Advertisement

Epigenetics of lung cancer

Published:March 14, 2014DOI:https://doi.org/10.1016/j.trsl.2014.03.001
      Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA expression, have been reported widely in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and to provide an overview of the potential translational applications of these changes, including applications for early detection, diagnosis, prognostication, and therapeutics.

      Abbreviations:

      5-meC (5-methylcytosine), BMI-1 (B-cell-specific Moloney murine leukemia virus integration site 1), DNMT (DNA methyltransferase), EZH2 (enhancer of zeste homologue 2), HDAC (histone deacetylase), HOTAIR (Hox transcript antisense intergenic RNA), lncRNA (long noncoding RNA), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), mRNA (messenger RNA), NNK (nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), NSCLC (nonsmall cell lung cancer), PcG (polycomb group gene), PRC (polycomb repressive complex), SCLC (small cell lung cancer)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.
        • Naishadham D.
        • Jemal A.
        Cancer statistics, 2013.
        CA Cancer J Clin. 2013; 63: 11-30
        • Dela Cruz C.S.
        • Tanoue L.T.
        • Matthay R.A.
        Lung cancer: epidemiology, etiology, and prevention.
        Clin Chest Med. 2011; 32: 605-644
        • Lu F.
        • Zhang H.T.
        DNA methylation and nonsmall cell lung cancer.
        Anat Rec. 2011; 294: 1787-1795
        • Massion P.P.
        • Carbone D.P.
        The molecular basis of lung cancer: molecular abnormalities and therapeutic implications.
        Respir Res. 2003; 4: 12
        • Selamat S.A.
        • Galler J.S.
        • Joshi A.D.
        • et al.
        DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma.
        PLoS One. 2011; 6: e21443
        • Herceg Z.
        • Vaissiere T.
        Epigenetic mechanisms and cancer: an interface between the environment and the genome.
        Epigenetics. 2011; 6: 804-819
        • Langevin S.M.
        • Kelsey K.T.
        The fate is not always written in the genes: epigenomics in epidemiologic studies.
        Environ Mol Mutagenesis. 2013; 54: 533-541
        • Dumitrescu R.G.
        Epigenetic markers of early tumor development.
        Methods Mol Biol. 2012; 863: 3-14
        • Brzezianska E.
        • Dutkowska A.
        • Antczak A.
        The significance of epigenetic alterations in lung carcinogenesis.
        Mol Biol Rep. 2013; 40: 309-325
        • Belinsky S.A.
        • Klinge D.M.
        • Dekker J.D.
        • et al.
        Gene promoter methylation in plasma and sputum increases with lung cancer risk.
        Clin Cancer Res. 2005; 11: 6505-6511
        • Zochbauer-Muller S.
        • Minna J.D.
        • Gazdar A.F.
        Aberrant DNA methylation in lung cancer: biological and clinical implications.
        Oncologist. 2002; 7: 451-457
        • Chung J.H.
        • Lee H.J.
        • Kim B.H.
        • Cho N.Y.
        • Kang G.H.
        DNA methylation profile during multistage progression of pulmonary adenocarcinomas.
        Virchow Arch. 2011; 459: 201-211
        • Licchesi J.D.
        • Westra W.H.
        • Hooker C.M.
        • Herman J.G.
        Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung.
        Clin Cancer Res. 2008; 14: 2570-2578
        • Berger A.H.
        • Knudson A.G.
        • Pandolfi P.P.
        A continuum model for tumour suppression.
        Nature. 2011; 476: 163-169
        • Toyooka S.
        • Mitsudomi T.
        • Soh J.
        • et al.
        Molecular oncology of lung cancer.
        Gen Thorac Cardiovasc Surg. 2011; 59: 527-537
        • Fischer J.R.
        • Ohnmacht U.
        • Rieger N.
        • et al.
        Prognostic significance of RASSF1A promoter methylation on survival of non-small cell patients with lung cancer treated with gemcitabine.
        Lung Cancer. 2007; 56: 115-123
        • Topaloglu O.
        • Hoque M.O.
        • Tokumaru Y.
        • et al.
        Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer.
        Clin Cancer Res. 2004; 10: 2284-2288
        • Belinsky S.A.
        • Nikula K.J.
        • Palmisano W.A.
        • et al.
        Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis.
        Proc Natl Acad Sci U S A. 1998; 95: 11891-11896
        • Nuovo G.J.
        • Plaia T.W.
        • Belinsky S.A.
        • Baylin S.B.
        • Herman J.G.
        In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis.
        Proc Natl Acad Sci U S A. 1999; 96: 12754-12759
        • Palmisano W.A.
        • Divine K.K.
        • Saccomanno G.
        • et al.
        Predicting lung cancer by detecting aberrant promoter methylation in sputum.
        Cancer Res. 2000; 60: 5954-5958
        • Kim D.H.
        • Nelson H.H.
        • Wiencke J.K.
        • et al.
        p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer.
        Cancer Res. 2001; 61: 3419-3424
        • Buckingham L.
        • Penfield Faber L.
        • Kim A.
        • et al.
        PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell patients with lung cancer.
        Int J Cancer. 2010; 126: 1630-1639
        • Nakata S.
        • Sugio K.
        • Uramoto H.
        • et al.
        The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance.
        Cancer. 2006; 106: 2190-2199
        • Sterlacci W.
        • Tzankov A.
        • Veits L.
        • et al.
        A comprehensive analysis of p16 expression, gene status, and promoter hypermethylation in surgically resected non-small cell lung carcinomas.
        J Thorac Oncol. 2011; 6: 1649-1657
        • Tsou J.A.
        • Galler J.S.
        • Siegmund K.D.
        • et al.
        Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma.
        Mol Cancer. 2007; 6: 70
        • Gasco M.
        • Bell A.K.
        • Heath V.
        • et al.
        Epigenetic inactivation of 14-3-3 sigma in oral carcinoma: association with p16(INK4a) silencing and human papillomavirus negativity.
        Cancer Res. 2002; 62: 2072-2076
        • Kim D.S.
        • Cha S.I.
        • Lee J.H.
        • et al.
        Aberrant DNA methylation profiles of non-small cell lung cancers in a Korean population.
        Lung Cancer. 2007; 58: 1-6
        • Shivapurkar N.
        • Stastny V.
        • Suzuki M.
        • et al.
        Application of a methylation gene panel by quantitative PCR for lung cancers.
        Cancer Lett. 2007; 247: 56-71
        • Tang X.
        • Khuri F.R.
        • Lee J.J.
        • et al.
        Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer.
        J Natl Cancer Inst. 2000; 92: 1511-1516
        • Dammann R.
        • Strunnikova M.
        • Schagdarsurengin U.
        • et al.
        CpG island methylation and expression of tumour-associated genes in lung carcinoma.
        Eur J Cancer. 2005; 41: 1223-1236
        • Nelson H.H.
        • Marsit C.J.
        • Christensen B.C.
        • et al.
        Key epigenetic changes associated with lung cancer development: results from dense methylation array profiling.
        Epigenetics. 2012; 7: 559-566
        • Chen C.
        • Yin N.
        • Yin B.
        • Lu Q.
        DNA methylation in thoracic neoplasms.
        Cancer Lett. 2011; 301: 7-16
        • Heller G.
