Advertisement

Angiogenic factors and inflammation in steroid-refractory acute graft-vs-host disease

  • Shernan G. Holtan
    Correspondence
    Reprint requests: Shernan G. Holtan, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Blood and Marrow Transplant Program, University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN 55455
    Affiliations
    Department of Medicine, Division of Hematology, Oncology, and Transplantation, Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minn
    Search for articles by this author
  • Mukta Arora
    Affiliations
    Department of Medicine, Division of Hematology, Oncology, and Transplantation, Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minn
    Search for articles by this author
      Steroid-refractory acute graft-vs-host disease (aGVHD) remains a frequent and often fatal complication of allogeneic hematopoietic cell transplantation. Recent evidence suggests that angiogenic factors—growth factors that contribute to blood vessel development—may be involved in tissue healing and restitution after inflammatory insults such as aGVHD. However, some angiogenic factors may also be involved in inflammation and worsen clinical outcomes. In this review, we summarize the data relevant to angiogenic factors that may contribute to healing after aGVHD (epidermal growth factor and vascular endothelial growth factor A) and angiogenic factors that may promote inflammation after aGVHD (placental growth factor and follistatin). It is currently unknown whether changes in these factors are a cause or a consequence of aGVHD. Mechanistic studies in the coming years will clarify their roles and identify new pathways for improving outcomes in steroid-refractory aGVHD.

      Abbreviations:

      aGVHD (acute GraftVSHost Disease), CR (Complete response), EGF (Epidermal growth factor), EGFR (The EGF receptor), FS (Follistatin), GI (Gastrointestinal), HCT (Hematopoietic Cell transplantation), IL (Interleukin), ILC2 (Innante Lymphoid type 2 cells), ILCs (Innate Lymphoid cells), IV (Intravenous), PLGF (Placental growth factor), TNF-a (Tumor necrosis factor alpha), Treg (Regulatory T Cells), VEGF-A (Vascular endothelial growth fact A)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Calmettes C.
        • Vigourous S.
        • Labopin M.
        • et al.
        Risk factors for steroid-refractory acute GVHD after allogeneic SCT from matched related or unrelated donors.
        Biol Blood Marrow Transplant. 2015; 21: 860-865
        • Holtan S.G.
        • Pasquini M.
        • Weisdorf D.J.
        Acute graft-versus-host disease: a bench-to-bedside update.
        Blood. 2014; 124: 363-373
        • Cruz-Correa M.
        • Poonawala A.
        • Abraham S.C.
        • et al.
        Endoscopic findings predict the histologic diagnosis in gastrointestinal graft-versus-host disease.
        Endoscopy. 2002; 34: 808-813
        • Melson J.
        • Jakate S.
        • Fung H.
        • Arai S.
        • Keshavarzian A.
        Crypt loss is a marker of clinical severity of acute gastrointestinal graft-versus-host disease.
        Am J Hematol. 2007; 82: 881-886
        • Ertault-Daneshpouy M.
        • Leboeuf C.
        • Lemann M.
        • et al.
        Pericapillary hemorrhage as criterion of severe human digestive graft-versus-host disease.
        Blood. 2004; 103: 4681-4684
        • MacMillan M.L.
        • Weisdorf D.J.
        • Davies S.M.
        • et al.
        Early antithymocyte globulin therapy improves survival in patients with steroid-resistant acute graft-versus-host disease.
        Biol Blood Marrow Transplant. 2002; 8: 40-46
        • Westin J.R.
        • Saliba R.M.
        • De Lima M.
        • et al.
        Steroid-refractory acute GVHD: predictors and outcomes.
        Adv Hematol. 2011; 2011: 601953
        • Del Fante C.
        • Perotti C.
        • Bonferoni M.C.
        • et al.
        Platelet lysate mucohadesive formulation to treat oral mucositis in graft versus host disease patients: a new therapeutic approach.
        AAPS PharmSciTech. 2011; 12: 893-899
        • Sidky Y.A.
        • Auerbach R.
        Lymphocyte-induced angiogenesis—quantitative and sensitive assay of graft-vs-host reaction.
        J Exp Med. 1975; 141: 1084-1100
        • Senger D.R.
