Advertisement

Epigenetic regulation of persistent pain

  • Guang Bai
    Correspondence
    Reprint requests: Guang Bai, 650 West Baltimore Street, University of Maryland Dental School, Baltimore, MD 21201
    Affiliations
    Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
    Search for articles by this author
  • Ke Ren
    Affiliations
    Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
    Search for articles by this author
  • Ronald Dubner
    Affiliations
    Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
    Search for articles by this author
      Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.

      Abbreviations:

      acH3 (acetylated histone 3), acH4 (acetylated histone 4), CCI (chronic constriction injury), CGI (CpG island), DNMT (DNA methyltransferase), DRG (dorsal root ganglion), HAT (histone acetyltransferase), HATi (HAT inhibitor), HDAC (histone deacetylase), HDACi (HDAC inhibitor), 5mC (5-methylated cytosine), MT (morphine tolerance), ncRNA (noncoding RNA), PSL (partial sciatic nerve ligation), SCN (sciatic nerve), SNPs (single-nucleotide polymorphisms), SNL (spinal nerve ligation), TSS (transcription start sites)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldberg D.
        • McGee S.
        Pain as a global public health priority.
        BMC Public Health. 2011; 11: 770
        • Campbell J.
        • Meyer R.
        Mechanisms of neuropathic pain.
        Neuron. 2006; 52: 77-92
        • Breivik H.
        • Collett B.
        • Ventafridda V.
        • Cohen R.
        • Gallacher D.
        Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment.
        Eur J Pain. 2006; 10: 287-333
        • Goodman J.
        • McGrath P.
        The epidemiology of pain in children and adolescents: a review.
        Pain. 1991; 46: 247-264
        • Johannes C.B.
        • Le T.K.
        • Zhou X.
        • Johnston J.A.
        • Dworkin R.H.
        The prevalence of chronic pain in United States adults: results of an internet-based survey.
        J Pain. 2010; 11: 1230-1239
        • Tsang A.
        • Von Korff M.
        • Lee S.
        • et al.
        Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders.
        J Pain. 2008; 9: 883-891
        • Apkarian A.V.
        • Baliki M.N.
        • Geha P.Y.
        Towards a theory of chronic pain.
        Prog Neurobiol. 2009; 87: 81-97
        • van Hecke O.
        • Torrance N.
        • Smith B.H.
        Chronic pain epidemiology and its clinical relevance.
        Br J Anaesth. 2013; 111: 13-18
        • Nielsen C.S.
        • Staud R.
        • Price D.D.
        Individual differences in pain sensitivity: measurement, causation, and consequences.
        J Pain. 2009; 10: 231-237
        • Denk F.
        • McMahon S.B.
        • Tracey I.
        Pain vulnerability: a neurobiological perspective.
        Nat Neurosci. 2014; 17: 192-200
        • Woolf C.J.
        • Salter M.W.
        Neuronal plasticity: increasing the gain in pain.
        Science. 2000; 288: 1765-1768
        • Cooke S.F.
        • Bliss T.V.P.
        Plasticity in the human central nervous system.
        Brain. 2006; 129: 1659-1673
        • Bie B.
        • Brown D.L.
        • Naguib M.
        Synaptic plasticity and pain aversion.
        Eur J Pharmacol. 2011; 667: 26-31
        • Dubner R.
        The neurobiology of persistent pain and its clinical implications.
        Suppl Clin Neurophysiol. 2004; 57: 3-7
        • Basbaum A.
        • Bautista D.
        • Scherrer G.
        • Julius D.
        Cellular and molecular mechanisms of pain.
        Cell. 2009; 139: 267-284
        • Ren K.
        • Dubner R.
        Neuron-glia crosstalk gets serious: role in pain hypersensitivity.
        Curr Opin Anaesthesiol. 2008; 21: 570-579
        • Ren K.
        • Novikova S.I.
        • He F.
        • Dubner R.
        • Lidow M.S.
        Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats.
        Mol Pain. 2005; 1: 27
        • Yukhananov R.
        • Kissin I.
        Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: a preliminary study on pain memory.
        BMC Neurosci. 2008; 9: 32
        • Woolf C.J.
        • Costigan M.
        Transcriptional and posttranslational plasticity and the generation of inflammatory pain.
        Proc Natl Acad Sci U S A. 1999; 96: 7723-7730
        • Griffin R.S.
        • Costigan M.
        • Brenner G.J.
        • et al.
        Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity.
        J Neurosci. 2007; 27: 8699-8708
        • Geranton S.M.
        • Morenilla-Palao C.
        • Hunt S.P.
        A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states.
        J Neurosci. 2007; 27: 6163-6173
        • Lacroix-Fralish M.L.
        • Ledoux J.B.
        • Mogil J.S.
        The Pain Genes Database: an interactive web browser of pain-related transgenic knockout studies.
        Pain. 2007; 131: e1-e4
        • Lacroix-Fralish M.L.
        • Tawfik V.L.
        • Tanga F.Y.
        • Spratt K.F.
        • DeLeo J.A.
        Differential spinal cord gene expression in rodent models of radicular and neuropathic pain.
        Anesthesiology. 2006; 104: 1283-1292
        • Tsuda M.
        • Masuda T.
        • Tozaki-Saitoh H.
        • Inoue K.
        Microglial regulation of neuropathic pain.
        J Pharmacol Sci. 2013; 121: 89-94
        • Kim H.
        • Mittal D.P.
        • Iadarola M.J.
        • Dionne R.A.
        Genetic predictors for acute experimental cold and heat pain sensitivity in humans.
        J Med Genet. 2006; 43: e40
        • Drenth J.P.
        • Waxman S.G.
        Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.
        J Clin Invest. 2007; 117: 3603-3609
        • Reimann F.
        • Cox J.J.
        • Belfer I.