        • Zielinski C.C.
        • Zochbauer-Muller S.
        Lung cancer: from single-gene methylation to methylome profiling.
        Cancer Metastasis Rev. 2010; 29: 95-107
        • Li W.
        • Deng J.
        • Jiang P.
        • Tang J.
        Association of 5′-CpG island hypermethylation of the FHIT gene with lung cancer in southern-central Chinese population.
        Cancer Biol Ther. 2010; 10: 997-1000
        • Verri C.
        • Roz L.
        • Conte D.
        • et al.
        Fragile histidine triad gene inactivation in lung cancer: the European Early Lung Cancer project.
        Am J Respir Crit Care Med. 2009; 179: 396-401
        • Yanagawa N.
        • Tamura G.
        • Oizumi H.
        • et al.
        Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers.
        Lung Cancer. 2007; 58: 131-138
        • Tomizawa Y.
        • Iijima H.
        • Nomoto T.
        • et al.
        Clinicopathological significance of aberrant methylation of RARbeta2 at 3p24, RASSF1A at 3p21.3, and FHIT at 3p14.2 in patients with non-small cell lung cancer.
        Lung Cancer. 2004; 46: 305-312
        • Begum S.
        • Brait M.
        • Dasgupta S.
        • et al.
        An epigenetic marker panel for detection of lung cancer using cell-free serum DNA.
        Clin Cancer Res. 2011; 17: 4494-4503
        • Grote H.J.
        • Schmiemann V.
        • Kiel S.
        • et al.
        Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer.
        Int J Cancer. 2004; 110: 751-755
        • Toyooka S.
        • Maruyama R.
        • Toyooka K.O.
        • et al.
        Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer.
        Int J Cancer. 2003; 103: 153-160
        • Brabender J.
        • Usadel H.
        • Danenberg K.D.
        • et al.
        Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival.
        Oncogene. 2001; 20: 3528-3532
        • Ji M.
        • Guan H.
        • Gao C.
        • Shi B.
        • Hou P.
        Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC).
        BMC Cancer. 2011; 11: 147
        • Lee S.M.
        • Lee W.K.
        • Kim D.S.
        • Park J.Y.
        Quantitative promoter hypermethylation analysis of RASSF1A in lung cancer: comparison with methylation-specific PCR technique and clinical significance.
        Mol Med Rep. 2012; 5: 239-244
        • Niklinska W.
        • Naumnik W.
        • Sulewska A.
        • Kozlowski M.
        • Pankiewicz W.
        • Milewski R.
        Prognostic significance of DAPK and RASSF1A promoter hypermethylation in non-small cell lung cancer (NSCLC).
        Folia Histochem Cytobiol. 2009; 47: 275-280
        • Dammann R.
        • Takahashi T.
        • Pfeifer G.P.
        The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas.
        Oncogene. 2001; 20: 3563-3567
        • Kim D.H.
        • Nelson H.H.
        • Wiencke J.K.
        • et al.
        Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer.
        Oncogene. 2001; 20: 1765-1770
        • Virmani A.K.
        • Rathi A.
        • Zochbauer-Muller S.
        • et al.
        Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas.
        J Natl Cancer Inst. 2000; 92: 1303-1307
        • Ekim M.
        • Caner V.
        • Buyukpinarbasili N.
        • Tepeli E.
        • Elmas L.
        • Bagci G.
        Determination of O(6)-methylguanine DNA methyltransferase promoter methylation in non-small cell lung cancer.
        Genet Test Mol Biomarkers. 2011; 15: 357-360
        • Lai J.C.
        • Cheng Y.W.
        • Goan Y.G.
        • et al.
        Promoter methylation of O(6)-methylguanine-DNA-methyltransferase in lung cancer is regulated by p53.
        DNA Repair. 2008; 7: 1352-1363
        • Brabender J.
        • Usadel H.
        • Metzger R.
        • et al.
        Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome.
        Clin Cancer Res. 2003; 9: 223-227
        • Schmidt B.
        • Liebenberg V.
        • Dietrich D.
        • et al.
        SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates.
        BMC Cancer. 2010; 10: 600
        • Schneider K.U.
        • Dietrich D.
        • Fleischhacker M.
        • et al.
        Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors.
        BMC Cancer. 2011; 11: 102
        • Yu G.P.
        • Ji Y.
        • Chen G.Q.
        • et al.
        Application of RUNX3 gene promoter methylation in the diagnosis of non-small cell lung cancer.
        Oncol Lett. 2012; 3: 159-162
        • Omar M.F.
        • Ito K.
        • Nga M.E.
        • et al.
        RUNX3 downregulation in human lung adenocarcinoma is independent of p53, EGFR or KRAS status.
        Pathol Oncol Res. 2012; 18: 783-792
        • Sato K.
        • Tomizawa Y.
        • Iijima H.
        • et al.
        Epigenetic inactivation of the RUNX3 gene in lung cancer.
        Oncol Rep. 2006; 15: 129-135
        • Kim T.Y.
        • Lee H.J.
        • Hwang K.S.
        • et al.
        Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma.
        Lab Invest. 2004; 84: 479-484
        • Li Q.L.
        • Kim H.R.
        • Kim W.J.
        • et al.
        Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer.
        Biochem Biophys Res Commun. 2004; 314: 223-228
        • Kim D.S.
        • Kim M.J.
        • Lee J.Y.
        • Kim Y.Z.
        • Kim E.J.
        • Park J.Y.
        Aberrant methylation of E-cadherin and H-cadherin genes in nonsmall cell lung cancer and its relation to clinicopathologic features.
        Cancer. 2007; 110: 2785-2792
        • Heller G.
        • Fong K.M.
        • Girard L.
        • et al.
        Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas.
        Oncogene. 2006; 25: 959-968
        • Kikuchi S.
        • Yamada D.
        • Fukami T.
        • et al.
        Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma.
        Cancer. 2006; 106: 1751-1758
        • Fukami T.
        • Fukuhara H.
        • Kuramochi M.
        • et al.
        Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines.
        Int J Cancer. 2003; 107: 53-59
        • Ramirez J.L.
        • Sarries C.
        • de Castro P.L.
        • et al.
        Methylation patterns and K-ras mutations in tumor and paired serum of resected non-small-cell patients with lung cancer.
        Cancer Lett. 2003; 193: 207-216
        • Virmani A.
        • Rathi A.
        • Sugio K.
        • et al.
        Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer.
        Int J Cancer. 2003; 106: 198-204
        • Kikuchi S.
        • Yamada D.
        • Fukami T.
        • et al.
        Promoter methylation of DAL-1/4.1B predicts poor prognosis in non-small cell lung cancer.
        Clin Cancer Res. 2005; 11: 2954-2961
        • Marsit C.J.
        • Zheng S.
        • Aldape K.
        • et al.
        PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration.
        Hum Pathol. 2005; 36: 768-776
        • Soria J.C.
        • Lee H.Y.
        • Lee J.I.
        • et al.
        Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation.
        Clin Cancer Res. 2002; 8: 1178-1184
        • Grimminger P.P.
        • Maus M.K.
        • Schneider P.M.
        • et al.
        Glutathione S-transferase PI (GST-PI) mRNA expression and DNA methylation is involved in the pathogenesis and prognosis of NSCLC.