        • Galii S.J.
        • Dvorak A.M.
        • Perruzzi C.A.
        • Harvey V.S.
        • Dvorak H.F.
        Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.
        Science. 1983; 219: 983-985
        • Ribatti D.
        • Vacca A.
        • Presta M.
        The discovery of angiogenic factors: a historical review.
        Gen Pharmacol. 2000; 35: 227-231
        • Ribatti D.
        • Crivellato E.
        Immune cells and angiogenesis.
        J Cell Mol Med. 2009; 13: 2822-2833
        • Voron T.
        • Marcheteau E.
        • Pernot S.
        • et al.
        Control of the immune response by pro-angiogenic factors.
        Front Oncol. 2014; 4: 70
        • Brent L.
        • Medawar P.
        Quantitative studies on tissue transplantation immunity. VII. The normal lymphocyte transfer reaction.
        Proc R Soc Lond B Biol Sci. 1966; 165: 281-307
        • Luft T.
        • Dietrich S.
        • Falk C.
        • et al.
        Steroid-refractory GVHD: T-cell attack within a vulnerable endothelial system.
        Blood. 2011; 118: 1685-1692
        • Deschaumes C.
        • Verneuil L.
        • Ertault-Daneshpouy M.
        • et al.
        CD95 ligand-dependant endothelial cell death initiates oral mucosa damage in a murine model of acute graft versus host disease.
        Lab Invest. 2007; 87: 417-429
        • Janin A.
        • Deschaumes C.
        • Daneshpouy M.
        • et al.
        CD95 engagement induces disseminated endothelial cell apoptosis in vivo: immunopathologic implications.
        Blood. 2002; 99: 2940-2947
        • Holtan S.G.
        • Verneris M.R.
        • Schultz K.R.
        • et al.
        Circulating angiogenic factors associated with response and survival in patients with acute graft-versus-host disease: results from Blood and Marrow Transplant Clinical Trials Network 0302 and 0802.
        Biol Blood Marrow Transplant. 2015; 21: 1029-1036
        • Penack O.
        • Henke E.
        • Suh D.
        • et al.
        Inhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth.
        J Natl Cancer Inst. 2010; 102: 894-908
        • Holtan S.G.
        • Verneris M.R.
        • Schultz K.R.
        • et al.
        Circulating angiogenic factors as biomarkers of acute GVHD onset and response to therapy: repair and regeneration versus endothelial damage and inflammation.
        Blood. 2014; (2014 ASH abstract Vol. 124, Issue 21, Pg. #2489)
        • He F.
        • Verneris M.R.
        • Cooley S.A.
        • et al.
        Relationship of epidermal growth factor to cyclosporine-associated magnesium wasting and clinical outcomes post-allogeneic hematopoietic cell transplantation.
        Blood. 2014; (ASH 2014 abstract Vol. 124, Issue 21, Pg. 3914)
        • Oikonomou K.A.
        • Kapsoritakis A.N.
        • Kapsoritaki A.L.
        • et al.
        Downregulation of serum epidermal growth factor in patients with inflammatory bowel disease. Is there a link with mucosal damage?.
        Growth Factors. 2010; 28: 461-466
        • Poulsen S.S.
        • Nexo E.
        • Skov Olsen P.
        • Hess J.
        • Kirkegaard P.
        Immunohistochemical localization of epidermal growth factor in rat and man.
        Histochemistry. 1986; 85: 389-394
        • Levine J.E.
        • Huber E.
        • Hammer S.T.
        • et al.
        Low Paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality.
        Blood. 2013; 122: 1505-1509
        • Wright N.A.
        • Pike C.
        • Elia G.
        Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells.
        Nature. 1990; 343: 82-85
        • McKenna K.J.
        • Ligato S.
        • Kauffman Jr., G.L.
        • Abt A.B.
        • Stryker J.A.
        • Conter R.L.
        Epidermal growth factor enhances intestinal mitotic activity and DNA content after acute abdominal radiation.
        Surgery. 1994; 115: 626-632
        • Procaccino F.
        • Reinshagen M.
        • Hoffmann P.
        • et al.
        Protective effect of epidermal growth factor in an experimental model of colitis in rats.