        • et al.
        Pain perception is altered by a nucleotide polymorphism in SCN9A.
        Proc Natl Acad Sci U S A. 2010; 107: 5148-5153
        • Musselman C.A.
        • Lalonde M.E.
        • Cote J.
        • Kutateladze T.G.
        Perceiving the epigenetic landscape through histone readers.
        Nat Struct Mol Biol. 2012; 19: 1218-1227
        • Bonasio R.
        • Tu S.
        • Reinberg D.
        Molecular signals of epigenetic states.
        Science. 2010; 330: 612-616
        • Suter M.
        • Aagaard-Tillery K.
        Environmental influences on epigenetic profiles.
        Semin Reprod Med. 2009; 27: 380-390
        • Suter M.
        • Ma J.
        • Harris A.
        • et al.
        Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression.
        Epigenetics. 2011; 6: 1284-1294
        • Blancafort P.
        • Jin J.
        • Frye S.
        Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules.
        Mol Pharmacol. 2013; 83: 563-576
        • Kaikkonen M.U.
        • Lam M.T.Y.
        • Glass C.K.
        Non-coding RNAs as regulators of gene expression and epigenetics.
        Cardiovasc Res. 2011; 90: 430-440
        • Deaton A.M.
        • Bird A.
        CpG islands and the regulation of transcription.
        Genes Dev. 2011; 25: 1010-1022
        • Abel T.
        • Zukin R.S.
        Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders.
        Curr Opin Pharmacol. 2008; 8: 57-64
        • Borrelli E.
        • Nestler E.J.
        • Allis C.D.
        • Sassone-Corsi P.
        Decoding the epigenetic language of neuronal plasticity.
        Neuron. 2008; 60: 961-974
        • Sweatt J.D.
        Experience-dependent epigenetic modifications in the central nervous system.
        Biol Psychiatry. 2009; 65: 191-197
        • Ren K.
        • Anseloni V.
        • Zou S.P.
        • et al.
        Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult.
        Pain. 2004; 110: 588-596
        • Sun Y.
        • Liang D.
        • Sahbaie P.
        • Clark J.D.
        Effects of methyl donor diets on incisional pain in mice.
        PLoS One. 2013; 8: e77881
        • Fejer R.
        • Hartvigsen J.
        • Kyvik K.O.
        Heritability of neck pain: a population-based study of 33 794 Danish twins.
        Rheumatology. 2006; 45: 589-594
        • Angst M.S.
        • Phillips N.G.
        • Drover D.R.
        • et al.
        Pain sensitivity and opioid analgesia: a pharmacogenomic twin study.
        Pain. 2012; 153: 1397-1409
        • Norbury T.A.
        • MacGregor A.J.
        • Urwin J.
        • Spector T.D.
        • McMahon S.B.
        Heritability of responses to painful stimuli in women: a classical twin study.
        Brain. 2007; 130: 3041-3049
        • Suter M.A.
        • Anders A.M.
        • Aagaard K.M.
        Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming.
        Mol Hum Reprod. 2013; 19: 1-6
        • Mitchell M.D.
        • Mannino D.M.
        • Steinke D.T.
        • Kryscio R.J.
        • Bush H.M.
        • Crofford L.J.
        Association of smoking and chronic pain syndromes in Kentucky women.
        J Pain. 2011; 12: 892-899
        • Compton P.
        • Canamar C.P.
        • Hillhouse M.
        • Ling W.
        Hyperalgesia in heroin dependent patients and the effects of opioid substitution therapy.
        J Pain. 2012; 13: 401-409
        • Wang L.X.
        • Wang Z.J.
        Animal and cellular models of chronic pain.
        Adv Drug Deliv Rev. 2003; 55: 949-965
        • Benoliel R.
        • Epstein J.
        • Eliav E.
        • Jurevic R.
        • Elad S.
        Orofacial pain in cancer: part I—mechanisms.
        J Dent Res. 2007; 86: 491-505
        • Villeneuve L.M.
        • Natarajan R.
        The role of epigenetics in the pathology of diabetic complications.
        Am J Physiol Renal Physiol. 2010; 299: F14-F25
        • Chiechio S.
        • Nicoletti F.
        Metabotropic glutamate receptors and the control of chronic pain.
        Curr Opin Pharmacol. 2012; 12: 28-34
        • Denk F.
        • McMahon Stephen B.
        Chronic pain: emerging evidence for the involvement of epigenetics.
        Neuron. 2012; 73: 435-444
        • Doehring A.
        • Geisslinger G.
        • Lotsch J.
        Epigenetics in pain and analgesia: an imminent research field.
        Eur J Pain. 2011; 15: 11-16
        • Rahn E.J.
        • Guzman-Karlsson M.C.
        • David Sweatt J.
        Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.
        Neurobiol Learn Mem. 2013; 105: 133-150
        • Mogil J.S.
        Pain genetics: past, present and future.
        Trends Genet. 2012; 28: 258-266
        • Buchheit T.
        • Van de Ven T.
        • Shaw A.
        Epigenetics and the transition from acute to chronic pain.
        Pain Med. 2012; 13: 1474-1490
        • Bird A.
        The dinucleotide CG as a genomic signalling module.
        J Mol Biol. 2011; 409: 47-53
        • Varela M.
        • Roberts T.
        • Wood M.A.
        Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy.
        Neurotherapeutics. 2013; 10: 621-631
        • Mehler M.F.
        Epigenetic principles and mechanisms underlying nervous system functions in health and disease.
        Prog Neurobiol. 2008; 86: 305-341
        • Holliday R.
        • Pugh J.
        DNA modification mechanisms and gene activity during development.
        Science. 1975; 187: 226-232
        • Riggs A.
        X inactivation, differentiation, and DNA methylation.
        Cytogenet Cell Genet. 1975; 14: 9-25
        • Lan J.