        Lung Cancer. 2012; 78: 87-91
        • Vallbohmer D.
        • Brabender J.
        • Yang D.
        • et al.
        DNA methyltransferases messenger RNA expression and aberrant methylation of CpG islands in non-small-cell lung cancer: association and prognostic value.
        Clin Lung Cancer. 2006; 8: 39-44
        • Belinsky S.A.
        Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer.
        Carcinogenesis. 2005; 26: 1481-1487
        • Lin Q.
        • Geng J.
        • Ma K.
        • et al.
        RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China.
        J Cancer Res Clin Oncol. 2009; 135: 1675-1684
        • Rauch T.
        • Wang Z.
        • Zhang X.
        • et al.
        Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay.
        Proc Natl Acad Sci U S A. 2007; 104: 5527-5532
        • Yano M.
        • Toyooka S.
        • Tsukuda K.
        • et al.
        Aberrant promoter methylation of human DAB2 interactive protein (hDAB2IP) gene in lung cancers.
        Int J Cancer. 2005; 113: 59-66
        • Chen H.
        • Suzuki M.
        • Nakamura Y.
        • et al.
        Aberrant methylation of FBN2 in human non-small cell lung cancer.
        Lung Cancer. 2005; 50: 43-49
        • Liu Z.
        • Li W.
        • Lei Z.
        • et al.
        CpG island methylator phenotype involving chromosome 3p confers an increased risk of non-small cell lung cancer.
        J Thorac Oncol. 2010; 5: 790-797
        • Liu Z.
        • Zhao J.
        • Chen X.F.
        • et al.
        CpG island methylator phenotype involving tumor suppressor genes located on chromosome 3p in non-small cell lung cancer.
        Lung Cancer. 2008; 62: 15-22
        • Marsit C.J.
        • Houseman E.A.
        • Christensen B.C.
        • et al.
        Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors.
        Cancer Res. 2006; 66: 10621-10629
        • Shinjo K.
        • Okamoto Y.
        • An B.
        • et al.
        Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma.
        Carcinogenesis. 2012; 33: 1277-1285
        • Kim H.
        • Kwon Y.M.
        • Kim J.S.
        • et al.
        Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer.
        Cancer. 2006; 107: 1042-1049
        • Lin R.K.
        • Hsu H.S.
        • Chang J.W.
        • Chen C.Y.
        • Chen J.T.
        • Wang Y.C.
        Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer.
        Lung Cancer. 2007; 55: 205-213
        • Anisowicz A.
        • Huang H.
        • Braunschweiger K.I.
        • et al.
        A high-throughput and sensitive method to measure global DNA methylation: application in lung cancer.
        BMC Cancer. 2008; 8: 222
        • Daskalos A.
        • Logotheti S.
        • Markopoulou S.
        • et al.
        Global DNA hypomethylation-induced deltaNp73 transcriptional activation in non-small cell lung cancer.
        Cancer Lett. 2011; 300: 79-86
        • Feinberg A.P.
        • Vogelstein B.
        Hypomethylation of ras oncogenes in primary human cancers.
        Biochem Biophys Res Commun. 1983; 111: 47-54
        • Feinberg A.P.
        • Vogelstein B.
        Hypomethylation distinguishes genes of some human cancers from their normal counterparts.
        Nature. 1983; 301: 89-92
        • Kondo M.
        • Suzuki H.
        • Ueda R.
        • et al.
        Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers.
        Oncogene. 1995; 10: 1193-1198
        • Rauch T.A.
        • Zhong X.
        • Wu X.
        • et al.
        High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer.
        Proc Natl Acad Sci U S A. 2008; 105: 252-257
        • Glazer C.A.
        • Smith I.M.
        • Ochs M.F.
        • et al.
        Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC.
        PLoS One. 2009; 4: e8189
        • Kim S.H.
        • Lee S.
        • Lee C.H.
        • et al.
        Expression of cancer-testis antigens MAGE-A3/6 and NY-ESO-1 in non-small-cell lung carcinomas and their relationship with immune cell infiltration.
        Lung. 2009; 187: 401-411
        • Kayser G.
        • Sienel W.
        • Kubitz B.
        • et al.
        Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression.
        Pathology. 2011; 43: 719-724
        • Renaud S.
        • Pugacheva E.M.
        • Delgado M.D.
        • et al.
        Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors.
        Nucl Acid Res. 2007; 35: 7372-7388
        • Hong J.A.
        • Kang Y.
        • Abdullaev Z.
        • et al.
        Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells.
        Cancer Res. 2005; 65: 7763-7774
        • Radhakrishnan V.M.
        • Jensen T.J.
        • Cui H.
        • Futscher B.W.
        • Martinez J.D.
        Hypomethylation of the 14-3-3sigma promoter leads to increased expression in non-small cell lung cancer.
        Genes Chromosom Cancer. 2011; 50: 830-836
        • Shiba-Ishii A.
        • Noguchi M.
        Aberrant stratifin overexpression is regulated by tumor-associated CpG demethylation in lung adenocarcinoma.
        Am J Pathol. 2012; 180: 1653-1662
        • Gu Y.
        • Wang C.
        • Wang Y.
        • Qiu X.
        • Wang E.
        Expression of thymosin beta10 and its role in non-small cell lung cancer.
        Hum Pathol. 2009; 40: 117-124
        • Jang S.J.
        • Soria J.C.
        • Wang L.
        • et al.
        Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis.
        Cancer Res. 2001; 61: 7959-7963
        • Gronbaek K.
        • Hother C.
        • Jones P.A.
        Epigenetic changes in cancer.
        APMIS. 2007; 115: 1039-1059
        • Rideout 3rd, W.M.
        • Coetzee G.A.
        • Olumi A.F.
        • Jones P.A.
        5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes.
        Science. 1990; 249: 1288-1290
        • Chen J.X.
        • Zheng Y.
        • West M.
        • Tang M.S.
        Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots.
        Cancer Res. 1998; 58: 2070-2075
        • Denissenko M.F.
        • Pao A.
        • Tang M.
        • Pfeifer G.P.
        Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53.
        Science. 1996; 274: 430-432
        • Yoon J.H.
        • Smith L.E.
        • Feng Z.
        • Tang M.
        • Lee C.S.
        • Pfeifer G.P.
        Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers.
        Cancer Res. 2001; 61: 7110-7117
        • Feng Z.
        • Hu W.
        • Hu Y.
        • Tang M.S.
        Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair.
        Proc Natl Acad Sci U S A. 2006; 103: 15404-15409
        • Sasaki H.
        • Moriyama S.
        • Nakashima Y.
        • et al.
        Histone deacetylase 1 mRNA expression in lung cancer.
        Lung Cancer. 2004; 46: 171-178
        • Nakagawa M.
        • Oda Y.
        • Eguchi T.
        • et al.
        Expression profile of class I histone deacetylases in human cancer tissues.
        Oncol Rep. 2007; 18: 769-774
        • Bartling B.
        • Hofmann H.S.
        • Boettger T.
        • et al.
        Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma.
        Lung Cancer. 2005; 49: 145-154
        • Esteller M.
        Epigenetics in cancer.
        N Engl J Med. 2008; 358: 1148-1159
        • Suzuki H.
        • Ouchida M.
