Advertisement

Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction

Published:September 05, 2015DOI:https://doi.org/10.1016/j.trsl.2015.08.011
      Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.

      Abbreviations:

      AMPK (AMP-activated protein kinase), ATM (adipose tissue macrophages), CCL (chemokine (C-C motif) ligand), CCR2 (chemokine (C-C motif) receptor 2), CX3CL1 (chemokine (C-X3-C motif) ligand 1), CX3CR1 (chemokine (C-X3-C motif) receptor), CXCL (CXC chemokine ligand), DAG (diacylglycerol), ER (endoplasmic reticulum), ERK (extracellular signal-regulated kinase), FFA (free fatty acid), GLUT (glucose transporter), HFD (high-fat diet), IAPP (islet amyloid polypeptide), IFN-γ (interferon gamma), IKKβ (IκB kinase β), IL-6 (interleukin 6), IL-1β (interleukin 1 β), IL-10 (interleukin 10), IL-4 (interleukin 4), IL-13 (interleukin 13), iNOS (inducible nitric oxide synthase), IRE1 (inositol-requiring protein 1), IRS (insulin receptor substrate), JNK (c-Jun N-terminal kinase), LAR (leukocyte antigen related), LPS (lipopolysaccharide), LTB4 (leukotriene B4), MAPK (mitogen-activated protein kinase), MCP-1 (monocyte chemotactic protein 1), mTORC (mammalian target of rapamycin complex), MyD88 (myeloid differentiation primary response gene 88), NF-κB (nuclear factor kappa B), NK cell (natural killer cells), NLRs (NOD-like receptors), NLRP3 (NLR pyrin domain containing 3), NO (nitric oxide), PAMPs (pathogen-associated molecular patterns), PDX-1 (pancreatic and duodenal homeobox 1), PI3-kinase (phosphoinositide (PI) 3-kinase), PKC (protein kinase C), PP2A (protein phosphatase 2A), PRRs (pattern recognition receptors), PTEN (phosphatase and tensin homolog), PTPs (protein tyrosine phosphatases), PTP1B (protein tyrosine phosphatase 1B), ROS (reactive oxygen species), SHIP2 (SH2 domain-containing inositol-5-phosphatase 2), SOCS (suppressors of cytokine signaling), T2D (type 2 diabetes), Th1 (T-helper 1), TLR4 (toll-like receptor 4), TNF-α (tumor necrosis factor α), TRAF2 (TNF receptor–associated factor 2), Treg cell (regulatory T cell), TSC1 (tuberous sclerosis 1), TSC2 (tuberous sclerosis 2), UPR (unfolded protein response), WAT (white adipose tissue)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Danaei G.
        • Finucane M.
        • Lu Y.
        • et al.
        • Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose)
        National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants.
        Lancet. 2011; 378: 31-40
        • DeFronzo R.A.
        From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus.
        Diabetes. 2009; 58: 773-795
        • Imbeault P.
        • Haman F.
        • Blais J.M.
        • et al.
        Obesity and type 2 diabetes prevalence in adults from two remote First Nations communities in northwestern Ontario, Canada.
        J Obes. 2011; 2011: 1-5
        • Salmon J.
        • Campbell K.J.
        • Crawford D.A.
        Television viewing habits associated with obesity risk factors: a survey of Melbourne schoolchildren.
        Med J Aust. 2006; 184: 64
        • Lontchi-Yimagou E.
        • Sobngwi E.
        • Matsha T.E.
        • Kengne A.P.
        Diabetes mellitus and inflammation.
        Curr Diab Rep. 2013; 13: 435-444
        • Branca F.
        • Nikogosian H.
        • Lobstein T.
        The challenge of obesity in the WHO European Region and the strategies for response: summary.
        World Health Organization, Copenhagen, Denmark2007
        • Ng M.
        • Fleming T.
        • Robinson M.
        • et al.
        Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013.
        Lancet. 2014; 384: 766-781
        • Wellen K.E.
        • Hotamisligil G.S.
        Inflammation, stress, and diabetes.
        J Clin Invest. 2005; 115: 1111-1119
        • Larsen G.L.
        • Henson P.M.
        Mediators of inflammation.
        Annu Rev Immunol. 1983; 1: 335-359
        • Hotamisligil G.S.
        • Shargill N.S.
        • Spiegelman B.M.
        Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.
        Science. 1993; 259: 87-91
        • Uysal K.T.
        • Wiesbrock S.M.
        • Marino M.W.
