Advertisement
Review Article| Volume 166, ISSUE 6, P568-585, December 2015

Download started.

Ok

The impact of the Cancer Genome Atlas on lung cancer

Published:August 10, 2015DOI:https://doi.org/10.1016/j.trsl.2015.08.001
      The Cancer Genome Atlas (TCGA) has profiled more than 10,000 samples derived from 33 types of cancer to date, with the goal of improving our understanding of the molecular basis of cancer and advancing our ability to diagnose, treat, and prevent cancer. This review focuses on lung cancer as it is the leading cause of cancer-related mortality worldwide in both men and women. Particularly, non-small cell lung cancers (including lung adenocarcinoma and lung squamous cell carcinoma) were evaluated. Our goal was to demonstrate the impact of TCGA on lung cancer research under 4 themes: diagnostic markers, disease progression markers, novel therapeutic targets, and novel tools. Examples are given related to DNA mutation, copy number variation, messenger RNA, and microRNA expression along with methylation profiling.

      Abbreviations:

      CIMP (CpG island methylator phenotype), GSEA (gene set enrichment analysis), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), miRNA (microRNA), NSCLC (non-small cell lung carcinoma), OS (overall survival), TCGA (the Cancer Genome Atlas)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Mission and Goal—TCGA. Available at: http://cancergenome.nih.gov/abouttcga/overview/missiongoal. Accessed June 13, 2015.

      2. Backgrounder—TCGA. Available at: http://cancergenome.nih.gov/newsevents/forthemedia/backgrounder. Accessed June 13, 2015.

      3. Cancers Selected for Study—TCGA. Available at: http://cancergenome.nih.gov/cancersselected. Accessed June 13, 2015.

      4. The Cancer Genome Atlas—Data Portal. Available at: https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Accessed June 13, 2015.

      5. The Cancer Genome Atlas (TCGA): The next stage—TCGA. Available at: http://cancergenome.nih.gov/newsevents/newsannouncements/TCGA_The_Next_Stage. Accessed June 13, 2015.

      6. WHO|Cancer. Available at: http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed June 13, 2015.

      7. What is non-small cell lung cancer? Available at: http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-what-is-non-small-cell-lung-cancer. Accessed June 13, 2015.

        • Stewart D.J.
        Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer.
        Crit Rev Oncol Hematol. 2010; 75: 173-234
        • Stewart D.J.
        • Chiritescu G.
        • Dahrouge S.
        • Banerjee S.
        • Tomiak E.M.
        Chemotherapy dose–response relationships in non-small cell lung cancer and implied resistance mechanisms.
        Cancer Treat Rev. 2007; 33: 101-137
        • Stewart D.J.
        • Tomiak E.
        • Shamji F.M.
        • Maziak D.E.
        • MacLeod P.
        Phase II study of alternating chemotherapy regimens for advanced non-small cell lung cancer.
        Lung Cancer. 2004; 44: 241-249
        • Paez J.G.
        • Jänne P.A.
        • Lee J.C.
        • et al.
        EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.
        Science. 2004; 304: 1497-1500
        • Antonicelli A.
        • Cafarotti S.
        • Indini A.
        • et al.
        EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation.
        Int J Med Sci. 2013; 10: 320-330
        • Solomon B.J.
        • Mok T.
        • Kim D.-W.
        • et al.
        First-line crizotinib versus chemotherapy in ALK-positive lung cancer.
        N Engl J Med. 2014; 371: 2167-2177
        • Yamamoto H.
        • Toyooka S.
        • Mitsudomi T.
        Impact of EGFR mutation analysis in non-small cell lung cancer.
        Lung Cancer. 2009; 63: 315-321
        • Suda K.
        • Onozato R.
        • Yatabe Y.
        • Mitsudomi T.
        EGFR T790M mutation: a double role in lung cancer cell survival?.
        J Thorac Oncol. 2009; 4: 1-4
      8. TumorPortal. Available at: http://www.tumorportal.org/figure/S1. Accessed June 13, 2015.