        • Yamamoto H.
        • et al.
        Decreased expression of the SIN3A gene, a candidate tumor suppressor located at the prevalent allelic loss region 15q23 in non-small cell lung cancer.
        Lung Cancer. 2008; 59: 24-31
        • Van Den Broeck A.
        • Brambilla E.
        • Moro-Sibilot D.
        • et al.
        Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer.
        Clin Cancer Res. 2008; 14: 7237-7245
        • Hu J.
        • Liu Y.L.
        • Piao S.L.
        • Yang D.D.
        • Yang Y.M.
        • Cai L.
        Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer.
        Lung Cancer. 2012; 77: 593-599
        • Huang J.
        • Qiu Y.
        • Chen G.
        • Huang L.
        • He J.
        The relationship between BMI-1 and the epithelial-mesenchymal transition in lung squamous cell carcinoma.
        Med Oncol. 2012; 29: 1606-1613
        • Kimura M.
        • Takenobu H.
        • Akita N.
        • et al.
        BMI1 regulates cell fate via tumor suppressor WWOX repression in small-cell lung cancer cells.
        Cancer Sci. 2011; 102: 983-990
        • Vonlanthen S.
        • Heighway J.
        • Altermatt H.J.
        • et al.
        The BMI-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression.
        Br J Cancer. 2001; 84: 1372-1376
        • Breuer R.H.
        • Snijders P.J.
        • Smit E.F.
        • et al.
        Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis.
        Neoplasia. 2004; 6: 736-743
        • Cao W.
        • Ribeiro Rde O.
        • Liu D.
        • et al.
        EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer.
        PLoS One. 2012; 7: e52984
        • Takawa M.
        • Masuda K.
        • Kunizaki M.
        • et al.
        Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker.
        Cancer Sci. 2011; 102: 1298-1305
        • Wan L.
        • Li X.
        • Shen H.
        • Bai X.
        Quantitative analysis of EZH2 expression and its correlations with patients with lung cancer: clinical pathological characteristics.
        Clin Transl Oncol. 2013; 15: 132-138
        • Zhou Y.
        • Wan C.
        • Liu Y.
        • et al.
        Polycomb group oncogene RING1 is over-expressed in non-small cell lung cancer.
        Pathol Oncol Res. 2014; 20: 549-556
        • Sato T.
        • Kaneda A.
        • Tsuji S.
        • et al.
        PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.
        Sci Rep. 2013; 3: 1911
        • Lv Y.
        • Yuan C.
        • Xiao X.
        • et al.
        The expression and significance of the enhancer of zeste homolog 2 in lung adenocarcinoma.
        Oncol Rep. 2012; 28: 147-154
        • Huqun
        • Ishikawa R.
        • Zhang J.
        • et al.
        Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer.
        Cancer. 2012; 118: 1599-1606
        • Crea F.
        • Paolicchi E.
        • Marquez V.E.
        • Danesi R.
        Polycomb genes and cancer: time for clinical application?.
        Crit Rev Oncol Hematol. 2012; 83: 184-193
        • Koch L.K.
        • Zhou H.
        • Ellinger J.
        • et al.
        Stem cell marker expression in small cell lung carcinoma and developing lung tissue.
        Hum Pathol. 2008; 39: 1597-1605
        • Vrzalikova K.
        • Skarda J.
        • Ehrmann J.
        • et al.
        Prognostic value of BMI-1 oncoprotein expression in patients with NSCLC: a tissue microarray study.
        J Cancer Res Clin Oncol. 2008; 134: 1037-1042
        • Dovey J.S.
        • Zacharek S.J.
        • Kim C.F.
        • Lees J.A.
        BMI1 is critical for lung tumorigenesis and bronchoalveolar stem cell expansion.
        Proc Natl Acad Sci U S A. 2008; 105: 11857-11862
        • Liu L.
        • Andrews L.G.
        • Tollefsbol T.O.
        Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death.
        Oncogene. 2006; 25: 4370-4375
        • Guan P.
        • Yin Z.
        • Li X.
        • Wu W.
        • Zhou B.
        Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues.
        J Exp Clin Cancer Res. 2012; 31: 54
        • Vosa U.
        • Vooder T.
        • Kolde R.
        • Vilo J.
        • Metspalu A.
        • Annilo T.
        Meta-analysis of microRNA expression in lung cancer.
        Int J Cancer. 2013; 132: 2884-2893
        • Shi X.
        • Sun M.
        • Liu H.
        • Yao Y.
        • Song Y.
        Long non-coding RNAs: a new frontier in the study of human diseases.
        Cancer Lett. 2013; 339: 159-166
        • Gutschner T.
        • Hammerle M.
        • Diederichs S.
        MALAT1: a paradigm for long noncoding RNA function in cancer.
        J Mol Med. 2013; 91: 791-801
        • Ji P.
        • Diederichs S.
        • Wang W.
        • et al.
        MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer.
        Oncogene. 2003; 22: 8031-8041
        • Schmidt L.H.
        • Spieker T.
        • Koschmieder S.
        • et al.
        The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth.
        J Thorac Oncol. 2011; 6: 1984-1992
        • Gutschner T.
        • Hammerle M.
        • Eissmann M.
        • et al.
        The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells.
        Cancer Res. 2013; 73: 1180-1189
        • Tano K.
        • Mizuno R.
        • Okada T.
        • et al.
        MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes.
        FEBS Lett. 2010; 584: 4575-4580
        • Gutschner T.
        • Baas M.
        • Diederichs S.
        Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases.
        Genome Res. 2011; 21: 1944-1954
        • Liu X.H.
        • Liu Z.L.
        • Sun M.
        • Liu J.
        • Wang Z.X.
        • De W.
        The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer.
        BMC Cancer. 2013; 13: 464
        • Nakagawa T.
        • Endo H.
        • Yokoyama M.
        • et al.
        Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer.
        Biochem Biophys Res Commun. 2013; 436: 319-324
        • Zhuang Y.
        • Wang X.
        • Nguyen H.T.
        • et al.
        Induction of long intergenic non-coding RNA HOTAIR in lung cancer cells by type I collagen.
        J Hematol Oncol. 2013; 6: 35
        • Lujambio A.
        • Ropero S.
        • Ballestar E.
        • et al.
        Genetic unmasking of an epigenetically silenced microRNA in human cancer cells.
        Cancer Res. 2007; 67: 1424-1429
        • Wang Z.
        • Chen Z.
        • Gao Y.
        • et al.
        DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer.
        Cancer Biol Ther. 2011; 11: 490-496
        • Nadal E.
        • Chen G.
        • Gallegos M.
        • et al.
        Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early-stage lung adenocarcinoma.
        Clin Cancer Res. 2013; 19: 6842-6852
        • Cao J.
        • Song Y.
        • Bi N.
        • et al.
        DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer.
        Cancer Res. 2013; 73: 3326-3335
        • Heller G.
        • Weinzierl M.
        • Noll C.
        • et al.
        Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers.
        Clin Cancer Res. 2012; 18: 1619-1629
        • Brueckner B.
        • Stresemann C.
        • Kuner R.
        • et al.
        The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function.
        Cancer Res. 2007; 67: 1419-1423
        • Fabbri M.
        • Garzon R.
        • Cimmino A.
        • et al.
        MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B.
        Proc Natl Acad Sci U S A. 2007; 104: 15805-15810
        • Feng Q.
        • Hawes S.E.
        • Stern J.E.
        • et al.
        DNA methylation in tumor and matched normal tissues from non-small cell patients with lung cancer.
        Cancer Epidemiol Biomarkers Prevent. 2008; 17: 645-654
        • Toyooka S.
        • Suzuki M.
        • Tsuda T.
        • et al.
        Dose effect of smoking on aberrant methylation in non-small cell lung cancers.
        Int J Cancer. 2004; 110: 462-464
        • Kim H.
        • Kwon Y.M.
        • Kim J.S.
        • et al.
        Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer.
        J Clin Oncol. 2004; 22: 2363-2370
        • Liu Y.
        • Lan Q.
        • Siegfried J.M.
        • Luketich J.D.
        • Keohavong P.
        Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking patients with lung cancer.
        Neoplasia. 2006; 8: 46-51
        • Vaissiere T.
        • Hung R.J.
        • Zaridze D.
        • et al.
        Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors.
        Cancer Res. 2009; 69: 243-252
        • Yanagawa N.
        • Tamura G.
        • Oizumi H.
        • Endoh M.
        • Sadahiro M.
        • Motoyama T.
        Inverse correlation between EGFR mutation and FHIT, RASSF1A and RUNX3 methylation in lung adenocarcinoma: relation with smoking status.
        Anticancer Res. 2011; 31: 1211-1214
        • Hong Y.S.
        • Roh M.S.
        • Kim N.Y.
        • et al.
        Hypermethylation of p16INK4a in Korean non-small cell patients with lung cancer.
        J Korean Med Sci. 2007; 22: S32-S37
        • Andujar P.
        • Wang J.
        • Descatha A.
        • et al.
        p16INK4A inactivation mechanisms in non-small-cell patients with lung cancer occupationally exposed to asbestos.
        Lung Cancer. 2010; 67: 23-30
        • Liu F.
        • Killian J.K.
        • Yang M.
        • et al.
        Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate.
        Oncogene. 2010; 29: 3650-3664
        • Marwick J.A.
        • Kirkham P.A.
        • Stevenson C.S.
        • et al.
        Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs.
        Am J Respir Cell Mol Biol. 2004; 31: 633-642
        • Kaira K.
        • Sunaga N.
        • Tomizawa Y.
        • et al.
        Epigenetic inactivation of the RAS-effector gene RASSF2 in lung cancers.
        Int J Oncol. 2007; 31: 169-173
        • Tessema M.
        • Yu Y.Y.
        • Stidley C.A.
        • et al.
        Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers.
        Carcinogenesis. 2009; 30: 1132-1138
        • Lin R.K.
        • Hsieh Y.S.
        • Lin P.
        • et al.
        The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and patients with lung cancer.
        J Clin Invest. 2010; 120: 521-532
        • Damiani L.A.
        • Yingling C.M.
        • Leng S.
        • Romo P.E.
        • Nakamura J.
        • Belinsky S.A.
        Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells.
        Cancer Res. 2008; 68: 9005-9014
        • Wang J.
        • Xu Y.
        • Li J.
        • Sun X.
        • Wang L.P.
        • Ji W.Y.
        The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation in laryngeal carcinoma.
        Oral Oncol. 2012; 48: 541-546
        • Wang J.
        • Zhao S.L.
        • Li Y.
        • Meng M.
        • Qin C.Y.
        4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone induces retinoic acid receptor beta hypermethylation through DNA methyltransferase 1 accumulation in esophageal squamous epithelial cells.
        Asian Pacific J Cancer Prevent. 2012; 13: 2207-2212
        • Hutt J.A.
        • Vuillemenot B.R.
        • Barr E.B.
        • et al.
        Life-span inhalation exposure to mainstream cigarette smoke induces lung cancer in B6C3F1 mice through genetic and epigenetic pathways.
        Carcinogenesis. 2005; 26: 1999-2009
        • Pulling L.C.
        • Vuillemenot B.R.
        • Hutt J.A.
        • Devereux T.R.
        • Belinsky S.A.
        Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens.
        Cancer Res. 2004; 64: 3844-3848
        • Vuillemenot B.R.
        • Hutt J.A.
        • Belinsky S.A.
        Gene promoter hypermethylation in mouse lung tumors.
        Mol Cancer Res. 2006; 4: 267-273
        • Balkwill F.
        • Coussens L.M.
        Cancer: an inflammatory link.
        Nature. 2004; 431: 405-406
        • Coussens L.M.
        • Werb Z.
        Inflammation and cancer.
        Nature. 2002; 420: 860-867
        • Meng X.
        • Riordan N.H.
        Cancer is a functional repair tissue.
        Med Hypotheses. 2006; 66: 486-490
        • O'Hagan H.M.
        • Wang W.
        • Sen S.
        • et al.
        Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands.
        Cancer Cell. 2011; 20: 606-619
        • Northrop-Clewes C.A.
        • Thurnham D.I.
        Monitoring micronutrients in cigarette smokers.
        Clin Chim Acta. 2007; 377: 14-38
        • Khaled M.A.
        • Krumdieck C.L.
        Association of folate molecules as determined by proton NMR: implications on enzyme binding.
        Biochem Biophys Res Commun. 1985; 130: 1273-1280
        • Abu Khaled M.
        • Watkins C.L.
        • Krumdieck C.L.
        Inactivation of B12 and folate coenzymes by butyl nitrite as observed by NMR: implications on one-carbon transfer mechanism.
        Biochem Biophys Res Commun. 1986; 135: 201-207
        • Ortega R.M.
        • Lopez-Sobaler A.M.
        • Gonzalez-Gross M.M.
        • et al.
        Influence of smoking on folate intake and blood folate concentrations in a group of elderly Spanish men.
        J Am Coll Nutr. 1994; 13: 68-72
        • Piyathilake C.J.
        • Macaluso M.
        • Hine R.J.
        • Richards E.W.
        • Krumdieck C.L.
        Local and systemic effects of cigarette smoking on folate and vitamin B-12.
        Am J Clin Nutr. 1994; 60: 559-566
        • Blount B.C.
        • Mack M.M.
        • Wehr C.M.
        • et al.
        Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage.
        Proc Natl Acad Sci U S A. 1997; 94: 3290-3295
        • Fang J.Y.
        • Xiao S.D.
        Folic acid, polymorphism of methyl-group metabolism genes, and DNA methylation in relation to GI carcinogenesis.
        J Gastroenterol. 2003; 38: 821-829
        • Cui F.M.
        • Li J.X.
        • Chen Q.
        • et al.
        Radon-induced alterations in micro-RNA expression profiles in transformed BEAS2B cells.
        J Toxicol Environ Health A. 2013; 76: 107-119
        • Su S.
        • Jin Y.
        • Zhang W.
        • et al.
        Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine.
        J Occup Health. 2006; 48: 261-266
        • Pulling L.C.
        • Divine K.K.
        • Klinge D.M.
        • et al.
        Promoter hypermethylation of the O6-methylguanine-DNA methyltransferase gene: more common in lung adenocarcinomas from never-smokers than smokers and associated with tumor progression.
        Cancer Res. 2003; 63: 4842-4848
        • Johnson D.H.