        • Hua S.
        • He X.
        • Zhang Y.
        DNA methyltransferases and methyl-binding proteins of mammals.
        Acta Biochim Biophys Sin. 2010; 42: 243-252
        • Bird A.
        DNA methylation patterns and epigenetic memory.
        Genes Dev. 2002; 16: 6-21
        • Hendrich B.
        • Tweedie S.
        The methyl-CpG binding domain and the evolving role of DNA methylation in animals.
        Trends Genet. 2003; 19: 269-277
        • Sasaki H.
        • Ishihara K.
        • Kato R.
        Mechanisms of Igf2/H19 Imprinting: DNA methylation, chromatin and long-distance gene regulation.
        J Biochem. 2000; 127: 711-715
        • Reik W.
        • Walter J.
        Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote.
        Nat Genet. 2001; 27: 255-256
        • Gardiner-Garden M.
        • Frommer M.
        CpG islands in vertebrate genomes.
        J Mol Biol. 1987; 196: 261-282
        • Saxonov S.
        • Berg P.
        • Brutlag D.L.
        A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters.
        Proc Natl Acad Sci U S A. 2006; 103: 1412-1417
        • Illingworth R.S.
        • Bird A.P.
        CpG islands—‘A rough guide’.
        FEBS Lett. 2009; 583: 1713-1720
        • Marino-Ramirez L.
        • Spouge J.L.
        • Kanga G.C.
        • Landsman D.
        Statistical analysis of over-represented words in human promoter sequences.
        Nucleic Acids Res. 2004; 32: 949-958
        • Davuluri R.V.
        • Grosse I.
        • Zhang M.Q.
        Computational identification of promoters and first exons in the human genome.
        Nat Genet. 2001; 29: 412-417
        • Illingworth R.
        • Kerr A.
        • DeSousa D.
        • et al.
        A Novel CpG island set identifies tissue-specific methylation at developmental gene loci.
        PLoS Biol. 2008; 6: e22
        • Venter J.C.
        • Adams M.D.
        • Myers E.W.
        • et al.
        The sequence of the human genome.
        Science. 2001; 291: 1304-1351
        • Lander E.S.
        • Linton L.M.
        • Birren B.
        • et al.
        Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921
        • Irizarry R.
        • Ladd-Acosta C.
        • Wen B.
        • et al.
        The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores.
        Nat Genet. 2009; 41: 178-186
        • Robinson M.D.
        • Stirzaker C.
        • Statham A.L.
        • et al.
        Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification bias, and copy number variation.
        Genome Res. 2010; 20: 1719-1729
        • Hackenberg M.
        • Previti C.
        • Luque-Escamilla P.
        • Carpena P.
        • Martinez-Aroza J.
        • Oliver J.
        CpGcluster: a distance-based algorithm for CpG-island detection.
        BMC Bioinformatics. 2006; 7: 446
        • Chahrour M.
        • Jung S.Y.
        • Shaw C.
        • et al.
        MeCP2, a key contributor to neurological disease, activates and represses transcription.
        Science. 2008; 320: 1224-1229
        • Song F.
        • Smith J.F.
        • Kimura M.T.
        • et al.
        Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression.
        Proc Natl Acad Sci U S A. 2005; 102: 3336-3341
        • Wu X.
        • Rauch T.A.
        • Zhong X.
        • et al.
        CpG island hypermethylation in human astrocytomas.
        Cancer Res. 2010; 70: 2718-2727
        • Nagae G.
        • Isagawa T.
        • Shiraki N.
        • et al.
        Tissue-specific demethylation in CpG-poor promoters during cellular differentiation.
        Hum Mol Genet. 2011; 20: 2710-2721
        • Fouse S.D.
        • Shen Y.
        • Pellegrini M.
        • et al.
        Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation.
        Cell Stem Cell. 2008; 2: 160-169
        • McGraw S.
        • Shojaei Saadi H.A.
        • Robert C.
        Meeting the methodological challenges in molecular mapping of the embryonic epigenome.
        Mol Hum Reprod. 2013; 19: 809-827
        • Shen L.
        • Waterland R.A.
        Methods of DNA methylation analysis.
        Curr Opin Clin Nutr Metab Care. 2007; 10: 576-581
        • Ho S.M.
        • Tang W.Y.
        Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases.
        Reprod Toxicol. 2007; 23: 267-282
        • Gupta R.
        • Nagarajan A.
        • Wajapeyee N.
        Advances in genome-wide DNA methylation analysis.
        Biotechniques. 2010; 49: iii-xi
        • Tajerian M.
        • Alvarado S.
        • Millecamps M.
        • et al.
        DNA methylation of SPARC and chronic low back pain.
        Mol Pain. 2011; 7: 65
        • Tajerian M.
        • Alvarado S.
        • Millecamps M.
        • et al.
        Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex.
        PLoS One. 2013; 8: e55259
        • Wang Y.
        • Liu C.
        • Guo Q.-L.
        • et al.
        Intrathecal 5-azacytidine inhibits global DNA methylation and methyl-CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury.
        Brain Res. 2011; 1418: 64-69
        • Bai G.
        • Guo W.
        • Wei D.
        • Zou S.
        • Ren K.
        • Dubner R.
        The role of spinal de novo DNA methylation in the development of inflammatory pain.
        Soc Neurosci. 2008; 468: 10
        • Qi F.
        • Zhou Y.
        • Xiao Y.
        • et al.
        Promoter demethylation of cystathionine-beta-synthetase gene contributes to inflammatory pain in rats.
        Pain. 2013; 154: 34-45
        • Zhang H.
        • Hu J.
        • Zhou Y.
        • et al.
        Promoted interaction of nuclear factor-kappaB with demethylated cystathionine-beta-synthetase gene contributes to gastric hypersensitivity in diabetic rats.
