2003; 66: 192-197
        • Wang Y.
        • Ameer G.A.
        • Sheppard B.J.
        • Langer R.
        A tough biodegradable elastomer.
        Nat Biotechnol. 2002; 20: 602-606
        • Gao J.
        • Crapo P.M.
        • Wang Y.
        Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering.
        Tissue Eng. 2006; 12: 917-925
        • Chen Q.Z.
        • Bismarck A.
        • Hansen U.
        • et al.
        Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue.
        Biomaterials. 2008; 29: 47-57
        • Wu W.
        • Allen R.A.
        • Wang Y.
        Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery.
        Nat Med. 2012; 18: 1148-1153
        • Kim T.G.
        • Shin H.
        • Lim D.W.
        Biomimetic scaffolds for tissue engineering.
        Adv Funct Mater. 2012; 22: 2446-2468
        • Ingavle G.
        • Leach J.K.
        Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering [e-pub ahead of print].
        Tissue Eng B. 2013;
        • Fichman G.
        • Gazit E.
        Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications [e-pub ahead of print].
        Acta Biomater. 2013;
        • Badylak S.F.
        • Freytes D.O.
        • Gilbert T.W.
        Extracellular matrix as a biological scaffold material: structure and function.
        Acta Biomater. 2009; 5: 1-13
        • Sreejit P.
        • Verma R.S.
        Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells.
        Stem Cell Rev. 2013; 9: 158-171
        • Zhang W.J.
        • Liu W.
        • Cui L.
        • Cao Y.L.
        Tissue engineering of blood vessel.
        J Cell Mol Med. 2007; 11: 945-957
        • Ye L.
        • Zimmermann W.H.
        • Garry D.J.
        • Zhang J.
        Patching the heart: cardiac repair from within and outside.
        Circ Res. 2013; 113: 922-932
        • Souren J.E.
        • Schneijdenberg C.
        • Verkleij A.J.
        • Van Wijk R.
        Factors controlling the rhythmic contraction of collagen gels by neonatal heart cells.
        In Vitro Cell Dev Biol. 1992; 28A: 199-204
        • Ross J.J.
        • Tranquillo R.T.
        ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells.
        Matrix Biol. 2003; 22: 477-490
        • Long J.L.
        • Tranquillo R.T.
        Elastic fiber production in cardiovascular tissue-equivalents.
        Matrix Biol. 2003; 22: 339-350
        • Yao L.
        • Swartz D.D.
        • Gugino S.F.
        • Russell J.A.
        • Andreadis S.T.
        Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity.
        Tissue Eng. 2005; 11: 991-1003
        • Swartz D.D.
        • Russell J.A.
        • Andreadis S.T.
        Engineering of fibrin-based functional and implantable small-diameter blood vessels.
        Am J Physiol Heart Circ Physiol. 2005; 288: H1451-H1460
        • Syedain Z.H.
        • Meier L.A.
        • Bjork J.W.
        • Lee A.
        • Tranquillo R.T.
        Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring.
        Biomaterials. 2011; 32: 714-722
        • Yao L.
        • Liu J.
        • Andreadis S.T.
        Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue-engineered blood vessels.
        Pharma Res. 2008; 25: 1212-1221
        • Weber M.
        • Heta E.
        • Moreira R.
        • et al.
        Tissue-engineered fibrin-based heart valve with a tubular leaflet design [e-pub ahead of print].
        Tissue Eng C. 2013;
        • Malone J.M.
        • Brendel K.
        • Duhamel R.C.
        • Reinert R.L.
        Detergent-extracted small-diameter vascular prostheses.
        J Vasc Surg. 1984; 1: 181-191
        • Wang B.
        • Tedder M.E.
        • Perez C.E.
        • et al.
        Structural and biomechanical characterizations of porcine myocardial extracellular matrix.
        J Mater Sci. 2012; 23: 1835-1847
        • Kasimir M.T.
        • Rieder E.
        • Seebacher G.
        • Wolner E.
        • Weigel G.
        • Simon P.
        Presence and elimination of the xenoantigen gal (alpha1, 3) gal in tissue-engineered heart valves.
        Tissue Eng. 2005; 11: 1274-1280
        • Sandrin M.S.
        • McKenzie I.F.
        Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies.