        Gastroenterology. 1994; 107: 12-17
        • McCole D.F.
        • Rogler G.
        • Varki N.
        • Barrett K.E.
        Epidermal growth factor partially restores colonic ion transport responses in mouse models of chronic colitis.
        Gastroenterology. 2005; 129: 591-608
        • Coursodon C.F.
        • Dvorak B.
        Epidermal growth factor and necrotizing enterocolitis.
        Curr Opin Pediatr. 2012; 24: 160-164
        • Lu N.
        • Wang L.
        • Cao H.
        • et al.
        Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis.
        J Immunol. 2014; 192: 1013-1023
        • Reeves J.R.
        • Richards R.C.
        • Cooke T.
        The effects of intracolonic EGF on mucosal growth and experimental carcinogenesis.
        Br J Cancer. 1991; 63: 223-226
        • Sinha A.
        • Nightingale J.
        • West K.P.
        • Berlanga-Acosta J.
        • Playford R.J.
        Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis.
        N Engl J Med. 2003; 349: 350-357
        • Sullivan P.B.
        • Lewindon P.J.
        • Cheng C.
        • et al.
        Intestinal mucosa remodeling by recombinant human epidermal growth factor (1-48) in neonates with severe necrotizing enterocolitis.
        J Pediatr Surg. 2007; 42: 462-469
        • Yan F.
        • Liu L.
        • Dempsey P.J.
        • et al.
        A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor.
        J Biol Chem. 2013; 288: 30742-30751
        • Zijlstra R.T.
        • Odie J.
        • Hall W.F.
        • Petschow B.W.
        • Gelberg H.B.
        • Litov R.E.
        Effect of orally administered epidermal growth factor on intestinal recovery of neonatal pigs infected with rotavirus.
        J Pediatr Gastroenterol Nutr. 1994; 19: 382-390
        • Riegler M.
        • Sedivy R.
        • Sogukoglu T.
        • et al.
        Epidermal growth factor attenuates Clostridium difficile toxin A- and B-induced damage of human colonic mucosa.
        Am J Physiol. 1997; 273: G1014-G1022
        • Buret A.
        • Olson M.E.
        • Gall D.G.
        • Hardin J.A.
        Effects of orally administered epidermal growth factor on enteropathogenic Escherichia coli infection in rabbits.
        Infect Immun. 1998; 66: 4917-4923
        • Schneider D.S.
        • Ayres J.S.
        Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases.
        Nat Rev Immunol. 2008; 8: 889-895
        • Zaiss D.M.
        • Gause W.C.
        • Osborne L.C.
        • Artis D.
        Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair.
        Immunity. 2015; 42: 216-226
        • Hanash A.M.
        • Dudakov J.A.
        • Hua G.
        • et al.
        Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease.
        Immunity. 2012; 37: 339-350
        • Ahluwalia A.
        • Tarnawski A.S.
        Critical role of hypoxia sensor—HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing.
        Curr Med Chem. 2012; 19: 90-97
        • Nevala W.K.
        • Vachon C.M.
        • Leontovich A.A.
        • et al.
        Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma.
        Clin Cancer Res. 2009; 15: 1931-1939
        • Ohm J.E.
        • Gabrilovich D.I.
        • Sempowski G.D.
        • et al.
        VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression.
        Blood. 2003; 101: 4878-4886
        • Gabrilovich D.
        • Ishida T.
        • Oyama T.
        • et al.
        Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo.
        Blood. 1998; 92: 4150-4166
        • Alfaro C.
        • Suarez N.
        • Gonzalez A.
        • et al.
        Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes.
        Br J Cancer. 2009; 100: 1111-1119
        • Voron T.
        • Colussi O.
        • Marcheteau E.
        • et al.
        VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors.
        J Exp Med. 2015; 212: 139-148
        • Min C.K.
        • Kim S.Y.
        • Lee M.J.
        • et al.
        Vascular endothelial growth factor (VEGF) is associated with reduced severity of acute graft-versus-host disease and nonrelapse mortality after allogeneic stem cell transplantation.
        Bone Marrow Transplant. 2006; 38: 149-156
        • Nachbaur D.