        J Neurosci. 2013; 33: 9028-9038
        • Bell J.T.
        • Loomis A.K.
        • Butcher L.M.
        • et al.
        Differential methylation of the TRPA1 promoter in pain sensitivity.
        Nat Commun. 2014; 5: 2978
        • Mbadiwe T.
        • Millis R.M.
        Epigenetics and autism.
        Autism Res Treat. 2013; 2013: 826156
        • Gos M.
        Epigenetic mechanisms of gene expression regulation in neurological diseases.
        Acta Neurobiol Exp (Wars). 2013; 73: 19-37
        • Geranton S.
        • Fratto V.
        • Tochiki K.
        • Hunt S.
        Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn.
        Mol Pain. 2008; 4: 35
        • Dray A.
        Neuropathic pain: emerging treatments.
        Br J Anaesth. 2008; 101: 48-58
        • Hwang C.K.
        • Song K.Y.
        • Kim C.S.
        • et al.
        Epigenetic programming of μ-opioid receptor gene in mouse brain is regulated by MeCP2 and brg1 chromatin remodelling factor.
        J Cell Mol Med. 2009; 13: 3591-3615
        • Doehring A.
        • Oertel B.G.
        • Sittl R.
        • Lötsch J.
        Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain.
        Pain. 2013; 154: 15-23
        • Kazazian Jr., H.H.
        • Goodier J.L.
        LINE drive: retrotransposition and genome instability.
        Cell. 2002; 110: 277-280
        • Frigola J.
        • Sole X.
        • Paz M.F.
        • et al.
        Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer.
        Hum Mol Genet. 2005; 14: 319-326
        • Liao L.M.
        • Brennan P.
        • van Bemmel D.M.
        • et al.
        LINE-1 methylation levels in leukocyte DNA and risk of renal cell cancer.
        PLoS One. 2011; 6: e27361
        • Doehring A.
        • Oertel B.G.
        • Sittl R.
        • Lotsch J.
        Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain.
        Pain. 2013; 154: 15-23
        • Lister R.
        • Mukamel E.A.
        • Nery J.R.
        • et al.
        Global epigenomic reconfiguration during mammalian brain development.
        Science. 2013; 341: 1237905
        • Tran L.
        • Chaloner A.
        • Sawalha A.
        • Greenwood Van-Mee B.
        Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress.
        Psychoneuroendocrinology. 2013; 38: 898-906
        • Ren K.
        • Dubner R.
        Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors.
        Mol Neurobiol. 2007; 35: 224-235
        • Calixto J.B.
        • Kassuya C.A.
        • Andre E.
        • Ferreira J.
        Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions.
        Pharmacol Ther. 2005; 106: 179-208
        • Julius D.
        TRP channels and pain.
        Annu Rev Cell Dev Biol. 2013; 29: 355-384
        • Fernandes E.S.
        • Fernandes M.A.
        • Keeble J.E.
        The functions of TRPA1 and TRPV1: moving away from sensory nerves.
        Br J Pharmacol. 2012; 166: 510-521
        • Menzies V.
        • Lyon D.E.
        • Archer K.J.
        • et al.
        Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia.
        Nurs Res Pract. 2013; 2013: 12
        • Oertel B.G.
        • Doehring A.
        • Roskam B.
        • et al.
        Genetic-epigenetic interaction modulates μ-opioid receptor regulation.
        Hum Mol Genet. 2012; 21: 4751-4760
        • Viet C.T.
        • Schmidt B.L.
        Biologic mechanisms of oral cancer pain and implications for clinical therapy.
        J Dent Res. 2012; 91: 447-453
        • Khodorova A.
        • Navarro B.
        • Jouaville L.S.
        • et al.
        Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury.
        Nat Med. 2003; 9: 1055-1061
        • Piovezan A.P.
        • D'Orleans-Juste P.
        • Souza G.E.
        • Rae G.A.
        Endothelin-1-induced ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw: modulation by simultaneous ET(B) receptor activation.
        Br J Pharmacol. 2000; 129: 961-968
        • Mantyh P.W.
        • Clohisy D.R.
        • Koltzenburg M.
        • Hunt S.P.
        Molecular mechanisms of cancer pain.
        Nat Rev Cancer. 2002; 2: 201-209
        • Davies M.N.
        • Volta M.
        • Pidsley R.
        • et al.
        Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood.
        Genome Biol. 2012; 13: R43
        • Penn N.W.
        • Suwalski R.
        • O'Riley C.
        • Bojanowski K.
        • Yura R.
        The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid.
        Biochem J. 1972; 126: 781-790
        • Ito S.
        • Shen L.
        • Dai Q.
        • et al.
        Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
        Science. 2011; 333: 1300-1303
        • Spruijt Cornelia G.
        • Gnerlich F.
        • Smits Arne H.
        • et al.
        Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives.
        Cell. 2013; 152: 1146-1159
        • Tahiliani M.
        • Koh K.P.
        • Shen Y.
        • et al.
        Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
        Science. 2009; 324: 930-935
        • Kriaucionis S.
        • Heintz N.
        The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain.
        Science. 2009; 324: 929-930
        • Ito S.
        • D'Alessio A.C.
        • Taranova O.V.
        • Hong K.
        • Sowers L.C.
        • Zhang Y.
        Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.
        Nature. 2010; 466: 1129-1133
        • Khare T.
        • Pai S.
        • Koncevicius K.
        • et al.
        5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary.
        Nat Struct Mol Biol. 2012; 19: 1037-1043
        • Booth M.J.
        • Branco M.R.
        • Ficz G.
        • et al.
        Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.
        Science. 2012; 336: 934-937
        • Yu M.
        • Hon Gary C.
        • Szulwach Keith E.
        • et al.
        Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome.
        Cell. 2012; 149: 1368-1380
        • Qu J.