        Immunol Rev. 1994; 141: 169-190
        • Nagasaka S.
        • Taniguchi S.
        • Nakayama Y.
        • et al.
        In vivo study of the effects of cryopreservation on heart valve xenotransplantation.
        Cardiovasc Pathol. 2005; 14: 70-79
        • Swartz D.D.
        • Andreadis S.T.
        Animal models for vascular tissue-engineering.
        Curr Opin Biotechnol. 2013; 24: 916-925
        • Badylak S.
        • Gilbert T.
        • Myers-Irvin J.
        The extracellular matrix as a biologic scaffold for tissue engineering.
        Tissue Eng. 2008; : 121-143
        • Quint C.
        • Kondo Y.
        • Manson R.J.
        • Lawson J.H.
        • Dardik A.
        • Niklason L.E.
        Decellularized tissue-engineered blood vessel as an arterial conduit.
        Proc Natl Acad Sci U S A. 2011; 108: 9214-9219
        • Peck M.
        • Gebhart D.
        • Dusserre N.
        • McAllister T.N.
        • L'Heureux N.
        The evolution of vascular tissue engineering and current state of the art.
        Cells Tissues Organs. 2012; 195: 144-158
        • Iwai S.
        • Sawa Y.
        • Ichikawa H.
        • et al.
        Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis.
        J Thorac Cardiovasc Surg. 2004; 128: 472-479
        • Takahashi H.
        • Yokota T.
        • Uchimura E.
        • et al.
        Newly developed tissue-engineered material for reconstruction of vascular wall without cell seeding.
        Ann Thorac Surg. 2009; 88: 1269-1276
        • Koch S.
        • Flanagan T.C.
        • Sachweh J.S.
        • et al.
        Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation.
        Biomaterials. 2010; 31: 4731-4739
        • L'Heureux N.
        • Germain L.
        • Labbe R.
        • Auger F.A.
        In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study.
        J Vasc Surg. 1993; 17: 499-509
        • Hirai J.
        • Kanda K.
        • Oka T.
        • Matsuda T.
        Highly oriented, tubular hybrid vascular tissue for a low pressure circulatory system.
        ASAIO J. 1994; 40: M383-M388
        • Kurobe H.
        • Maxfield M.W.
        • Breuer C.K.
        • Shinoka T.
        Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future.
        Stem Cell Transl Med. 2012; 1: 566-571
        • Bajpai V.K.
        • Andreadis S.T.
        Stem cell sources for vascular tissue engineering and regeneration.
        Tissue Eng B. 2012; 18: 405-425
        • Hibino N.
        • Nalbandian A.
        • Devine L.
        • et al.
        Comparison of human bone marrow mononuclear cell isolation methods for creating tissue-engineered vascular grafts: novel filter system versus traditional density centrifugation method.
        Tissue Eng C. 2011; 17: 993-998
        • Dohmen P.M.
        • Lembcke A.
        • Holinski S.
        • Pruss A.
        • Konertz W.
        Ten years of clinical results with a tissue-engineered pulmonary valve.
        Ann Thorac Surg. 2011; 92: 1308-1314
        • Dahl S.L.M.
        • Blum J.L.
        • Niklason L.E.
        Bioengineered vascular grafts: can we make them off-the-shelf?.
        Trends Cardiovasc Med. 2011; 21: 83-89
        • Weber B.
        • Emmert M.Y.
        • Hoerstrup S.P.
        Stem cells for heart valve regeneration.
        Swiss Med Wkly. 2012; 142: w13622
        • Kaushal S.
        • Amiel G.E.
        • Guleserian K.J.
        • et al.
        Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo.
        Nat Med. 2001; 7: 1035-1040
        • Hiesinger W.
        • Frederick J.R.
        • Atluri P.
        • et al.
        Spliced stromal cell-derived factor-1alpha analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction.
        J Thorac Cardiovasc Surg. 2010; 140: 1174-1180
        • Weber B.
        • Kehl D.
        • Bleul U.
        • et al.
        In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells [e-pub ahead of print].
        J Tissue Eng Regen Med. 2013;
        • Schmidt D.
        • Achermann J.
        • Odermatt B.
        • et al.
        Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source.
        Circulation. 2007; 116: I64-I70
        • Schmidt D.