        • Fehrenbacher L.
        • Novotny W.F.
        • et al.
        Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer.
        J Clin Oncol. 2004; 22: 2184-2191
        • Sandler A.
        • Gray R.
        • Perry M.C.
        • et al.
        Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.
        N Engl J Med. 2006; 355: 2542-2550
        • Reck M.
        • von Pawel J.
        • Zatloukal P.
        • et al.
        Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil.
        J Clin Oncol. 2009; 27: 1227-1234
        • Scagliotti G.
        • Brodowicz T.
        • Shepherd F.A.
        • et al.
        Treatment-by-histology interaction analyses in three phase III trials show superiority of pemetrexed in nonsquamous non-small cell lung cancer.
        J Thorac Oncol. 2011; 6: 64-70
        • Kwon Y.J.
        • Lee S.J.
        • Koh J.S.
        • et al.
        Genome-wide analysis of DNA methylation and the gene expression change in lung cancer.
        J Thorac Oncol. 2012; 7: 20-33
        • Castro M.
        • Grau L.
        • Puerta P.
        • et al.
        Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in lung cancer.
        J Transl Med. 2010; 8: 86
        • Hawes S.E.
        • Stern J.E.
        • Feng Q.
        • et al.
        DNA hypermethylation of tumors from non-small cell lung cancer (NSCLC) patients is associated with gender and histologic type.
        Lung Cancer. 2010; 69: 172-179
        • Lockwood W.W.
        • Wilson I.M.
        • Coe B.P.
        • et al.
        Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development.
        PLoS One. 2012; 7: e37775
        • Christensen B.C.
        • Marsit C.J.
        • Houseman E.A.
        • et al.
        Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles.
        Cancer Res. 2009; 69: 6315-6321
        • Bishop J.A.
        • Benjamin H.
        • Cholakh H.
        • Chajut A.
        • Clark D.P.
        • Westra W.H.
        Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach.
        Clin Cancer Res. 2010; 16: 610-619
        • Lebanony D.
        • Benjamin H.
        • Gilad S.
        • et al.
        Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma.
        J Clin Oncol. 2009; 27: 2030-2037
        • Hoffman P.C.
        • Mauer A.M.
        • Vokes E.E.
        Lung cancer.
        Lancet. 2000; 355: 479-485
        • Field J.K.
        • Baldwin D.
        • Brain K.
        • et al.
        CT screening for lung cancer in the UK: position statement by UKLS investigators following the NLST report.
        Thorax. 2011; 66: 736-737
        • Isbell J.M.
        • Deppen S.
        • Putnam Jr., J.B.
        • et al.
        Existing general population models inaccurately predict lung cancer risk in patients referred for surgical evaluation.
        Ann Thorac Surg. 2011; 91 (discussion 233): 227-233
        • Machida E.O.
        • Brock M.V.
        • Hooker C.M.
        • et al.
        Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer.
        Cancer Res. 2006; 66: 6210-6218
        • Leng S.
        • Do K.
        • Yingling C.M.
        • et al.
        Defining a gene promoter methylation signature in sputum for lung cancer risk assessment.
        Clin Cancer Res. 2012; 18: 3387-3395
        • de Fraipont F.
        • Moro-Sibilot D.
        • Michelland S.
        • Brambilla E.
        • Brambilla C.
        • Favrot M.C.
        Promoter methylation of genes in bronchial lavages: a marker for early diagnosis of primary and relapsing non-small cell lung cancer?.
        Lung Cancer. 2005; 50: 199-209
        • Dietrich D.
        • Kneip C.
        • Raji O.
        • et al.
        Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates.
        Int J Oncol. 2012; 40: 825-832
        • Schmiemann V.
        • Bocking A.
        • Kazimirek M.
        • et al.
        Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study.
        Clin Cancer Res. 2005; 11: 7728-7734
        • Hu Y.C.
        • Sidransky D.
        • Ahrendt S.A.
        Molecular detection approaches for smoking associated tumors.
        Oncogene. 2002; 21: 7289-7297
        • Simkin M.
        • Abdalla M.
        • El-Mogy M.
        • Haj-Ahmad Y.
        Differences in the quantity of DNA found in the urine and saliva of smokers versus nonsmokers: implications for the timing of epigenetic events.
        Epigenomics. 2012; 4: 343-352
        • Belinsky S.A.
        • Liechty K.C.
        • Gentry F.D.
        • et al.
        Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort.
        Cancer Res. 2006; 66: 3338-3344
        • Greenberg A.K.
        • Rimal B.
        • Felner K.
        • et al.
        S-adenosylmethionine as a biomarker for the early detection of lung cancer.
        Chest. 2007; 132: 1247-1252
        • Shen J.
        • Todd N.W.
        • Zhang H.
        • et al.
        Plasma microRNAs as potential biomarkers for non-small-cell lung cancer.
        Lab Invest. 2011; 91: 579-587
        • Ma J.
        • Li N.
        • Guarnera M.
        • Jiang F.
        Quantification of plasma miRNAs by digital PCR for cancer diagnosis.
        Biomarker Insight. 2013; 8: 127-136
        • Weber D.G.
        • Johnen G.
        • Casjens S.
        • et al.
        Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer.
        BMC Res Notes. 2013; 6: 518
        • Shen Y.
        • Wang T.
        • Yang T.
        • et al.
        Diagnostic value of circulating microRNAs for lung cancer: a meta-analysis.
        Genet Test Mol Biomarkers. 2013; 17: 359-366
        • Wang J.
        • Lee J.J.
        • Wang L.
        • et al.
        Value of p16INK4a and RASSF1A promoter hypermethylation in prognosis of patients with resectable non-small cell lung cancer.
        Clin Cancer Res. 2004; 10: 6119-6125
        • Gu J.
        • Berman D.
        • Lu C.
        • et al.
        Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer.
        Clin Cancer Res. 2006; 12: 7329-7338
        • Kim J.S.
        • Kim J.W.
        • Han J.
        • Shim Y.M.
        • Park J.
        • Kim D.H.
        Cohypermethylation of p16 and FHIT promoters as a prognostic factor of recurrence in surgically resected stage I non-small cell lung cancer.
        Cancer Res. 2006; 66: 4049-4054
        • Ota N.
        • Kawakami K.
        • Okuda T.
        • et al.
        Prognostic significance of p16(INK4a) hypermethylation in non-small cell lung cancer is evident by quantitative DNA methylation analysis.
        Anticancer Res. 2006; 26: 3729-3732
        • Suzuki M.
        • Mohamed S.
        • Nakajima T.
        • et al.
        Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis.
        Int J Oncol. 2008; 33: 113-119
        • Seng T.J.
        • Currey N.
        • Cooper W.A.
        • et al.
        DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma.
        Br J Cancer. 2008; 99: 375-382
        • Usadel H.
        • Brabender J.
        • Danenberg K.D.
        • et al.
        Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer.
        Cancer Res. 2002; 62: 371-375
        • Brock M.V.
        • Hooker C.M.
        • Ota-Machida E.
        • et al.
        DNA methylation markers and early recurrence in stage I lung cancer.
        N Engl J Med. 2008; 358: 1118-1128
        • Suzuki M.
        • Hao C.
        • Takahashi T.
        • et al.