        • Hotamisligil G.S.
        Protection from obesity-induced insulin resistance in mice lacking TNF-α function.
        Nature. 1997; 389: 610-614
        • Visser M.
        • Bouter L.M.
        • McQuillan G.M.
        • Wener M.H.
        • Harris T.B.
        Elevated C-reactive protein levels in overweight and obese adults.
        JAMA. 1999; 282: 2131-2135
        • Caspar-Bauguil S.
        • Cousin B.
        • Galinier A.
        • et al.
        Adipose tissues as an ancestral immune organ: site-specific change in obesity.
        FEBS Lett. 2005; 579: 3487-3492
        • Poglio S.
        • Toni-Costes D.
        • Arnaud E.
        • et al.
        Adipose tissue as a dedicated reservoir of functional mast cell progenitors.
        Stem Cells. 2010; 28: 2065-2072
        • Yoneshiro T.
        • Aita S.
        • Matsushita M.
        • et al.
        Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans.
        Obesity. 2011; 19: 1755-1760
        • Rezaee F.
        • Dashty M.
        Role of adipose tissue in metabolic system disorders adipose tissue is the initiator of metabolic diseases.
        J Diabetes Metab. 2013; 13: 2
        • Olefsky J.M.
        • Glass C.K.
        Macrophages, inflammation, and insulin resistance.
        Annu Rev Physiol. 2010; 72: 219-246
        • Wang P.
        • Mariman E.
        • Renes J.
        • Keijer J.
        The secretory function of adipocytes in the physiology of white adipose tissue.
        J Cell Physiol. 2008; 216: 3-13
        • Zhou H.R.
        • Kim E.-K.
        • Kim H.
        • Claycombe K.J.
        Obesity-associated mouse adipose stem cell secretion of monocyte chemotactic protein-1.
        Am J Physiol Endocrinol Metab. 2007; 293: E1153-E1158
        • Weisberg S.P.
        • McCann D.
        • Desai M.
        • Rosenbaum M.
        • Leibel R.L.
        • Ferrante A.W.
        Obesity is associated with macrophage accumulation in adipose tissue.
        J Clin Invest. 2003; 112: 1796-1808
        • Mantovani A.
        • Sica A.
        • Sozzani S.
        • Allavena P.
        • Vecchi A.
        • Locati M.
        The chemokine system in diverse forms of macrophage activation and polarization.
        Trends Immunol. 2004; 25: 677-686
        • Lumeng C.N.
        • Bodzin J.L.
        • Saltiel A.R.
        Obesity induces a phenotypic switch in adipose tissue macrophage polarization.
        J Clin Invest. 2007; 117: 175-184
        • Prieur X.
        • Mok C.Y.L.
        • Velagapudi V.R.
        • et al.
        Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice.
        Diabetes. 2011; 60: 797-809
        • Christiansen T.
        • Richelsen Br
        • Bruun J.M.
        Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects.
        Int J Obes (Lond). 2005; 29: 146-150
        • Rot A.
        • von Andrian U.H.
        Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.
        Annu Rev Immunol. 2004; 22: 891-928
        • Weisberg S.P.
        • Hunter D.
        • Huber R.
        • et al.
        CCR2 modulates inflammatory and metabolic effects of high-fat feeding.
        J Clin Invest. 2006; 116: 115-124
        • Chen A.
        • Mumick S.
        • Zhang C.
        • et al.
        Diet induction of monocyte chemoattractant protein-1 and its impact on obesity.
        Obes Res. 2005; 13: 1311-1320
        • Spite M.
        • Hellmann J.
        • Tang Y.
        • et al.
        Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity.
        J Immunol. 2011; 187: 1942-1949
        • Shah R.
        • Lu Y.
        • Hinkle C.C.
        • et al.
        Gene profiling of human adipose tissue during evoked inflammation in vivo.
        Diabetes. 2009; 58: 2211-2219
        • Shah R.
        • Hinkle C.C.
        • Ferguson J.F.
        • et al.
        Fractalkine is a novel human adipochemokine associated with type 2 diabetes.
        Diabetes. 2011; 60: 1512-1518
        • Galkina E.
        • Ley K.
        Leukocyte influx in atherosclerosis.
        Curr Drug Targets. 2007; 8: 1239-1248
        • Takahashi K.
        • Yamaguchi S.
        • Shimoyama T.
        • et al.
        JNK- and IkappaB-dependent pathways regulate MCP-1 but not adiponectin release from artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate in vitro.
