Original Article| Volume 166, ISSUE 6, P627-638, December 2015

Wnt5a is expressed in spondyloarthritis and exerts opposite effects on enthesis and bone in murine organ and cell cultures

      Spondyloarthritis (SpA) is a chronic inflammatory joint disorder that initiates at the enthesis, where tendons attach to bone through a fibrocartilage zone. At late stages, excessive bone apposition appears within the diseased enthesis. Because Wnt5a participates to normal bone formation and appears related to inflammatory processes, we investigated the role of this Wnt growth factor in inflammation-associated ossification in SpA. The concentration of Wnt5a assessed by enzyme-linked immunosorbent assay in synovial fluids of patients with SpA (2.58 ± 0.98 ng/mL) was higher than in osteoarthritic patients (1.33 ± 0.71 ng/mL). In murine primary cultures of tendon cells, chondrocytes, and osteoblasts and in an organotypic model of mouse ankle, we showed that tumor necrosis factor α reversibly diminished Wnt5a expression and secretion, respectively. Wnt5a decreased gene expression of differentiation markers and mineralization in cultured chondrocytes and reduced alkaline phosphatase activity in Achilles tendon enthesis (−14%) and osteocalcin protein levels released by ankle explants (−36%). On the contrary, Wnt5a stimulated ossification markers' expression in cultured osteoblasts and increased the bone volume of the tibial plateau of the cultured explants (+19%). In conclusion, our results suggest that Wnt5a is expressed locally in the joints of patients with SpA. Wnt5a appears more associated with ossification than with inflammation and tends to inhibit mineralization in chondrocytes and enthesis, whereas it seems to favor the ossification process in osteoblasts and bone. Further studies are needed to decipher the opposing effects observed locally in enthesis and systemically in bone in SpA.