        Aberrant methylation of SPARC in human lung cancers.
        Br J Cancer. 2005; 92: 942-948
        • Yoshino M.
        • Suzuki M.
        • Tian L.
        • et al.
        Promoter hypermethylation of the p16 and Wif-1 genes as an independent prognostic marker in stage IA non-small cell lung cancers.
        Int J Oncol. 2009; 35: 1201-1209
        • Xing J.
        • Stewart D.J.
        • Gu J.
        • Lu C.
        • Spitz M.R.
        • Wu X.
        Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer.
        Br J Cancer. 2008; 98: 1716-1722
        • Strauss G.M.
        • Herndon 2nd, J.E.
        • Maddaus M.A.
        • et al.
        Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non-small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group study groups.
        J Clin Oncol. 2008; 26: 5043-5051
        • Kelsey C.R.
        • Marks L.B.
        • Hollis D.
        • et al.
        Local recurrence after surgery for early stage lung cancer: an 11-year experience with 975 patients.
        Cancer. 2009; 115: 5218-5227
        • Shoji F.
        • Haro A.
        • Yoshida T.
        • et al.
        Prognostic significance of intratumoral blood vessel invasion in pathologic stage IA non-small cell lung cancer.
        Ann Thorac Surg. 2010; 89: 864-869
        • Barlesi F.
        • Giaccone G.
        • Gallegos-Ruiz M.I.
        • et al.
        Global histone modifications predict prognosis of resected non small-cell lung cancer.
        J Clin Oncol. 2007; 25: 4358-4364
        • Seligson D.B.
        • Horvath S.
        • McBrian M.A.
        • et al.
        Global levels of histone modifications predict prognosis in different cancers.
        Am J Pathol. 2009; 174: 1619-1628
        • Kikuchi J.
        • Kinoshita I.
        • Shimizu Y.
        • et al.
        Distinctive expression of the polycomb group proteins BMI1 polycomb ring finger oncogene and enhancer of zeste homolog 2 in nonsmall cell lung cancers and their clinical and clinicopathologic significance.
        Cancer. 2010; 116: 3015-3024
        • Zhang X.Y.
        • Dong Q.G.
        • Huang J.S.
        • et al.
        The expression of stem cell-related indicators as a prognostic factor in human lung adenocarcinoma.
        J Surg Oncol. 2010; 102: 856-862
        • Crea F.
        • Sun L.
        • Pikor L.
        • Frumento P.
        • Lam W.L.
        • Helgason C.D.
        Mutational analysis of Polycomb genes in solid tumours identifies PHC3 amplification as a possible cancer-driving genetic alteration.
        Br J Cancer. 2013; 109: 1699-1702
        • Yang M.
        • Shen H.
        • Qiu C.
        • et al.
        High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer.
        Eur J Cancer. 2013; 49: 604-615
        • Liu Z.
        • Sun M.
        • Lu K.
        • et al.
        The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregulation of p21(WAF1/CIP1) expression.
        PLoS One. 2013; 8: e77293
        • Zandberga E.
        • Kozirovskis V.
        • Abols A.
        • Andrejeva D.
        • Purkalne G.
        • Line A.
        Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer.
        Genes Chromosom Cancer. 2013; 52: 356-369
        • Markou A.
        • Sourvinou I.
        • Vorkas P.A.
        • Yousef G.M.
        • Lianidou E.
        Clinical evaluation of microRNA expression profiling in non small cell lung cancer.
        Lung Cancer. 2013; 81: 388-396
        • Sanfiorenzo C.
        • Ilie M.I.
        • Belaid A.
        • et al.
        Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC.
        PLoS One. 2013; 8: e54596
        • Boeri M.
        • Verri C.
        • Conte D.
        • et al.
        MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer.
        Proc Natl Acad Sci U S A. 2011; 108: 3713-3718
        • Hu Z.
        • Chen X.
        • Zhao Y.
        • et al.
        Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer.
        J Clin Oncol. 2010; 28: 1721-1726
        • Liu X.G.
        • Zhu W.Y.
        • Huang Y.Y.
        • et al.
        High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer.
        Med Oncol. 2012; 29: 618-626
        • Silva J.
        • Garcia V.
        • Zaballos A.
        • et al.
        Vesicle-related microRNAs in plasma of nonsmall cell patients with lung cancer and correlation with survival.
        Eur Respir J. 2011; 37: 617-623
        • Wang Z.X.
        • Bian H.B.
        • Wang J.R.
        • Cheng Z.X.
        • Wang K.M.
        • De W.
        Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer.
        J Surg Oncol. 2011; 104: 847-851
        • Wei J.
        • Gao W.
        • Zhu C.J.
        • et al.
        Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer.
        Chinese J Cancer. 2011; 30: 407-414
        • Houseman E.A.
        • Accomando W.P.
        • Koestler D.C.
        • et al.
        DNA methylation arrays as surrogate measures of cell mixture distribution.
        BMC Bioinformatics. 2012; 13: 86
        • Ramirez J.L.
        • Rosell R.
        • Taron M.
        • et al.
        14-3-3sigma Methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell patients with lung cancer predicts survival: the Spanish Lung Cancer Group.
        J Clin Oncol. 2005; 23: 9105-9112
        • Ponomaryova A.A.
        • Rykova E.Y.
        • Cherdyntseva N.V.
        • et al.
        RARbeta2 gene methylation level in the circulating DNA from blood of patients with lung cancer.
        Eur J Cancer Prevent. 2011; 20: 453-455
        • Li B.
        • Ren S.
        • Li X.
        • et al.
        miR-21 Overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer.
        Lung Cancer. 2014; 83: 146-153
        • Wang Y.S.
        • Wang Y.H.
        • Xia H.P.
        • Zhou S.W.
        • Schmid-Bindert G.
        • Zhou C.C.
        MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines.
        Asian Pacific J Cancer Prevent. 2012; 13: 255-260
        • Garofalo M.
        • Romano G.
        • Di Leva G.
        • et al.
        EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers.
        Nat Med. 2012; 18: 74-82
        • Zhong M.
        • Ma X.
        • Sun C.
        • Chen L.
        MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer.
        Chem Biol Interact. 2010; 184: 431-438
        • Kitamura K.
        • Seike M.
        • Okano T.
        • et al.
        miR-134/487b/655 Cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells.
        Mol Cancer Ther. 2014; 13: 444-453
        • Cao M.
        • Seike M.
        • Soeno C.
        • et al.
        miR-23a Regulates TGF-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells.
        Int J Oncol. 2012; 41: 869-875
        • Cufi S.
        • Bonavia R.
        • Vazquez-Martin A.
        • et al.
        Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo.
        Sci Rep. 2013; 3: 2459
        • Bryant J.L.
        • Britson J.
        • Balko J.M.
        • et al.
        A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT.
        Br J Cancer. 2012; 106: 148-156
        • Zhan M.
        • Qu Q.
        • Wang G.
        • Zhou H.
        let-7c Sensitizes acquired cisplatin-resistant A549 cells by targeting ABCC2 and Bcl-XL.
        Pharmazie. 2013; 68: 955-961
        • Dong Z.
        • Zhong Z.
        • Yang L.
        • Wang S.
        • Gong Z.
        MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9.
