Advertisement

Epigenetics in kidney development and renal disease

      The study of epigenetics is intimately linked and inseparable from developmental biology. Many of the genes that imprint epigenetic information on chromatin function during the specification of cell lineages in the developing embryo. These include the histone methyltransferases and their cofactors of the Polycomb and Trithorax gene families. How histone methylation is established and what regulates the tissue and locus specificity of histone methylation is an emerging area of research. The embryonic kidney is used as a model to understand how DNA-binding proteins can specify cell lineages and how such proteins interact directly with the histone methylation machinery to generate a unique epigenome for particular tissues and cell types. In adult tissues, histone methylation marks must be maintained for normal gene expression patterns. In chronic and acute renal disease, epigenetic marks are being characterized and correlated with the establishment of metabolic memory, in part to explain the persistence of pathologies even when optimal treatment modalities are used. Thus, the state of the epigenome in adult cells must be considered when attempting to alleviate or alter gene expression patterns in disease.

      Abbreviations:

      DNA (deoxyribonucleic acid), EGFP (enhanced green fluorescent protein), Es (embryonic stem), HOX (homeo-box gene), IM (intermediate mesoderm), PKD (polycystic kidney disease)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Narbonne P.
        • Miyamoto K.
        • Gurdon J.B.
        Reprogramming and development in nuclear transfer embryos and in interspecific systems.
        Curr Opin Genet Dev. 2012; 22: 450-458
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Jenuwein T.
        • Allis C.D.
        Translating the histone code.
        Science. 2001; 293: 1074-1080
        • Ruthenburg A.J.
        • Li H.
        • Patel D.J.
        • Allis C.D.
        Multivalent engagement of chromatin modifications by linked binding modules.
        Nat Rev Mol Cell Biol. 2007; 8: 983-994
        • Nakayama J.
        • Rice J.C.
        • Strahl B.D.
        • Allis C.D.
        • Grewal S.I.
        Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly.
        Science. 2001; 292: 110-113
        • Rea S.
        • Eisenhaber F.
        • O'Carroll D.
        • et al.
        Regulation of chromatin structure by site-specific histone H3 methyltransferases.
        Nature. 2000; 406: 593-599
        • Berger S.L.
        The complex language of chromatin regulation during transcription.
        Nature. 2007; 447: 407-412
        • Lanzuolo C.
        • Orlando V.
        Memories from the polycomb group proteins.
        Annu Rev Genet. 2012; 46: 561-589
        • Schuettengruber B.
        • Martinez A.M.
        • Iovino N.
        • Cavalli G.
        Trithorax group proteins: switching genes on and keeping them active.
        Nat Rev Mol Cell Biol. 2011; 12: 799-814
        • Fisher C.L.
        • Fisher A.G.
        Chromatin states in pluripotent, differentiated, and reprogrammed cells.
        Curr Opin Genet Dev. 2011; 21: 140-146
        • Hong L.
        • Schroth G.P.
        • Matthews H.R.
        • Yau P.
        • Bradbury E.M.
        Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA.
        J Biol Chem. 1993; 268: 305-314
        • Dion M.F.
        • Altschuler S.J.
        • Wu L.F.
        • Rando O.J.
        Genomic characterization reveals a simple histone H4 acetylation code.
        Proc Natl Acad Sci U S A. 2005; 102: 5501-5506
        • Megee P.C.
        • Morgan B.A.
        • Smith M.M.
        Histone H4 and the maintenance of genome integrity.
        Genes Dev. 1995; 9: 1716-1727
        • Barth T.K.
        • Imhof A.
        Fast signals and slow marks: the dynamics of histone modifications.
        Trends Biochem Sci. 2010; 35: 618-626
        • Wang Z.
        • Zang C.
        • Cui K.
        • et al.
        Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
        Cell. 2009; 138: 1019-1031
        • Waterborg J.H.
        Dynamics of histone acetylation in vivo. A function for acetylation turnover?.
        Biochem Cell Biol. 2002; 80: 363-378
        • Klose R.J.
        • Bird A.P.
        Genomic DNA methylation: the mark and its mediators.
        Trends Biochem Sci. 2006; 31: 89-97
        • Petruk S.
        • Black K.L.
        • Kovermann S.K.
        • Brock H.W.
        • Mazo A.
        Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication.
        Nat Commun. 2013; 4: 2841
        • Petruk S.
        • Sedkov Y.