        • Schumacher P.
        • Auberger J.
        • Clausen J.
        • Kircher B.
        Vascular endothelial growth factor and activin-a serum levels following allogeneic hematopoietic stem cell transplantation.
        Biol Blood Marrow Transplant. 2007; 13: 942-947
        • Kim D.H.
        • Lee N.Y.
        • Lee M.H.
        • Sohn S.K.
        Vascular endothelial growth factor gene polymorphisms may predict the risk of acute graft-versus-host disease following allogeneic transplantation: preventive effect of vascular endothelial growth factor gene on acute graft-versus-host disease.
        Biol Blood Marrow Transplant. 2008; 14: 1408-1416
        • Kim A.R.
        • Lim J.Y.
        • Jeong D.C.
        • Park G.
        • Lee B.C.
        • Min C.K.
        Blockade of vascular endothelial growth factor (VEGF) aggravates the severity of acute graft-versus-host disease (GVHD) after experimental allogeneic hematopoietic stem cell transplantation (allo-HSCT).
        Immune Netw. 2011; 11: 368-375
        • Lunn R.A.
        • Sumar N.
        • Bansai A.L.
        • Treleaven J.
        Cytokine profiles in stem cell transplantation: possible use as a predictor of graft-versus-host disease.
        Hematology. 2005; 10: 107-114
        • Porkholm M.
        • Bono P.
        • Saarinen-Pihkala U.M.
        • Kivivuori S.M.
        Higher angiopoietin-2 and VEGF levels predict shorter EFS and increased non-relapse mortality after pediatric hematopoietic SCT.
        Bone Marrow Transplant. 2013; 48: 50-55
        • Medinger M.
        • Tichelli A.
        • Bucher C.
        • et al.
        GVHD after allogeneic haematopoietic SCT for AML: angiogenesis, vascular endothelial growth factor and VEGF receptor expression in the BM.
        Bone Marrow Transplant. 2013; 48: 715-721
        • Dewerchin M.
        • Carmeliet P.
        PlGF: a multitasking cytokine with disease-restricted activity.
        Cold Spring Harb Perspect Med. 2012; 2: 1-24
        • De Falco S.
        The discovery of placenta growth factor and its biological activity.
        Exp Mol Med. 2012; 44: 1-9
        • Oura H.
        • Bertoncini J.
        • Velasco P.
        • Brown L.F.
        • Carmeliet P.
        • Detmar M.
        A critical role of placental growth factor in the induction of inflammation and edema formation.
        Blood. 2003; 101: 560-567
        • Selvaraj S.K.
        • Giri R.K.
        • Perelman N.
        • Johnson C.
        • Malik P.
        • Kalra V.K.
        Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor.
        Blood. 2003; 102: 1515-1524
        • Lieu C.H.
        • Tran H.
        • Jiang Z.Q.
        • et al.
        The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer.
        PLoS One. 2013; 8: e77117
        • Kim K.J.
        • Cho C.S.
        • Kim W.U.
        Role of placenta growth factor in cancer and inflammation.
        Exp Mol Med. 2012; 44: 10-19
        • Holtan S.G.
        • Verneris M.R.
        • Schultz K.R.
        • et al.
        Prognostic impact of follistatin in acute graft-versus-host disease: results from BMT CTN 0302 and 0802.
        Biol Blood Marrow Transplant. 2015; (ASBMT/CIBMTR Tandem meetings abstract Vol. 21, Issue 2, Supplement, Feb 2015)
        • Leonard J.T.
        • Newell L.F.
        • Fan G.
        • Holtan S.G.
        Tissue expression of placental growth factor in acute graft versus host disease after hematopoietic stem cell transplantation.
        Blood. 2014; 124: 1171
        • Kendall R.L.
        • Thomas K.A.
        Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor.
        Proc Natl Acad Sci U S A. 1993; 90: 10705-10709
        • Hornig C.
        • Barleon B.
        • Ahmad S.
        • Vuorela P.
        • Ahmed A.
        • Weich H.A.
        Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids.
        Lab Invest. 2000; 80: 443-454
        • Lorquet S.
        • Berndt S.
        • Blacher S.
        • et al.