        Cancer Lett. 2014; 343: 249-257
        • Li Y.
        • Li L.
        • Guan Y.
        • Liu X.
        • Meng Q.
        • Guo Q.
        miR-92b Regulates the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer cell line and target PTEN.
        Biochem Biophys Res Commun. 2013; 440: 604-610
        • Song L.
        • Li Y.
        • Li W.
        • Wu S.
        • Li Z.
        miR-495 Enhances the sensitivity of non-small cell lung cancer cells to platinum by modulation of copper-transporting P-type adenosine triphosphatase A (ATP7A).
        J Cell Biochem. 2014; 115: 1234-1242
        • Qiu T.
        • Zhou L.
        • Wang T.
        • et al.
        miR-503 Regulates the resistance of non-small cell lung cancer cells to cisplatin by targeting Bcl-2.
        Int J Mol Med. 2013; 32: 593-598
        • Xiang Q.
        • Tang H.
        • Yu J.
        • Yin J.
        • Yang X.
        • Lei X.
        MicroRNA-98 sensitizes cisplatin-resistant human lung adenocarcinoma cells by up-regulation of HMGA2.
        Pharmazie. 2013; 68: 274-281
        • Zhou L.
        • Qiu T.
        • Xu J.
        • et al.
        miR-135a/b Modulate cisplatin resistance of human lung cancer cell line by targeting MCL1.
        Pathol Oncol Res. 2013; 19: 677-683
        • Pouliot L.M.
        • Shen D.W.
        • Suzuki T.
        • Hall M.D.
        • Gottesman M.M.
        Contributions of microRNA dysregulation to cisplatin resistance in adenocarcinoma cells.
        Exp Cell Res. 2013; 319: 566-574
        • Zang Y.S.
        • Zhong Y.F.
        • Fang Z.
        • Li B.
        • An J.
        miR-155 Inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of APAF-1 expression.
        Cancer Gene Ther. 2012; 19: 773-778
        • Liu Z.L.
        • Wang H.
        • Liu J.
        • Wang Z.X.
        MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN.
        Mol Cell Biochem. 2013; 372: 35-45
        • Zhu W.
        • Xu H.
        • Zhu D.
        • et al.
        miR-200bc/429 Cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP.
        Cancer Chemother Pharmacol. 2012; 69: 723-731
        • Ceppi P.
        • Mudduluru G.
        • Kumarswamy R.
        • et al.
        Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer.
        Mol Cancer Res. 2010; 8: 1207-1216
        • Wang Q.
        • Zhong M.
        • Liu W.
        • Li J.
        • Huang J.
        • Zheng L.
        Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP).
        Exp Lung Res. 2011; 37: 427-434
        • Bian H.B.
        • Pan X.
        • Yang J.S.
        • Wang Z.X.
        • De W.
        Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549).
        J Exp Clin Cancer Res. 2011; 30: 20
        • Zhu W.
        • Zhu D.
        • Lu S.
        • et al.
        miR-497 Modulates multidrug resistance of human cancer cell lines by targeting BCL2.
        Med Oncol. 2012; 29: 384-391
        • Zhu W.
        • Shan X.
        • Wang T.
        • Shu Y.
        • Liu P.
        miR-181b Modulates multidrug resistance by targeting BCL2 in human cancer cell lines.
        Int J Cancer. 2010; 127: 2520-2529
        • Wang X.C.
        • Wang W.
        • Zhang Z.B.
        • Zhao J.
        • Tan X.G.
        • Luo J.C.
        Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer.
        Radiat Oncol. 2013; 8: 146
        • Grosso S.
        • Doyen J.
        • Parks S.K.
        • et al.
        miR-210 Promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines.
        Cell Death Dis. 2013; 4: e544
        • Salim H.
        • Akbar N.S.
        • Zong D.
        • et al.
        miRNA-214 Modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence.
        Br J Cancer. 2012; 107: 1361-1373
        • Lee K.M.
        • Choi E.J.
        • Kim I.A.
        MicroRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling.
        Radiother Oncol. 2011; 101: 171-176
        • Arora H.
        • Qureshi R.
        • Jin S.
        • Park A.K.
        • Park W.Y.
        miR-9 And let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1.
        Exp Mol Med. 2011; 43: 298-304
        • Jeong S.H.
        • Wu H.G.
        • Park W.Y.
        LIN28B confers radio-resistance through the posttranscriptional control of KRAS.
        Exp Mol Med. 2009; 41: 912-918
        • Sharma S.V.
        • Lee D.Y.
        • Li B.
        • et al.
        A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations.
        Cell. 2010; 141: 69-80
        • Gerlinger M.
        • Rowan A.J.
        • Horswell S.
        • et al.
        Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.
        N Engl J Med. 2012; 366: 883-892
        • Kodani M.
        • Igishi T.
        • Matsumoto S.
        • et al.
        Suppression of phosphatidylinositol 3-kinase/Akt signaling pathway is a determinant of the sensitivity to a novel histone deacetylase inhibitor, FK228, in lung adenocarcinoma cells.
        Oncol Rep. 2005; 13: 477-483
        • Yu X.D.
        • Wang S.Y.
        • Chen G.A.
        • et al.
        Apoptosis induced by depsipeptide FK228 coincides with inhibition of survival signaling in lung cancer cells.
        Cancer J. 2007; 13: 105-113
        • Choi Y.H.
        Induction of apoptosis by trichostatin A, a histone deacetylase inhibitor, is associated with inhibition of cyclooxygenase-2 activity in human non-small cell lung cancer cells.
        Int J Oncol. 2005; 27: 473-479
        • Doi S.
        • Soda H.
        • Oka M.
        • et al.
        The histone deacetylase inhibitor FR901228 induces caspase-dependent apoptosis via the mitochondrial pathway in small cell lung cancer cells.
        Mol Cancer Ther. 2004; 3: 1397-1402
        • Tong M.
        • Ding Y.
        • Tai H.H.
        Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells.
        Biochem Pharmacol. 2006; 72: 701-709
        • Kaminskyy V.O.
        • Surova O.V.
        • Vaculova A.
        • Zhivotovsky B.
        Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL.
        Carcinogenesis. 2011; 32: 1450-1458
        • Nam J.S.
        • Ino Y.
        • Kanai Y.
        • Sakamoto M.
        • Hirohashi S.
        5-Aza-2′-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis.
        Clin Exp Metastasis. 2004; 21: 49-56
        • Lockwood W.W.
        • Zejnullahu K.
        • Bradner J.E.
        • Varmus H.
        Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins.
        Proc Natl Acad Sci U S A. 2012; 109: 19408-19413
        • Rao M.
        • Chinnasamy N.
        • Hong J.A.
        • et al.
        Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer.
        Cancer Res. 2011; 71: 4192-4204
        • Lawless M.W.
        • O'Byrne K.J.
        • Gray S.G.
        Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy.
        J Cell Mol Med. 2009; 13: 2800-2821
        • Rangwala S.
        • Zhang C.
        • Duvic M.
        HDAC inhibitors for the treatment of cutaneous T-cell lymphomas.
        Future Med Chem. 2012; 4: 471-486
        • Juergens R.A.
        • Wrangle J.
        • Vendetti F.P.
        • et al.
        Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer.
        Cancer Discovery. 2011; 1: 598-607