        • Achermann J.
        • Odermatt B.
        • Genoni M.
        • Zund G.
        • Hoerstrup S.P.
        Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering.
        J Heart Valve Dis. 2008; 17 (discussion 55): 446-455
        • Hibino N.
        • Duncan D.R.
        • Nalbandian A.
        • et al.
        Evaluation of the use of an induced pluripotent stem cell sheet for the construction of tissue-engineered vascular grafts.
        J Thorac Cardiovasc Surg. 2012; 143: 696-703
        • Kawamura M.
        • Miyagawa S.
        • Fukushima S.
        • et al.
        Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart.
        Circulation. 2013; 128: S87-S94
        • Krawiec J.T.
        • Vorp D.A.
        Adult stem cell-based tissue-engineered blood vessels: a review.
        Biomaterials. 2012; 33: 3388-3400
        • Park J.S.
        • Huang N.F.
        • Kurpinski K.T.
        • Patel S.
        • Hsu S.
        • Li S.
        Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair.
        Frontiers Biosci. 2007; 12: 5098-5116
        • Hashi C.K.
        • Zhu Y.
        • Yang G.Y.
        • et al.
        Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts.
        Proc Natl Acad Sci U S A. 2007; 104: 11915-11920
        • Zhao Y.L.
        • Zhang S.
        • Zhou J.Y.
        • et al.
        The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells.
        Biomaterials. 2010; 31: 296-307
        • Gong Z.D.
        • Niklason L.E.
        Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs).
        FASEB J. 2008; 22: 1635-1648
        • Cho S.W.
        • Kim I.K.
        • Kang J.M.
        • et al.
        Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery.
        Tissue Eng A. 2009; 15: 901-912
        • Zhao J.
        • Liu L.
        • Wei J.
        • et al.
        A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells.
        Artif Organs. 2012; 36: 93-101
        • Piao H.
        • Kwon J.S.
        • Piao S.
        • et al.
        Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model.
        Biomaterials. 2007; 28: 641-649
        • Ravichandran R.
        • Venugopal J.R.
        • Sundarrajan S.
        • Mukherjee S.
        • Ramakrishna S.
        Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease.
        Int J Nanomed. 2012; 7: 5969-5994
        • Torikai K.
        • Ichikawa H.
        • Hirakawa K.
        • et al.
        A self-renewing, tissue-engineered vascular graft for arterial reconstruction.
        J Thorac Cardiovasc Surg. 2008; 136 (e1): 37-45
        • Matsumura G.
        • Nitta N.
        • Matsuda S.
        • et al.
        Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model.
        PLoS One. 2012; 7: e35760
        • Matsumura G.
        • Isayama N.
        • Matsuda S.
        • et al.
        Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model.
        Biomaterials. 2013; 34: 6422-6428
        • Spadaccio C.
        • Chello M.
        • Trombetta M.
        • Rainer A.
        • Toyoda Y.
        • Genovese J.A.
        Drug releasing systems in cardiovascular tissue engineering.
        J Cell Mol Med. 2009; 13: 422-439
        • Conklin B.S.
        • Richter E.R.
        • Kreutziger K.L.
        • Zhong D.S.
        • Chen C.
        Development and evaluation of a novel decellularized vascular xenograft.
        Med Eng Physics. 2002; 24: 173-183
        • Peters M.C.
        • Isenberg B.C.
        • Rowley J.A.
        • Mooney D.J.
        Release from alginate enhances the biological activity of vascular endothelial growth factor.
        J Biomater Sci. 1998; 9: 1267-1278
        • Wei G.
        • Jin Q.
        • Giannobile W.V.
        • Ma P.X.
        Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB.
        J Controlled Release. 2006; 112: 103-110
        • Rosenberg R.D.
        Biochemistry of heparin antithrombin interactions, and the physiologic role of this natural anticoagulant mechanism.
        Am J Med. 1989; 87: 2S-9S
        • Edelman E.R.
        • Nathan A.
        • Katada M.
        • Gates J.
        • Karnovsky M.J.
        Perivascular graft heparin delivery using biodegradable polymer wraps.
        Biomaterials. 2000; 21: 2279-2286
        • Roh J.D.
        • Sawh-Martinez R.
        • Brennan M.P.
        • et al.
        Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling.