        • Johnston D.M.
        • et al.
        TrxG and PcG proteins but not methylated histones remain associated with DNA through replication.
        Cell. 2012; 150: 922-933
        • Margueron R.
        • Justin N.
        • Ohno K.
        • et al.
        Role of the polycomb protein EED in the propagation of repressive histone marks.
        Nature. 2009; 461: 762-767
        • Bernstein B.E.
        • Mikkelsen T.S.
        • Xie X.
        • et al.
        A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
        Cell. 2006; 125: 315-326
        • Dressler G.R.
        The cellular basis of kidney development.
        Annu Rev Cell Dev Biol. 2006; 22: 509-529
        • Saxen L.
        Organogenesis of the kidney.
        in: Barlow P.W. Green P.B. White C.C. Developmental and cell biology series 19. 19 ed. Cambridge University Press, Cambridge, UK1987
        • Little M.H.
        • McMahon A.P.
        Mammalian kidney development: principles, progress, and projections.
        Cold Spring Harb Perspect Biol. 2012; 4: a008300
        • Patel S.R.
        • Dressler G.R.
        The genetics and epigenetics of kidney development.
        Semin Nephrol. 2013; 33: 314-326
        • Dressler G.R.
        Advances in early kidney specification, development and patterning.
        Development. 2009; 136: 3863-3874
        • Tsang T.E.
        • Shawlot W.
        • Kinder S.J.
        • et al.
        Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo.
        Dev Biol. 2000; 223: 77-90
        • Soofi A.
        • Levitan I.
        • Dressler G.R.
        Two novel EGFP insertion alleles reveal unique aspects of Pax2 function in embryonic and adult kidneys.
        Dev Biol. 2012; 365: 241-250
        • Brophy P.D.
        • Ostrom L.
        • Lang K.M.
        • Dressler G.R.
        Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene.
        Development. 2001; 128: 4747-4756
        • Bouchard M.
        • Souabni A.
        • Mandler M.
        • Neubuser A.
        • Busslinger M.
        Nephric lineage specification by Pax2 and Pax8.
        Genes Dev. 2002; 16: 2958-2970
        • James R.G.
        • Kamei C.N.
        • Wang Q.
        • Jiang R.
        • Schultheiss T.M.
        Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells.
        Development. 2006; 133: 2995-3004
        • Wang Q.
        • Lan Y.
        • Cho E.S.
        • Maltby K.M.
        • Jiang R.
        Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development.
        Dev Biol. 2005; 288: 582-594
        • Dressler G.R.
        • Douglass E.C.
        Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor.
        Proc Natl Acad Sci U S A. 1992; 89: 1179-1183
        • Lechner M.S.
        • Dressler G.R.
        Mapping of Pax-2 transcription activation domains.
        J Biol Chem. 1996; 271: 21088-21093
        • Cho E.A.
        • Prindle M.J.
        • Dressler G.R.
        BRCT domain-containing protein PTIP is essential for progression through mitosis.
        Mol Cell Biol. 2003; 23: 1666-1673
        • Lechner M.S.
        • Levitan I.
        • Dressler G.R.
        PTIP, a novel BRCT domain-containing protein interacts with Pax2 and is associated with active chromatin.
        Nucleic Acids Res. 2000; 28: 2741-2751
        • Patel S.R.
        • Kim D.
        • Levitan I.
        • Dressler G.R.
        The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex.
        Dev Cell. 2007; 13: 580-592
        • Schwab K.R.
        • Patel S.R.
        • Dressler G.R.
        Role of PTIP in class switch recombination and long-range chromatin interactions at the immunoglobulin heavy chain locus.
        Mol Cell Biol. 2011; 31: 1503-1511
        • Patel S.R.
        • Bhumbra S.S.
        • Paknikar R.S.
        • Dressler G.R.
        Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression.
        Mol Cell. 2012; 45: 185-195
        • Klymenko T.
        • Muller J.
        The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins.
        EMBO Rep. 2004; 5: 373-377
        • Systems USRD
        USRDS 2009 annual report: atlas of end-stage renal disease in the United States.
        National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, MD2009
        • Reddy M.A.
        • Tak Park J.
        • Natarajan R.
        Epigenetic modifications in the pathogenesis of diabetic nephropathy.
        Semin Nephrol. 2013; 33: 341-353
        • Intine R.V.
        • Sarras Jr., M.P.