        • Zhou M.
        • Song Q.
        • Hong E.E.
        • Smith A.D.
        MLML: consistent simultaneous estimates of DNA methylation and hydroxymethylation.
        Bioinformatics. 2013; 29: 2645-2646
        • Song C.X.
        • Szulwach K.E.
        • Fu Y.
        • et al.
        Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.
        Nat Biotechnol. 2011; 29: 68-72
        • Szulwach K.E.
        • Li X.
        • Li Y.
        • et al.
        5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging.
        Nat Neurosci. 2011; 14: 1607-1616
        • Iurlaro M.
        • Ficz G.
        • Oxley D.
        • et al.
        A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation.
        Genome Biol. 2013; 14: R119
        • Yildirim O.
        • Li R.
        • Hung J.-H.
        • et al.
        Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells.
        Cell. 2011; 147: 1498-1510
        • Mellén M.
        • Ayata P.
        • Dewell S.
        • Kriaucionis S.
        • Heintz N.
        MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system.
        Cell. 2012; 151: 1417-1430
        • Valinluck V.
        • Tsai H.-H.
        • Rogstad D.K.
        • Burdzy A.
        • Bird A.
        • Sowers L.C.
        Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2).
        Nucleic Acids Res. 2004; 32: 4100-4108
        • Jenuwein T.
        • Allis C.D.
        Translating the histone code.
        Science. 2001; 293: 1074-1080
        • Strahl B.D.
        • Allis C.D.
        The language of covalent histone modifications.
        Nature. 2000; 403: 41-45
        • Ruthenburg A.
        • Li H.
        • Patel D.
        • Allis C.
        Multivalent engagement of chromatin modifications by linked binding modules.
        Nat Rev Mol Cell Biol. 2007; 8: 983-994
        • Tan M.
        • Luo H.
        • Lee S.
        • et al.
        Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification.
        Cell. 2011; 146: 1016-1028
        • Ruthenburg A.
        • Allis C.
        • Wysocka J.
        Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.
        Mol Cell. 2007; 25: 15-30
        • Kouzarides T.
        SnapShot: histone-modifying enzymes.
        Cell. 2007; 131: 822
        • Li S.
        Implication of posttranslational histone modifications in nucleotide excision repair.
        Int J Mol Sci. 2012; 13: 12461-12486
        • Shahbazian M.D.
        • Grunstein M.
        Functions of site-specific histone acetylation and deacetylation.
        Annu Rev Biochem. 2007; 76: 75-100
        • Gregoretti I.
        • Lee Y.-M.
        • Goodson H.V.
        Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.
        J Med Chem. 2004; 338: 17-31
        • Gayatri S.
        • Bedford M.T.
        Readers of histone methylarginine marks.
        Biochim Biophys Acta. 2014; (Available online 28 Feb, 2014)
        • Mikkelsen T.
        • Ku M.
        • Jaffe D.
        • et al.
        Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.
        Nature. 2007; 448: 553-560
        • Besant P.G.
        • Attwood P.V.
        Histone H4 histidine phosphorylation: kinases, phosphatases, liver regeneration and cancer.
        Biochem Soc Trans. 2012; 40: 290-293
        • Rossetto D.
        • Avvakumov N.
        • Cote J.
        Histone phosphorylation: a chromatin modification involved in diverse nuclear events.
        Epigenetics. 2012; 7: 1098-1108
        • Vojinovic J.
        • Damjanov N.
        HDAC inhibition in rheumatoid arthritis and juvenile idiopathic arthritis.
        Mol Med. 2011; 17: 397-403
        • Zhang Z.-Y.
        • Schluesener H.J.
        HDAC inhibitor MS-275 attenuates the inflammatory reaction in rat experimental autoimmune prostatitis.
        Prostate. 2012; 72: 90-99
        • Zhang Z.
        • Cai Y.
        • Zou F.
        • Bie B.
        • Pan Z.
        Epigenetic suppression of GAD65 expression mediates persistent pain.
        Nat Med. 2011; 17: 1448-1455
        • Bai G.
        • Wei D.
        • Zou S.
        • Ren K.
        • Dubner R.
        Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia.
        Mol Pain. 2010; 6: 51
        • Marks P.A.
        • Richon V.M.
        • Rifkind R.A.
        Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells.
        J Natl Cancer Inst. 2000; 92: 1210-1216
        • Milutinovic S.
        • D'Alessio A.C.
        • Detich N.
        • Szyf M.
        Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes.
        Carcinogenesis. 2007; 28: 560-571
        • Lundby A.
        • Lage K.
        • Weinert Brian T.
        • et al.
        Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns.
        Cell Rep. 2012; 2: 419-431
        • Wang L.
        • Du Y.
        • Lu M.
        • Li T.
        ASEB: a web server for KAT-specific acetylation site prediction.
        Nucleic Acids Res. 2012; 40: W376-W379
        • Consortium TU
        Activities at the universal protein resource (UniProt).
        Nucleic Acids Res. 2014; 42: D191-D198
        • Kim M.Y.
        • Woo E.M.
        • Chong Y.T.E.
        • Homenko D.R.
        • Kraus W.L.
        Acetylation of estrogen receptor α by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor.
        Mol Endocrinol. 2006; 20: 1479-1493
        • Ma Y.
        • Fan S.
        • Hu C.
        • et al.
        BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α.
        Mol Endocrinol. 2010; 24: 76-90
        • Kiguchi N.
        • Kobayashi Y.
        • Maeda T.
        • et al.
        Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain.
        J Pharmacol Exp Ther. 2012; 340: 577-587
        • Kiguchi N.
        • Kobayashi Y.
        • Saika F.
        • Kishioka S.
        Epigenetic upregulation of CCL2 and CCL3 via histone modifications in infiltrating macrophages after peripheral nerve injury.