        Proc Natl Acad Sci U S A. 2010; 107: 4669-4674
        • Lantz G.C.
        • Badylak S.F.
        • Hiles M.C.
        • et al.
        Small intestinal submucosa as a vascular graft: a review.
        J Invest Surg. 1993; 6: 297-310
        • Crapo P.M.
        • Gilbert T.W.
        • Badylak S.F.
        An overview of tissue and whole organ decellularization processes.
        Biomaterials. 2011; 32: 3233-3243
        • Badylak S.F.
        Xenogeneic extracellular matrix as a scaffold for tissue reconstruction.
        Transplant Immunol. 2004; 12: 367-377
        • Kalfa D.
        • Bacha E.
        New technologies for surgery of the congenital cardiac defect.
        Rambam Maimonides Med J. 2013; 4: e0019
        • Quarti A.
        • Nardone S.
        • Colaneri M.
        • Santoro G.
        • Pozzi M.
        Preliminary experience in the use of an extracellular matrix to repair congenital heart diseases.
        Interact Cardiovasc Thorac Surgy. 2011; 13: 569-572
        • Udelsman B.V.
        • Maxfield M.W.
        • Breuer C.K.
        Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation.
        Heart. 2013; 99: 454-460
        • L'Heureux N.
        • Stoclet J.C.
        • Auger F.A.
        • Lagaud G.J.
        • Germain L.
        • Andriantsitohaina R.
        A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses.
        FASEB J. 2001; 15: 515-524
        • L'Heureux N.
        • Dusserre N.
        • Marini A.
        • Garrido S.
        • de la Fuente L.
        • McAllister T.
        Technology insight: the evolution of tissue-engineered vascular grafts: from research to clinical practice.
        Nat Clin Pract Cardiovasc Med. 2007; 4: 389-395
        • Elkins R.C.
        • Dawson P.E.
        • Goldstein S.
        • Walsh S.P.
        • Black K.S.
        Decellularized human valve allografts.
        Ann Thorac Surg. 2001; 71: S428-S432
        • Simon P.
        • Kasimir M.T.
        • Seebacher G.
        • et al.
        Early failure of the tissue-engineered porcine heart valve SYNERGRAFT in pediatric patients.
        Eur J Cardiothorac Surg. 2003; 23 (discussion 6): 1002-1006
        • Sharp M.A.
        • Phillips D.
        • Roberts I.
        • Hands L.
        A cautionary case: the SynerGraft vascular prosthesis.
        Eur J Vasc Endovasc Surg. 2004; 27: 42-44
        • Dohmen P.M.
        Clinical results of implanted tissue-engineered heart valves.
        HSR Proc Intensive Care Cardiovasc Anesth. 2012; 4: 225-231
        • da Costa F.D.
        • Costa A.C.
        • Prestes R.
        • et al.
        The early and midterm function of decellularized aortic valve allografts.
        Ann Thorac Surg. 2010; 90: 1854-1860
        • Zehr K.J.
        • Yagubyan M.
        • Connolly H.M.
        • Nelson S.M.
        • Schaff H.V.
        Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results.
        J Thorac Cardiovasc Surg. 2005; 130: 1010-1015
        • Weber B.
        • Dijkman P.E.
        • Scherman J.
        • et al.
        Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model.
        Biomaterials. 2013; 34: 7269-7780
        • Emmert M.Y.
        • Weber B.
        • Behr L.
        • et al.
        Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts [e-pub ahead of print].
        Eur J Cardiothorac Surg. 2013;
        • Assmus B.
        • Zeiher A.M.
        Early cardiac retention of administered stem cells determines clinical efficacy of cell therapy in patients with dilated cardiomyopathy.
        Circ Res. 2013; 112: 6-8
        • Jawad H.
        • Lyon A.R.
        • Harding S.E.
        • Ali N.N.
        • Boccaccini A.R.
        Myocardial tissue engineering.
        Br Med Bull. 2008; 87: 31-47
        • Sanganalmath S.K.
        • Bolli R.
        Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions.
        Circ Res. 2013; 113: 810-834
        • Vrtovec B.
        • Poglajen G.
        • Haddad F.
        Stem cell therapy in patients with heart failure.
        Methodist DeBakey Cardiovasc J. 2013; 9: 6-10