        • Rekhtman N.
        • Paik P.K.
        • Arcila M.E.
        • et al.
        Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations.
        Clin Cancer Res. 2012; 18: 1167-1176
        • Cancer Genome Atlas Research Network
        Comprehensive genomic characterization of squamous cell lung cancers.
        Nature. 2012; 489: 519-525
        • Collisson E.A.
        • Campbell J.D.
        • Brooks A.N.
        • et al.
        Comprehensive molecular profiling of lung adenocarcinoma.
        Nature. 2014; 511: 543-550
        • Schuster K.
        • Venkateswaran N.
        • Rabellino A.
        • Girard L.
        • Peña-Llopis S.
        • Scaglioni P.P.
        Nullifying the CDKN2AB locus promotes mutant K-ras lung tumorigenesis.
        Mol Cancer Res. 2014; 12: 912-923
        • Shinjo K.
        • Okamoto Y.
        • An B.
        • et al.
        Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma.
        Carcinogenesis. 2012; 33: 1277-1285
        • Pylayeva-Gupta Y.
        • Grabocka E.
        • Bar-Sagi D.
        RAS oncogenes: weaving a tumorigenic web.
        Nat Rev Cancer. 2011; 11: 761-774
        • Fisher G.H.
        • Wellen S.L.
        • Klimstra D.
        • et al.
        Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes.
        Genes Dev. 2001; 15: 3249-3262
        • Johnson L.
        • Mercer K.
        • Greenbaum D.
        • et al.
        Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.
        Nature. 2001; 410: 1111-1116
        • Pao W.
        • Wang T.Y.
        • Riely G.J.
        • et al.
        KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib.
        PLoS Med. 2005; 2: e17
        • Konstantinidou G.
        • Ramadori G.
        • Torti F.
        • et al.
        RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas.
        Cancer Discov. 2013; 3: 444-457
        • Zhang Y.
        • Xiong Y.
        • Yarbrough W.G.
        ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
        Cell. 1998; 92 (Available at:) (Accessed May 20, 2015): 725-734
        • Kamijo T.
        • Weber J.D.
        • Zambetti G.
        • Zindy F.
        • Roussel M.F.
        • Sherr C.J.
        Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2.
        Proc Natl Acad Sci U S A. 1998; 95: 8292-8297
        • Cai B.
        • Jiang X.
        Revealing biological pathways implicated in lung cancer from TCGA gene expression data using gene set enrichment analysis.
        Cancer Inform. 2014; 13: 113-121
        • Li X.
        • Chen S.
        • Sun T.
        • et al.
        The transcriptional regulation of SOX2 on FOXA1 gene and its application in diagnosis of human breast and lung cancers.
        Clin Lab. 2014; 60 (Available at:) (Accessed June 13, 2015): 909-918
        • Justilien V.
        • Walsh M.P.
        • Ali S.A.
        • Thompson E.A.
        • Murray N.R.
        • Fields A.P.
        The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma.
        Cancer Cell. 2014; 25: 139-151
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Chen Y.-C.
        • Hsu H.-S.
        • Chen Y.-W.
        • et al.
        Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells.
        PLoS One. 2008; 3: e2637
        • Eramo A.
        • Lotti F.
        • Sette G.
        • et al.
        Identification and expansion of the tumorigenic lung cancer stem cell population.
        Cell Death Differ. 2008; 15: 504-514
        • Justilien V.
        • Regala R.P.
        • Tseng I.-C.
        • et al.
        Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential.
        PLoS One. 2012; 7: e35040
        • Yuan P.
        • Kadara H.
        • Behrens C.
        • et al.
        Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung.
        PLoS One. 2010; 5: e9112
        • Regala R.P.
        • Thompson E.A.
        • Fields A.P.
        Atypical protein kinase C iota expression and aurothiomalate sensitivity in human lung cancer cells.
        Cancer Res. 2008; 68: 5888-5895
        • Khoury J.D.
        • Tannir N.M.
        • Williams M.D.
        • et al.
        Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-Seq.
        J Virol. 2013; 87: 8916-8926
        • Shinmura K.
        • Igarashi H.
        • Kato H.
        • et al.
        CLCA2 as a novel immunohistochemical marker for differential diagnosis of squamous cell carcinoma from adenocarcinoma of the lung.
        Dis Markers. 2014; 2014 (Available at:) (Accessed March 3, 2015): 619273
        • Stingl J.
        • Caldas C.
        Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis.
        Nat Rev Cancer. 2007; 7: 791-799
        • Banerji C.R.
        • Severini S.
        • Caldas C.
        • Teschendorff A.E.
        Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer.
        PLoS Comput Biol. 2015; 11: e1004115
        • Li X.
        • Shi Y.
        • Yin Z.
        • Xue X.
        • Zhou B.
        An eight-miRNA signature as a potential biomarker for predicting survival in lung adenocarcinoma.
        J Transl Med. 2014; 12: 159
        • Meng W.
        • Ye Z.
        • Cui R.
        • et al.
        MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma.
        Clin Cancer Res. 2013; 19: 5423-5433
        • Carthew R.W.
        • Sontheimer E.J.
        Origins and mechanisms of miRNAs and siRNAs.
        Cell. 2009; 136: 642-655
        • Kent O.A.
        • Mendell J.T.
        A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes.
        Oncogene. 2006; 25: 6188-6196
        • Cekaite L.
        • Rantala J.K.
        • Bruun J.
        • et al.
        MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer.
        Neoplasia. 2012; 14 (Available at:) (Accessed June 13, 2015): 868-879
        • Valastyan S.
        • Reinhardt F.
        • Benaich N.
        • et al.
        A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis.
        Cell. 2009; 137: 1032-1046
        • Shin S.
        • Dimitri C.A.
        • Yoon S.-O.
        • Dowdle W.
        • Blenis J.
        ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events.
        Mol Cell. 2010; 38: 114-127
        • Jiang L.
        • Zhu W.
        • Streicher K.
        • et al.
        Increased IR-A/IR-B ratio in non-small cell lung cancers associates with lower epithelial-mesenchymal transition signature and longer survival in squamous cell lung carcinoma.
        BMC Cancer. 2014; 14: 131
        • Huang T.
        • Yang J.
        • Cai Y.-D.
        Novel candidate key drivers in the integrative network of genes, microRNAs, methylations, and copy number variations in squamous cell lung carcinoma.
        Biomed Res Int. 2015; 2015: 358125
        • Zhao Q.
        • Shi X.
        • Xie Y.
        • Huang J.
        • Shia B.
        • Ma S.
        Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA.
        Brief Bioinformatics. 2015; 16: 291-303
        • Schindler C.W.
        Series introduction. JAK-STAT signaling in human disease.
        J Clin Invest. 2002; 109: 1133-1137
        • Miklossy G.
        • Hilliard T.S.
        • Turkson J.
        Therapeutic modulators of STAT signalling for human diseases.
        Nat Rev Drug Discov. 2013; 12: 611-629
        • Abbas R.
        • McColl K.S.
        • Kresak A.
        • et al.
        PIAS3 expression in squamous cell lung cancer is low and predicts overall survival.
        Cancer Med. 2015; 4: 325-332
        • Chung C.D.
        • Liao J.
        • Liu B.
        • et al.
        Specific inhibition of Stat3 signal transduction by PIAS3.
        Science. 1997; 278 (Available at:) (Accessed June 13, 2015): 1803-1805
        • Sharrocks A.D.
        PIAS proteins and transcriptional regulation–more than just SUMO E3 ligases?.
        Genes Dev. 2006; 20: 754-758
        • Brantley E.C.
        • Nabors L.B.
        • Gillespie G.Y.
        • et al.
        Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression.
        Clin Cancer Res. 2008; 14: 4694-4704
        • Dhanasekaran S.M.
        • Alejandro Balbin O.
        • Chen G.
        • et al.
        Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes.
        Nat Commun. 2014; 5: 5893
        • Deng B.
        • Sun Z.
        • Jason W.
        • Yang P.
        Increased BCAR1 predicts poor outcomes of non-small cell lung cancer in multiple-center patients.
        Ann Surg Oncol. 2013; 20: S701-S708
        • Cabodi S.
        • Tinnirello A.
        • Bisaro B.
        • et al.
        p130Cas is an essential transducer element in ErbB2 transformation.
        FASEB J. 2010; 24: 3796-3808
        • Cabodi S.
        • Tinnirello A.
        • Di Stefano P.
        • et al.
        p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis.
        Cancer Res. 2006; 66: 4672-4680
        • Huang W.
        • Deng B.
        • Wang R.-W.
        • Tan Q.-Y.
        • Jiang Y.-G.
        Expression of breast cancer anti-estrogen resistance 1 in relation to vascular endothelial growth factor, p53, and prognosis in esophageal squamous cell cancer.
        Dis Esophagus. 2013; 26: 528-537
        • Huang W.
        • Deng B.
        • Wang R.-W.
        • et al.
        BCAR1 protein plays important roles in carcinogenesis and predicts poor prognosis in non-small-cell lung cancer.
        PLoS One. 2012; 7: e36124
        • Pecot C.V.
        • Rupaimoole R.
        • Yang D.
        • et al.
        Tumour angiogenesis regulation by the miR-200 family.
        Nat Commun. 2013; 4: 2427
        • Fallahi M.
        • Amelio A.L.
        • Cleveland J.L.
        • Rounbehler R.J.
        CREB targets define the gene expression signature of malignancies having reduced levels of the tumor suppressor tristetraprolin.
        PLoS One. 2014; 9: e115517
        • Brooks S.A.
        • Blackshear P.J.
        Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action.
        Biochim Biophys Acta. 2013; 1829: 666-679
        • Rounbehler R.J.
        • Fallahi M.
        • Yang C.
        • et al.
        Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state.
        Cell. 2012; 150: 563-574
        • Brennan S.E.
        • Kuwano Y.
        • Alkharouf N.
        • Blackshear P.J.
        • Gorospe M.
        • Wilson G.M.
        The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis.
        Cancer Res. 2009; 69: 5168-5176
        • Hayes D.N.
        • Monti S.
        • Parmigiani G.
        • et al.
        Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts.
        J Clin Oncol. 2006; 24: 5079-5090
        • Wilkerson M.D.
        • Yin X.
        • Walter V.
        • et al.
        Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation.
        PLoS One. 2012; 7: e36530
        • Cescon D.W.
        • She D.
        • Sakashita S.
        • et al.
        NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma.
        Clin Cancer Res. 2015; 21: 2499-2505
        • Devarakonda S.
        • Morgensztern D.
        • Govindan R.
        Clinical applications of the Cancer Genome Atlas project (TCGA) for squamous cell lung carcinoma.
        Oncology (Williston Park). 2013; 27 (Available at:) (Accessed June 13, 2015): 899-906
        • Kim I.-W.
        • Han N.
        • Kim M.G.