        Cytokine. 2013; 64: 666-672
        • Zhu X.-Y.
        • Huang C.-S.
        • Li Q.
        • et al.
        p300 exerts an epigenetic role in chronic neuropathic pain through its acetyltransferase activity in rats following chronic constriction injury (CCI).
        Mol Pain. 2012; 8: 84
        • Roth S.
        • Denu J.
        • Allis C.
        Histone acetyltransferases.
        Annu Rev Biochem. 2001; 70: 81-120
        • Zhu X.
        • Li Q.
        • Chang R.
        • et al.
        Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and Cox-2 in a rat model.
        PLoS One. 2014; 9: e91303
        • Sun Y.
        • Sahbaie P.
        • Liang D.-Y.
        • et al.
        Epigenetic regulation of spinal CXCR2 signaling in incisional hypersensitivity in mice.
        Anesthesiology. 2013; 119: 1198-1208
        • Uchida H.
        • Ma L.
        • Ueda H.
        Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain.
        J Neurosci. 2010; 30: 4806-4814
        • Uchida H.
        • Sasaki K.
        • Ma L.
        • Ueda H.
        Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury.
        Neuroscience. 2010; 166: 1-4
        • Ballas N.
        • Mandel G.
        The many faces of REST oversee epigenetic programming of neuronal genes.
        Curr Opin Neurobiol. 2005; 15: 500-506
        • Matsushita Y.
        • Araki K.
        • Omotuyi O.
        • Mukae T.
        • Ueda H.
        HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model.
        Br J Pharmacol. 2013; 170: 991-998
        • Uchida H.
        • Matsushita Y.
        • Ueda H.
        Epigenetic regulation of BDNF expression in the primary sensory neurons after peripheral nerve injury: implications in the development of neuropathic pain.
        Neuroscience. 2013; 240: 147-154
        • Cherng C.-H.
        • Lee K.-C.
        • Chien C.-C.
        • et al.
        Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats.
        J Formos Med Assoc. 2014; (Available online 16 May, 2013)
        • Denk F.
        • Huang W.
        • Sidders B.
        • et al.
        HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain.
        Pain. 2013; 154: 1668-1679
        • Johannessen C.U.
        • Johannessen S.I.
        Valproate: past, present, and future.
        CNS Drug Rev. 2003; 9: 199-216
        • Hobo S.
        • Eisenach J.C.
        • Hayashida K.
        Up-regulation of spinal glutamate transporters contributes to anti-hypersensitive effects of valproate in rats after peripheral nerve injury.
        Neurosci Lett. 2011; 502: 52-55
        • Yoshizumi M.
        • Eisenach J.C.
        • Hayashida K-i
        Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury.
        J Pain. 2013; 14: 1485-1491
        • Kukkar A.
        • Singh N.
        • Jaggi A.S.
        Attenuation of neuropathic pain by sodium butyrate in an experimental model of chronic constriction injury in rats.
        J Formos Med Assoc. 2014; (Available online 16 July, 2013)
        • Grayson D.R.
        • Kundakovic M.
        • Sharma R.P.
        Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders?.
        Mol Pharmacol. 2010; 77: 126-135
        • Yin Q.
        • Lu F.-F.
        • Zhao Y.
        • et al.
        Resveratrol facilitates pain attenuation in a rat model of neuropathic pain through the activation of spinal Sirt1.
        Reg Anesth Pain Med. 2013; 38: 93-99
        • He X.
        • Ou P.
        • Wu K.
        • et al.
        Resveratrol attenuates morphine antinociceptive tolerance via SIRT1 regulation in the rat spinal cord.
        Neurosci Lett. 2014; 566: 55-60
        • Tsai R.-Y.
        • Shen C.-H.
        • Feng Y.-P.
        • et al.
        Ultra-low-dose naloxone enhances the antinociceptive effect of morphine in PTX-treated rats: regulation on global histone methylation.
        Acta Anaesthesiol Taiwan. 2012; 50: 106-111
        • Imai S.
        • Ikegami D.
        • Yamashita A.
        • et al.
        Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain.
        Brain. 2013; 136: 828-843
        • Lu Y.
        • Nie J.
        • Liu X.
        • Zheng Y.
        • Guo S.-W.
        Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice.
        Hum Reprod. 2010; 25: 1014-1025
        • Liu M.
        • Liu X.
        • Zhang Y.
        • Guo S.-W.
        Valproic acid and progestin inhibit lesion growth and reduce hyperalgesia in experimentally induced endometriosis in rats.
        Reprod Sci. 2012; 19: 360-373
        • Winston J.H.
        • Li Q.
        • Sarna S.K.
        Chronic prenatal stress epigenetically modifies spinal cord BDNF expression to induce sex-specific visceral hypersensitivity in offspring.
        Neurogastroenterol Motil. 2014; 4: 12326
        • Vaiopoulou A.
        • Karamanolis G.
        • Psaltopoulou T.
        • Karatzias G.
        • Gazouli M.
        Molecular basis of the irritable bowel syndrome.
        World J Gastroenterol. 2014; 20: 376-383
        • Liang D.-Y.
        • Li X.
        • Clark J.D.
        Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice.
        J Pain. 2013; 14: 36-47
        • Liu J.
        • Liu F.-Y.
        • Tong Z.-Q.
        • et al.
        Lysine-specific demethylase 1 in breast cancer cells contributes to the production of endogenous formaldehyde in the metastatic bone cancer pain model of rats.
        PLoS One. 2013; 8: e58957
        • Liu A.G.
        • Hoffman P.L.
        • Zhuang Z.Y.
        • Chai Y.F.
        • Bai G.
        NF-kB site interacts with Sp factors and upregulates the NR1 promoter during neuronal differentiation.
        J Biol Chem. 2004; 279: 17449-17458
        • Mayr B.