      ALP (alkaline phosphatase), ELISA (enzyme-linked immunosorbent assay), IL (interleukin), micro-CT (microcomputed tomography), MSC (mesenchymal stem cell), OA (osteoarthritis), RA (rheumatoid arthritis), SpA (spondyloarthritis), TNF (tumor necrosis factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Helmick C.G.
        • Felson D.T.
        • Lawrence R.C.
        • et al.
        Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I.
        Arthritis Rheum. 2008; 58: 15-25
        • Guillemin F.
        • Saraux A.
        • Guggenbuhl P.
        • et al.
        Prevalence of rheumatoid arthritis in France: 2001.
        Ann Rheum Dis. 2005; 64: 1427-1430
        • Saraux A.
        • Guillemin F.
        • Guggenbuhl P.
        • et al.
        Prevalence of spondyloarthropathies in France: 2001.
        Ann Rheum Dis. 2005; 64: 1431-1435
        • Benjamin M.
        • McGonagle D.
        The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites.
        J Anat. 2001; 199: 503-526
        • Baraliakos X.
        • Braun J.
        Best Pract Res Clin Rheumatol. 2011; 25: 825-842
        • van der Heijde D.
        • Landewé R.
        • Baraliakos X.
        • et al.
        Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis.
        Arthritis Rheum. 2008; 58: 3063-3070
        • Kang K.Y.
        • Ju J.H.
        • Park S.H.
        • Kim H.Y.
        The paradoxical effects of TNF inhibitors on bone mineral density and radiographic progression in patients with ankylosing spondylitis.
        Rheumatology (Oxford). 2012; 52: 718-726
        • Lories R.J.
        • Schett G.
        Pathophysiology of new bone formation and ankylosis in spondyloarthritis.
        Rheum Dis Clin North Am. 2012; 38: 555-567
        • Braem K.
        • Deroose C.M.
        • Luyten F.P.
        • Lories R.J.
        Inhibition of inflammation but not ankylosis by glucocorticoids in mice: further evidence for the entheseal stress hypothesis.
        Arthritis Res Ther. 2012; 14: R59
        • Schett G.
        • Rudwaleit M.
        Can we stop progression of ankylosing spondylitis?.
        Best Pract Res Clin Rheumatol. 2010; 24: 363-371
        • Benjamin M.
        • Rufai A.
        • Ralphs J.R.
        The mechanism of formation of bony spurs (enthesophytes) in the Achilles tendon.
        Arthritis Rheum. 2000; 43: 576-583
        • Las Heras F.
        • Pritzker K.P.
        • So A.
        • et al.
        Aberrant chondrocyte hypertrophy and activation of β-catenin signaling precede joint ankylosis in ank/ank mice.
        J Rheumatol. 2012; 39: 583-593
        • Uderhardt S.
        • Diarra D.
        • Katzenbeisser J.
        • et al.
        Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints.
        Ann Rheum Dis. 2010; 69: 592-597
        • Klingberg E.
        • Nurkkala M.
        • Carlsten H.
        • Forsblad-d'Elia H.
        Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis.
        J Rheumatol. 2014; 41: 1349-1356
        • Daoussis D.
        • Liossis S.N.
        • Solomou E.E.
        • et al.
        Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis.
        Arthritis Rheum. 2010; 62: 150-158
        • Kwon S.R.
        • Lim M.J.
        • Suh C.H.
        • et al.
        Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy.
        Rheumatol Int. 2012; 32: 2523-2527
        • Heiland G.R.
        • Zwerina K.
        • Baum W.
        • et al.
        Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression.
        Ann Rheum Dis. 2010; 69: 2152-2159
        • Liu Y.
        • Rubin B.
        • Bodine P.V.
        • Billiard J.
        Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase.
        J Cell Biochem. 2008; 105: 497-502
        • Maeda K.
        • Kobayashi Y.
        • Udagawa N.
        • et al.
        Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis.
        Nat Med. 2012; 18: 405-412
        • Bhatt P.M.
        • Malgor R.
        Wnt5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders.
        Atherosclerosis. 2014; 237: 155-162
        • Day T.F.
        • Guo X.
        • Garrett-Beal L.
        • Yang Y.
        Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.
        Dev Cell. 2005; 8: 739-750
        • Hill T.P.
        • Später D.
        • Taketo M.M.
        • Birchmeier W.
        • Hartmann C.
        Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.
        Dev Cell. 2005; 8: 727-738
        • Yang Y.
        • Topol L.
        • Lee H.
        • Wu J.
        Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation.
        Development. 2003; 130: 1003-1015
        • Bradley E.W.
        • Drissi M.H.
        WNT5A regulates chondrocyte differentiation through differential use of the CaN/NFAT and IKK/NF-kappaB pathways.
        Mol Endocrinol. 2010; 24: 1581-1593
        • Church V.
        • Nohno T.
        • Linker C.
        • Marcelle C.
        • Francis-West P.
        Wnt regulation of chondrocyte differentiation.
        J Cell Sci. 2002; 115: 4809-4818
        • Hartmann C.
        • Tabin C.J.
        Dual roles of Wnt signaling during chondrogenesis in the chicken limb.
        Development. 2000; 127: 3141-3159
        • Takada I.
        • Mihara M.
        • Suzawa M.
        • et al.
        A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation.
        Nat Cell Biol. 2007; 9: 1273-1285
        • Guo J.
        • Jin J.
        • Cooper L.F.
        Dissection of sets of genes that control the character of wnt5a-deficient mouse calvarial cells.
        Bone. 2008; 43: 961-971
        • Rauner M.
        • Stein N.
        • Winzer M.
        • et al.
        WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production.
        J Bone Miner Res. 2012; 27: 575-585
        • Briolay A.
        • Lencel P.
        • Bessueille L.
        • Caverzasio J.
        • Buchet R.
        • Magne D.
        Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells.
        Biochem Biophys Res Commun. 2013; 430: 1072-1077
        • Fukuyo S.
        • Yamaoka K.
        • Sonomoto K.
        • et al.
        IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent.
        Rheumatology (Oxford). 2014; 53: 1282-1290
        • Sonomoto K.
        • Yamaoka K.
        • Oshita K.
        • et al.
        IL-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt5a/Ror2 pathway.
        Arthritis Rheum. 2012; 64: 3355-3363
        • Rudwaleit M.
        • van der Heijde D.
        • Landewé R.
        • et al.
        The assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general.
        Ann Rheum Dis. 2011; 70: 25-31
        • Zhang W.
        • Doherty M.
        • Peat G.
        • et al.
        EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis.
        Ann Rheum Dis. 2010; 69: 483-489
        • Lencel P.
        • Delplace S.
        • Pilet P.
        • et al.
        Cell-specific effects of TNF-α and IL-1β on alkaline phosphatase: implication for syndesmophyte formation and vascular calcification.
        Lab Invest. 2011; 91: 1434-1442
        • Priam S.
        • Bougault C.
        • Houard X.
        • et al.
        Identification of soluble 14-3-3ε as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis.
        Arthritis Rheum. 2013; 65: 1831-1842
        • Mallick E.
        • Scutt N.
        • Scutt A.
        • Rolf C.
        Passage and concentration-dependent effects of indomethacin on tendon derived cells.
        J Orthop Surg Res. 2009; 4: 9
        • Gosset M.
        • Berenbaum F.
        • Thirion S.
        • Jacques C.
        Primary culture and phenotyping of murine chondrocytes.
        Nat Protoc. 2008; 3: 1253-1260
        • Gouttenoire J.
        • Bougault C.
        • Aubert-Foucher E.
        • et al.
        BMP-2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes.
        Eur J Cell Biol. 2010; 89: 307-314
        • McGonagle D.
        • Aydin S.Z.
        • Tan A.L.
        The synovio-entheseal complex and its role in tendon and capsular associated inflammation.
        J Rheumatol Suppl. 2012; 89: 11-14
        • Sen M.
        • Lauterbach K.
        • El-Gabalawy H.
        • Firestein G.S.
        • Corr M.
        • Carson D.A.
        Expression and function of wingless and frizzled homologs in rheumatoid arthritis.
        Proc Natl Acad Sci U S A. 2000; 97: 2791-2796
        • Sen M.
        • Chamorro M.
        • Reifert J.
        • Corr M.
        • Carson D.A.
        Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation.
        Arthritis Rheum. 2001; 44: 772-781
        • Ge X.P.
        • Gan Y.H.
        • Zhang C.G.
        • et al.
        Requirement of the NF-κB pathway for induction of Wnt-5A by interleukin-1β in condylar chondrocytes of the temporomandibular joint: functional crosstalk between the Wnt-5A and NF-κB signaling pathways.
        Osteoarthritis Cartilage. 2011; 19: 111-117
        • Lories R.J.
        • McInnes I.B.
        Primed for inflammation: enthesis-resident T cells.
        Nat Med. 2012; 18: 1018-1019
        • Nemoto E.
        • Ebe Y.
        • Kanaya S.
        • et al.
        Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.
        Biochem Biophys Res Commun. 2012; 422: 627-632
        • Dai J.
        • Hall C.L.
        • Escara-Wilke J.
        • Mizokami A.
        • Keller J.M.
        • Keller E.T.
        Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms.
        Cancer Res. 2008; 68: 5785-5794
        • Shi Y.
        • Fu Y.
        • Tong W.
        • et al.
        Uniaxial mechanical tension promoted osteogenic differentiation of rat tendon-derived stem cells (rTDSCs) via the Wnt5a-RhoA pathway.
        J Cell Biochem. 2012; 113: 3133-3142