        • Kim T.
        • Oh J.M.
        Copy number variability analysis of pharmacogenes in patients with lymphoma, leukemia, hepatocellular, and lung carcinoma using the Cancer Genome Atlas data.
        Pharmacogenet Genomics. 2015; 25: 1-7
        • Redon R.
        • Ishikawa S.
        • Fitch K.R.
        • et al.
        Global variation in copy number in the human genome.
        Nature. 2006; 444: 444-454
        • Johansson I.
        • Ingelman-Sundberg M.
        CNVs of human genes and their implication in pharmacogenetics.
        Cytogenet Genome Res. 2008; 123: 195-204
        • He Y.
        • Hoskins J.M.
        • McLeod H.L.
        Copy number variants in pharmacogenetic genes.
        Trends Mol Med. 2011; 17: 244-251
        • Wynes M.W.
        • Hinz T.K.
        • Gao D.
        • et al.
        FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies.
        Clin Cancer Res. 2014; 20: 3299-3309
        • Wrangle J.
        • Wang W.
        • Koch A.
        • et al.
        Alterations of immune response of non-small cell lung cancer with azacytidine.
        Oncotarget. 2013; 4 (Available at:) (Accessed May 6, 2015): 2067-2079
        • Gabbara S.
        • Bhagwat A.S.
        The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor.
        Biochem J. 1995; 307 (Available at:) (Accessed May 24, 2015): 87-92
        • Stresemann C.
        • Lyko F.
        Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine.
        Int J Cancer. 2008; 123: 8-13
        • Li Q.
        • Tainsky M.A.
        Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses.
        PLoS One. 2011; 6 (Katoh M, ed): e28683
        • Kulaeva O.I.
        • Draghici S.
        • Tang L.
        • Kraniak J.M.
        • Land S.J.
        • Tainsky M.A.
        Epigenetic silencing of multiple interferon pathway genes after cellular immortalization.
        Oncogene. 2003; 22: 4118-4127
        • Símová J.
        • Polláková V.
        • Indrová M.
        • et al.
        Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status.
        Br J Cancer. 2011; 105: 1533-1541
        • Fonsatti E.
        • Nicolay H.J.M.
        • Sigalotti L.
        • et al.
        Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications.
        Clin Cancer Res. 2007; 13: 3333-3338
        • Claus R.
        • Almstedt M.
        • Lübbert M.
        Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents.
        Semin Oncol. 2005; 32: 511-520
        • Karpf A.R.
        • Peterson P.W.
        • Rawlins J.T.
        • et al.
        Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells.
        Proc Natl Acad Sci U S A. 1999; 96 (Available at:) (Accessed June 13, 2015): 14007-14012
        • Raghavan M.
        • Del Cid N.
        • Rizvi S.M.
        • Peters L.R.
        MHC class I assembly: out and about.
        Trends Immunol. 2008; 29: 436-443
        • Wang Z.
        • Gerstein M.
        • Snyder M.
        RNA-Seq: a revolutionary tool for transcriptomics.
        Nat Rev Genet. 2009; 10: 57-63
        • Radenbaugh A.J.
        • Ma S.
        • Ewing A.
        • et al.
        RADIA: RNA and DNA integrated analysis for somatic mutation detection.
        PLoS One. 2014; 9: e111516
        • Kan Z.
        • Jaiswal B.S.
        • Stinson J.
        • et al.
        Diverse somatic mutation patterns and pathway alterations in human cancers.
        Nature. 2010; 466: 869-873
        • Lindberg J.
        • Mills I.G.
        • Klevebring D.
        • et al.
        The mitochondrial and autosomal mutation landscapes of prostate cancer.
        Eur Urol. 2013; 63: 702-708
        • Biankin A.V.
        • Waddell N.
        • Kassahn K.S.
        • et al.
        Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
        Nature. 2012; 491: 399-405
        • Gui Y.
        • Guo G.
        • Huang Y.
        • et al.
        Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.
        Nat Genet. 2011; 43: 875-878
        • Abaan O.D.
        • Polley E.C.
        • Davis S.R.
        • et al.
        The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
        Cancer Res. 2013; 73: 4372-4382
        • Kim T.-H.
        • Lee S.Y.
        • Rho J.H.
        • et al.
        Mutant p53 (G199V) gains antiapoptotic function through signal transducer and activator of transcription 3 in anaplastic thyroid cancer cells.
        Mol Cancer Res. 2009; 7: 1645-1654
        • Kwak E.L.
        • Bang Y.-J.
        • Camidge D.R.
        • et al.
        Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer.
        N Engl J Med. 2010; 363: 1693-1703
        • Zhou C.
        • Wu Y.-L.
        • Chen G.
        • et al.
        Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study.
        Lancet Oncol. 2011; 12: 735-742
        • Rosell R.
        • Carcereny E.
        • Gervais R.
        • et al.
        Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial.
        Lancet Oncol. 2012; 13: 239-246
        • Mitsudomi T.
        • Morita S.
        • Yatabe Y.
        • et al.
        Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial.
        Lancet Oncol. 2010; 11: 121-128
        • Mok T.S.
        • Wu Y.-L.
        • Thongprasert S.
        • et al.
        Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.
        N Engl J Med. 2009; 361: 947-957
      9. Shaw AT, Camidge DR, Engelman JA, et al. Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. ASCO Meet Abstract. J Clin Oncol 2012;30(15 Suppl):7508. Available at: http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/30/15_suppl/7508. Accessed June 13, 2015.