        Metabolic memory and chronic diabetes complications: potential role for epigenetic mechanisms.
        Curr Diab Rep. 2012; 12: 551-559
        • Olsen A.S.
        • Sarras Jr., M.P.
        • Leontovich A.
        • Intine R.V.
        Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression.
        Diabetes. 2012; 61: 485-491
        • Sarras Jr., M.P.
        • Leontovich A.A.
        • Olsen A.S.
        • Intine R.V.
        Impaired tissue regeneration corresponds with altered expression of developmental genes that persists in the metabolic memory state of diabetic zebrafish.
        Wound Repair Regen. 2013; 21: 320-328
        • Kowluru R.A.
        • Santos J.M.
        • Mishra M.
        Epigenetic modifications and diabetic retinopathy.
        Biomed Res Int. 2013; 2013: 635284
        • Zhong Q.
        • Kowluru R.A.
        Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation.
        Invest Ophthalmol Vis Sci. 2013; 54: 244-250
        • Bell C.G.
        • Teschendorff A.E.
        • Rakyan V.K.
        • Maxwell A.P.
        • Beck S.
        • Savage D.A.
        Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus.
        BMC Med Genomics. 2010; 3: 33
        • Sapienza C.
        • Lee J.
        • Powell J.
        • et al.
        DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy.
        Epigenetics. 2011; 6: 20-28
        • Sun G.
        • Reddy M.A.
        • Yuan H.
        • Lanting L.
        • Kato M.
        • Natarajan R.
        Epigenetic histone methylation modulates fibrotic gene expression.
        J Am Soc Nephrol. 2010; 21: 2069-2080
        • Reddy M.A.
        • Sumanth P.
        • Lanting L.
        • et al.
        Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice.
        Kidney Int. 2014; 85: 362-373
        • Yang L.
        • Humphreys B.D.
        • Bonventre J.V.
        Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair.
        Contrib Nephrol. 2011; 174: 149-155
        • Bechtel W.
        • McGoohan S.
        • Zeisberg E.M.
        • et al.
        Methylation determines fibroblast activation and fibrogenesis in the kidney.
        Nat Med. 2010; 16: 544-550
        • Kato M.
        • Zhang J.
        • Wang M.
        • et al.
        MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors.
        Proc Natl Acad Sci U S A. 2007; 104: 3432-3437
        • Putta S.
        • Lanting L.
        • Sun G.
        • Lawson G.
        • Kato M.
        • Natarajan R.
        Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy.
        J Am Soc Nephrol. 2012; 23: 458-469
        • Lefevre G.M.
        • Patel S.R.
        • Kim D.
        • Tessarollo L.
        • Dressler G.R.
        Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype.
        PLoS Genet. 2010; 6: e1001142
        • Stein A.B.
        • Jones T.A.
        • Herron T.J.
        • et al.
        Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes.
        J Clin Invest. 2011; 121: 2641-2650
        • Humphreys B.D.
        • Czerniak S.
        • DiRocco D.P.
        • Hasnain W.
        • Cheema R.
        • Bonventre J.V.
        Repair of injured proximal tubule does not involve specialized progenitors.
        Proc Natl Acad Sci U S A. 2011; 108: 9226-9231
        • Humphreys B.D.
        • Valerius M.T.
        • Kobayashi A.
        • et al.
        Intrinsic epithelial cells repair the kidney after injury.
        Cell Stem Cell. 2008; 2: 284-291
        • Imgrund M.
        • Grone E.
        • Grone H.J.
        • et al.
        Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1.
        Kidney Int. 1999; 56: 1423-1431
        • Piontek K.
        • Menezes L.F.
        • Garcia-Gonzalez M.A.
        • Huso D.L.
        • Germino G.G.
        A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1.
        Nat Med. 2007; 13: 1490-1495
        • Takakura A.
        • Contrino L.
        • Zhou X.
        • et al.
        Renal injury is a third hit promoting rapid development of adult polycystic kidney disease.
        Hum Mol Genet. 2009; 18: 2523-2531
        • Verdeguer F.
        • Le Corre S.
        • Fischer E.
        • et al.
        A mitotic transcriptional switch in polycystic kidney disease.
        Nat Med. 2010; 16: 106-110
        • John S.
        • Sabo P.J.
        • Thurman R.E.
        • et al.
        Chromatin accessibility pre-determines glucocorticoid receptor binding patterns.
        Nat Genet. 2011; 43: 264-268