        Soluble forms of VEGF receptor-1 and -2 promote vascular maturation via mural cell recruitment.
        FASEB J. 2010; 24: 3782-3795
        • Esch F.S.
        • Shimasaki S.
        • Mercado M.
        • et al.
        Structural characterization of follistatin: a novel follicle-stimulating hormone release-inhibiting polypeptide from the gonad.
        Mol Endocrinol. 1987; 1: 849-855
        • Nakamura T.
        • Takio K.
        • Eto Y.
        • Shibai H.
        • Titani K.
        • Sugino H.
        Activin-binding protein from rat ovary is follistatin.
        Science. 1990; 247: 836-838
        • de Kretser D.M.
        • O'Hehir R.E.
        • Hardy C.L.
        • Hedger M.P.
        The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair.
        Mol Cell Endocrinol. 2012; 359: 101-106
        • Phan C.
        • McMahon A.W.
        • Nelson R.C.
        • Elliott J.F.
        • Murray A.G.
        Activated lymphocytes promote endothelial cell detachment from matrix: a role for modulation of endothelial cell beta 1 integrin affinity.
        J Immunol. 1999; 163: 4557-4563
        • Almici C.
        • Skert C.
        • Verardi R.
        • et al.
        Changes in circulating endothelial cells count could become a valuable tool in the diagnostic definition of acute graft-versus-host disease.
        Transplantation. 2014; 98: 706-712
        • Enninga E.A.
        • Nevala W.K.
        • Creedon D.J.
        • Markovic S.N.
        • Holtan S.G.
        Fetal sex-based differences in maternal hormones, angiogenic factors, and immune mediators during pregnancy and the postpartum period.
        Am J Reprod Immunol. 2015; 73: 251-262
        • Samlowski W.E.
        • Johnson H.M.
        • Hammonda E.H.
        • Robertson B.A.
        • Daynes R.A.
        Marrow ablative doses of gamma-irradiation and protracted changes in peripheral lymph node microvasculature of murine and human bone marrow transplant recipients.
        Lab Invest. 1987; 56: 85-95
        • Zeng L.
        • Yan Z.
        • Ding S.
        • Xu K.
        • Wang L.
        Endothelial injury, an intriguing effect of methotrexate and cyclophosphamide during hematopoietic stem cell transplantation in mice.
        Transplant Proc. 2008; 40: 2670-2673
        • Kochi S.
        • Takanago H.
        • Matsuo H.
        • et al.
        Induction of apoptosis in mouse brain capillary endothelial cells by cyclosporin A and tacrolimus.
        Life Sci. 2000; 66: 2255-2260
        • Carmona A.
        • Diaz-Ricart M.
        • Palomo M.
        • et al.
        Distinct deleterious effects of cyclosporine and tacrolimus and combined tacrolimus-sirolimus on endothelial cells: protective effect of defibrotide.
        Biol Blood Marrow Transplant. 2013; 19: 1439-1445
        • Liu H.T.
        • Li F.
        • Wang W.Y.
        • et al.
        Rapamycin inhibits re-ndothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells.
        Tex Heart Inst J. 2010; 37: 194-201
        • Cheng S.L.
        • Wang H.C.
        • Yu C.J.
        • Yang P.C.
        Increased expression of placenta growth factor in COPD.
        Thorax. 2008; 63: 500-506
        • Iwasaki H.
        • Kawamoto A.
        • Tjwa M.
        • et al.
        PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors.
        PLoS One. 2011; 6: e24872
        • Mueller R.J.
        • Stussi G.
        • PugaYung G.
        • et al.
        Persistence of recipient-type endothelium after allogeneic hematopoietic stem cell transplantation.
        Haematologica. 2011; 96: 119-127
        • Park J.E.
        • Chen H.H.
        • Winer J.
        • Houck K.A.
        • Ferrara N.
        Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR.
        J Biol Chem. 1994; 269: 25646-25654
        • Biedermann B.C.
        • Sahner S.
        • Gregor M.
        • et al.
        Endothelial injury mediated by cytotoxic T lymphocytes and loss of microvessels in chronic graft versus host disease.
        Lancet. 2002; 359: 2078-2083