        • Montminy M.
        Transcriptional regulation by the phosphorylation-dependent factor CREB.
        Nat Rev Mol Cell Biol. 2001; 2: 599-609
        • Stenlund A.
        • Botchan M.R.
        The E2 trans-activator can act as a repressor by interfering with a cellular transcription factor.
        Genes Dev. 1990; 4: 123-136
        • Inouye S.
        • Fujimoto M.
        • Nakamura T.
        • et al.
        Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor.
        J Biol Chem. 2007; 282: 33210-33217
        • Martínez-Montañés F.
        • Rienzo A.
        • Poveda-Huertes D.
        • Pascual-Ahuir A.
        • Proft M.
        Activator and repressor functions of the Mot3 transcription factor in the osmostress response of saccharomyces cerevisiae.
        Eukaryot Cell. 2013; 12: 636-647
        • Choi C.Y.
        • Lee Y.M.
        • Kim Y.H.
        • et al.
        The homeodomain transcription factor NK-4 acts as either a transcriptional activator or repressor and interacts with the p300 coactivator and the groucho corepressor.
        J Biol Chem. 1999; 274: 31543-31552
        • Weill L.
        • Shestakova E.
        • Bonnefoy E.
        Transcription factor YY1 binds to the murine beta interferon promoter and regulates its transcriptional capacity with a dual activator/repressor role.
        J Virol. 2003; 77: 2903-2914
        • Kurdistani S.
        • Tavazoie S.
        • Grunstein M.
        Mapping global histone acetylation patterns to gene expression.
        Cell. 2004; 117: 721-733
        • Ferrante R.J.
        • Kubilus J.K.
        • Lee J.
        • et al.
        Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice.
        J Neurosci. 2003; 23: 9418-9427
        • Covington H.E.I.
        • Maze I.
        • LaPlant Q.C.
        • et al.
        Antidepressant actions of histone deacetylase inhibitors.
        J Neurosci. 2009; 29: 11451-11460
        • Lopez-Atalaya J.P.
        • Ito S.
        • Valor L.M.
        • Benito E.
        • Barco A.
        Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.
        Nucleic Acids Res. 2013; 41: 8072-8084
        • Limbach P.A.
        • Crain P.F.
        • McCloskey J.A.
        Summary: the modified nucleosides of RNA.
        Nucleic Acids Res. 1994; 22: 2183-2196
        • Sharp P.A.
        The centrality of RNA.
        Cell. 2009; 136: 577-580
        • ENCODE
        Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.
        Nature. 2007; 447: 799-816
        • Kapranov P.
        • Willingham A.T.
        • Gingeras T.R.
        Genome-wide transcription and the implications for genomic organization.
        Nat Rev Genet. 2007; 8: 413-423
        • Kung J.T.Y.
        • Colognori D.
        • Lee J.T.
        Long noncoding RNAs: past, present, and future.
        Genetics. 2013; 193: 651-669
        • Suzuki H.I.
        • Miyazono K.
        Emerging complexity of microRNA generation cascades.
        J Biochem. 2011; 149: 15-25
        • Treiber T.
        • Treiber N.
        • Meister G.
        Regulation of microRNA biogenesis and function.
        Thromb Haemost. 2012; 107: 605-610
        • Lee J.T.
        Epigenetic regulation by long noncoding RNAs.
        Science. 2012; 338: 1435-1439
        • Rebane A.
        • Akdis C.A.
        MicroRNAs: essential players in the regulation of inflammation.
        J Allergy Clin Immunol. 2013; 132: 15-26
        • Gheinani A.H.
        • Burkhard F.C.
        • Monastyrskaya K.
        Deciphering microRNA code in pain and inflammation: lessons from bladder pain syndrome.
        Cell Mol Life Sci. 2013; 70: 3773-3789
        • Elramah S.
        • Landry M.
        • Favereaux A.
        MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms.
        Front Cell Neurosci. 2014; 8: 31
        • Kress M.
        • Huttenhofer A.
        • Landry M.
        • et al.
        microRNAs in nociceptive circuits as predictors of future clinical applications.
        Front Mol Neurosci. 2013; 6: 33
        • Tan P.-H.
        • Pao Y.-Y.
        • Cheng J.-K.
        • Hung K.-C.
        • Liu C.-C.
        MicroRNA-based therapy in pain medicine: current progress and future prospects.
        Acta Anaesthesiol Taiwan. 2013; 51: 171-176
        • Lutz B.M.
        • Bekker A.
        • Tao Y.X.
        Noncoding RNAs: new players in chronic pain.
        Anesthesiology. 2014; 15: 15
        • Kynast K.L.
        • Russe O.Q.
        • Geisslinger G.
        • Niederberger E.
        Novel findings in pain processing pathways: implications for miRNAs as future therapeutic targets.
        Expert Rev Neurother. 2013; 13: 515-525
        • Lee H.-J.
        Exceptional stories of microRNAs.
        Exp Biol Med. 2013; 238: 339-343
        • Kawahara H.
        • Imai T.
        • Okano H.
        MicroRNAs in neural stem cells and neurogenesis.
        Front Neurosci. 2012; 6: 30
        • Bentwich I.
        Prediction and validation of microRNAs and their targets.
        FEBS Lett. 2005; 579: 5904-5910
        • Griffiths-Jones S.
        • Saini H.K.
        • van Dongen S.
        • Enright A.J.
        miRBase: tools for microRNA genomics.
        Nucleic Acids Res. 2008; 36: D154-D158
        • van Rooij E.
        The art of MicroRNA research.
        Circ Res. 2011; 108: 219-234
        • Bai G.
        • Ambalavanar R.
        • Wei D.
        • Dessem D.
        Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain.
        Mol Pain. 2007; 3: 15
        • Bjersing J.L.
        • Lundborg C.