        • Kumar R.D.
        • Chang L.-W.
        • Ellis M.J.
        • Bose R.
        Prioritizing potentially druggable mutations with dgene: an annotation tool for cancer genome sequencing data.
        PLoS One. 2013; 8: e67980
        • Stead L.F.
        • Egan P.
        • Devery A.
        • et al.
        An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.
        PLoS One. 2013; 8: e78823
        • Herbst R.S.
        • Gandara D.R.
        • Hirsch F.R.
        • et al.
        Lung master protocol (lung-MAP)—a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400.
        Clin Cancer Res. 2015; 21: 1514-1524
        • Kimes P.K.
        • Cabanski C.R.
        • Wilkerson M.D.
        • et al.
        SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples.
        Nucleic Acids Res. 2014; 42: e113
        • Sultan M.
        • Schulz M.H.
        • Richard H.
        • et al.
        A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome.
        Science. 2008; 321: 956-960
        • Ramsköld D.
        • Wang E.T.
        • Burge C.B.
        • Sandberg R.
        An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data.
        PLoS Comput Biol. 2009; 5: e1000598
        • Maher C.A.
        • Kumar-Sinha C.
        • Cao X.
        • et al.
        Transcriptome sequencing to detect gene fusions in cancer.
        Nature. 2009; 458: 97-101
        • Faustino N.A.
        • Cooper T.A.
        Pre-mRNA splicing and human disease.
        Genes Dev. 2003; 17: 419-437
        • Venables J.P.
        Aberrant and alternative splicing in cancer.
        Cancer Res. 2004; 64: 7647-7654
        • Dong Y.
        • Kaushal A.
        • Brattsand M.
        • Nicklin J.
        • Clements J.A.
        Differential splicing of KLK5 and KLK7 in epithelial ovarian cancer produces novel variants with potential as cancer biomarkers.
        Clin Cancer Res. 2003; 9 (Available at:) (Accessed June 13, 2015): 1710-1720
        • Dong Y.
        • Bui L.T.
        • Odorico D.M.
        • et al.
        Compartmentalized expression of kallikrein 4 (KLK4/hK4) isoforms in prostate cancer: nuclear, cytoplasmic and secreted forms.
        Endocr Relat Cancer. 2005; 12: 875-889
        • Planque C.
        • Choi Y.-H.
        • Guyetant S.
        • Heuzé-Vourc'h N.
        • Briollais L.
        • Courty Y.
        Alternative splicing variant of kallikrein-related peptidase 8 as an independent predictor of unfavorable prognosis in lung cancer.
        Clin Chem. 2010; 56: 987-997