        • Bokarewa M.I.
        • Mannerkorpi K.
        Profile of cerebrospinal microRNAs in fibromyalgia.
        PLoS One. 2013; 8: e78762
        • Orlova I.
        • Alexander G.
        • Qureshi R.
        • et al.
        MicroRNA modulation in complex regional pain syndrome.
        J Transl Med. 2011; 9: 195
        • Beyer C.
        • Zampetaki A.
        • Lin N.-Y.
        • et al.
        Signature of circulating microRNAs in osteoarthritis.
        Ann Rheum Dis. 2014; (Available online 10 Feb, 2014)
        • Aldrich B.
        • Frakes E.
        • Kasuya J.
        • Hammond D.
        • Kitamoto T.
        Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation.
        Neuroscience. 2009; 164: 711-723
        • Kusuda R.
        • Cadetti F.
        • Ravanelli M.
        • et al.
        Differential expression of microRNAs in mouse pain models.
        Mol Pain. 2011; 7: 17
        • Li X.
        • Gibson G.
        • Kim J.
        • et al.
        MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis.
        Gene. 2011; 480: 34-41
        • von Schack D.
        • Agostino M.J.
        • Murray B.S.
        • et al.
        Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain.
        PLoS One. 2011; 6: e17670
        • Zhang H.Y.
        • Zheng S.J.
        • Zhao J.H.
        • et al.
        MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection.
        Brain Res. 2011; 1383: 62-70
        • Sakai A.
        • Saitow F.
        • Miyake N.
        • Miyake K.
        • Shimada T.
        • Suzuki H.
        miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability.
        Brain. 2013; 136: 2738-2750
        • Li X.
        • Kroin J.S.
        • Kc R.
        • et al.
        Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints.
        J Bone Miner Res. 2013; 28: 2512-2522
        • Ni J.
        • Gao Y.
        • Gong S.
        • Guo S.
        • Hisamitsu T.
        • Jiang X.
        Regulation of μ-opioid type 1 receptors by microRNA134 in dorsal root ganglion neurons following peripheral inflammation.
        Eur J Pain. 2013; 17: 313-323
        • Bali K.K.
        • Hackenberg M.
        • Lubin A.
        • Kuner R.
        • Devor M.
        Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing.
        Mol Pain. 2014; 10: 22
        • Li H.
        • Huang Y.
        • Ma C.
        • Yu X.
        • Zhang Z.
        • Shen L.
        MiR-203 involves in neuropathic pain development and represses Rap1a expression in nerve growth factor differentiated neuronal PC12 cells.
        Clin J Pain. 2014; 20: 20
        • Willemen H.
        • Huo X.-J.
        • Mao-Ying Q.-L.
        • Zijlstra J.
        • Heijnen C.
        • Kavelaars A.
        MicroRNA-124 as a novel treatment for persistent hyperalgesia.
        J Neuroinflamm. 2012; 9: 143
        • Imai S.
        • Saeki M.
        • Yanase M.
        • et al.
        Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain.
        J Neurosci. 2011; 31: 15294-15299
        • Sun Y.
        • Li X.Q.
        • Sahbaie P.
        • et al.
        miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression.
        Anesthesiology. 2012; 117: 626-638
        • Zhou Q.
        • Souba W.W.
        • Croce C.M.
        • Verne G.N.
        MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome.
        Gut. 2010; 59: 775-784
        • Sakai A.
        • Suzuki H.
        Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats.
        Biochem Biophys Res Commun. 2013; 435: 176-181
        • Shi G.
        • Shi J.
        • Liu K.
        • et al.
        Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury.
        Glia. 2013; 61: 504-512
        • Bali K.K.
        • Selvaraj D.
        • Satagopam V.P.
        • Lu J.
        • Schneider R.
        • Kuner R.
        Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain.
        EMBO Mol Med. 2013; 5: 1740-1758
        • Genda Y.
        • Arai M.
        • Ishikawa M.
        • Tanaka S.
        • Okabe T.
        • Sakamoto A.
        microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan(R) Low Density Array study.
        Int J Mol Med. 2013; 31: 129-137
        • Hori Y.
        • Goto G.
        • Arai-Iwasaki M.
        • Ishikawa M.
        • Sakamoto A.
        Differential expression of rat hippocampal microRNAs in two rat models of chronic pain.
        Int J Mol Med. 2013; 32: 1287-1292
        • Arai M.
        • Genda Y.
        • Ishikawa M.
        • Shunsuke T.
        • Okabe T.
        • Sakamoto A.
        The miRNA and mRNA changes in rat hippocampi after chronic constriction injury.
        Pain Med. 2013; 14: 720-729
        • Favereaux A.
        • Thoumine O.
        • Bouali-Benazzouz R.
        • et al.
        Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain.
        EMBO J. 2011; 30: 3830-3841
        • Zhao J.
        • Lee M.-C.
        • Momin A.
        • et al.
        Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds.
        J Neurosci. 2010; 30: 10860-10871
        • Chen H.-P.
        • Zhou W.
        • Kang L.-M.
        • et al.
        Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury.
        Neurochem Res. 2014; 39: 76-83
        • Kynast K.L.
        • Russe O.Q.
        • Moser C.V.
        • Geisslinger G.
        • Niederberger E.
        Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice.
        Pain. 2013; 154: 368-376
        • Wang L.
        • Chopp M.
        • Szalad A.
        • et al.
        The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy.
        Neuroscience. 2014; 259: 155-163
        • Zhao X.
        • Tang Z.
        • Zhang H.
        • et al.
        A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons.
        Nat Neurosci. 2013; 16: 1024-1031
        • Mummaneni P.
        • Shord S.S.
        Epigenetics and oncology.
        Pharmacotherapy. 2014; (Published on-line March 11, 2014, Available online 11 March, 2014)