        Am J Physiol Endocrinol Metab. 2008; 294: E898-909
        • Nishimura S.
        • Manabe I.
        • Nagasaki M.
        • et al.
        CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity.
        Nat Med. 2009; 15: 914-920
        • Mosmann T.R.
        • Cherwinski H.
        • Bond M.W.
        • Giedlin M.A.
        • Coffman R.L.
        Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.
        J Immunol. 1986; 136: 2348-2357
        • Feuerer M.
        • Herrero L.
        • Cipolletta D.
        • et al.
        Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters.
        Nat Med. 2009; 15: 930-939
        • Winer S.
        • Chan Y.
        • Paltser G.
        • et al.
        Normalization of obesity-associated insulin resistance through immunotherapy.
        Nat Med. 2009; 15: 921-929
        • Strissel K.J.
        • DeFuria J.
        • Shaul M.E.
        • Bennett G.
        • Greenberg A.S.
        • Obin M.S.
        T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice.
        Obesity (Silver Spring). 2010; 18: 1918-1925
        • Winer D.A.
        • Winer S.
        • Shen L.
        • et al.
        B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies.
        Nat Med. 2011; 17: 610-617
        • Hellman B.
        • Larsson S.
        • Westman S.
        Mast cell content and fatty acid metabolism in the epididymal fat pad of obese mice.
        Acta Physiol Scand. 1963; 58: 255-262
        • Liu J.
        • Divoux A.
        • Sun J.
        • et al.
        Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice.
        Nat Med. 2009; 15: 940-945
        • Tanaka A.
        • Nomura Y.
        • Matsuda A.
        • Ohmori K.
        • Matsuda H.
        Mast cells function as an alternative modulator of adipogenesis through 15-deoxy-delta-12, 14-prostaglandin J2.
        Am J Physiol Cell Physiol. 2011; 301: C1360-C1367
        • Triggiani M.
        • Granata F.
        • Frattini A.
        • Marone G.
        Activation of human inflammatory cells by secreted phospholipases A2.
        Biochim Biophys Acta. 2006; 1761: 1289-1300
        • Wu D.
        • Molofsky A.B.
        • Liang H.-E.
        • et al.
        Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis.
        Science. 2011; 332: 243-247
        • Guo H.
        • Xu B.
        • Gao L.
        • et al.
        High frequency of activated natural killer and natural killer T-cells in patients with new onset of type 2 diabetes mellitus.
        Exp Biol Med. 2012; 237: 556-562
        • Nieman D.C.
        • Henson D.A.
        • Nehlsen-Cannarella S.L.
        • et al.
        Influence of obesity on immune function.
        J Am Diet Assoc. 1999; 99: 294-299
        • Lynch L.A.
        • O'Connell J.M.
        • Kwasnik A.K.
        • Cawood T.J.
        • O'Farrelly C.
        • O'Shea D.B.
        Are natural killer cells protecting the metabolically healthy obese patient?.
        Obesity. 2009; 17: 601-605
        • Malhotra A.
        • Shanker A.
        NK cells: immune cross-talk and therapeutic implications.
        Immunotherapy. 2011; 3: 1143-1166
        • Duffaut C.
        • Galitzky J.
        • Lafontan M.
        • Bouloumié A.
        Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity.
        Biochem Biophys Res Commun. 2009; 384: 482-485
        • Chmelar J.
        • Chung K.-J.
        • Chavakis T.
        The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance.
        Thromb Haemost. 2013; 109: 399-406
        • Gordy C.
        • Pua H.
        • Sempowski G.D.
        • He Y.-W.
        Regulation of steady-state neutrophil homeostasis by macrophages.
        Blood. 2011; 117: 618-629
        • Herishanu Y.
        • Rogowski O.
        • Polliack A.
        • Marilus R.
        Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia.
        Eur J Haematol. 2006; 76: 516-520
        • Zaldivar F.
        • McMurray R.
        • Nemet D.
        • Galassetti P.
        • Mills P.
        • Cooper D.
        Body fat and circulating leukocytes in children.
        Int J Obes. 2006; 30: 906-911
        • Elgazar-Carmon V.
        • Rudich A.
        • Hadad N.
        • Levy R.
        Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding.
        J Lipid Res. 2008; 49: 1894-1903
        • Marti A.
        • Marcos A.N.
        • Martinez J.A.
        Obesity and immune function relationships.
        Obes Rev. 2001; 2: 131-140
        • Meier U.
        • Gressner A.M.
        Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin.
        Clin Chem. 2004; 50: 1511-1525
        • Martin S.S.
        • Qasim A.
        • Reilly M.P.
        Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease.
        J Am Coll Cardiol. 2008; 52: 1201-1210
        • Huan J.N.
        • Li J.
        • Han Y.
        • Chen K.
        • Wu N.
        • Zhao A.Z.
        Adipocyte-selective reduction of the leptin receptors induced by antisense RNA leads to increased adiposity, dyslipidemia, and insulin resistance.
        J Biol Chem. 2003; 278: 45638-45650
        • Koerner A.
        • Kratzsch J.
        • Kiess W.
        Adipocytokines: leptin—the classical, resistin—the controversical, adiponectin—the promising, and more to come.
        Best Pract Res Clin Endocrinol Metab. 2005; 19: 525-546
        • Tilg H.
        • Moschen A.R.
        Adipocytokines: mediators linking adipose tissue, inflammation and immunity.
        Nat Rev Immunol. 2006; 6: 772-783
        • Ryan A.S.
        • Berman D.M.
        • Nicklas B.J.
        • et al.
        Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity.
        Diabetes Care. 2003; 26: 2383-2388
        • Virtue S.
        • Vidal-Puig A.
        Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective.
        Biochim Biophys Acta. 2010; 1801: 338-349
        • Pietiläinen K.H.
        • Róg T.
        • Seppänen-Laakso T.
        • et al.
        Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans.
        PLoS Biol. 2011; 9: e1000623
        • Suganami T.
        • Tanimoto-Koyama K.
        • Nishida J.
        • et al.
        Role of the toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages.
        Arterioscler Thromb Vasc Biol. 2007; 27: 84-91
        • de Heredia F.P.
        • Sanchez J.
        • Priego T.
        • et al.
        Adiponectin is associated with serum and adipose tissue fatty acid composition in rats.
        J Endocrinol Invest. 2009; 32: 659-665
        • Dali-Youcef N.
        • Mecili M.
        • Ricci R.
        • Andrès E.
        Metabolic inflammation: connecting obesity and insulin resistance.
        Ann Med. 2013; 45: 242-253
        • Ron D.
        • Walter P.
        Signal integration in the endoplasmic reticulum unfolded protein response.
        Nat Rev Mol Cell Biol. 2007; 8: 519-529
        • Chung H.Y.
        • Cesari M.
        • Anton S.
        • et al.
        Molecular inflammation: underpinnings of aging and age-related diseases.
        Ageing Res Rev. 2009; 8: 18-30
        • Trayhurn P.
        Hypoxia and adipose tissue function and dysfunction in obesity.
        Physiol Rev. 2013; 93: 1-21
        • Samuvel D.J.
        • Sundararaj K.P.
        • Nareika A.
        • Lopes-Virella M.F.
        • Huang Y.
        Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation.
        J Immunol. 2009; 182: 2476-2484
        • Pérez de Heredia F.
        • Wood I.
        • Trayhurn P.
        Lactate enhances the inflammatory response in human preadipocytes in vitro.
        Obes Rev. 2010; 11: 122
        • Halberg N.
        • Khan T.
        • Trujillo M.E.
        • et al.
        Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue.
        Mol Cell Biol. 2009; 29: 4467-4483
        • Gregor M.F.
        • Hotamisligil G.S.
        Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease.
        J Lipid Res. 2007; 48: 1905-1914
        • Roh Y.S.
        • Seki E.
        Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis.
        J Gastroenterol Hepatol. 2013; 28: 38-42
        • Cook D.N.
        • Pisetsky D.S.
        • Schwartz D.A.
        Toll-like receptors in the pathogenesis of human disease.
        Nat Immunol. 2004; 5: 975-979
        • Kawai T.
        • Akira S.
        Toll-like receptors and their crosstalk with other innate receptors in infection and immunity.
        Immunity. 2011; 34: 637-650
        • Kumagai Y.
        • Takeuchi O.
        • Akira S.
        Pathogen recognition by innate receptors.
        J Infect Chemother. 2008; 14: 86-92
        • López M.
        • Sly L.M.
        • Luu Y.
        • Young D.
        • Cooper H.
        • Reiner N.E.
        The 19-kDa mycobacterium tuberculosis protein induces macrophage apoptosis through toll-like receptor-2.
        J Immunol. 2003; 170: 2409-2416
        • Levitz S.M.
        Interactions of toll-like receptors with fungi.
        Microbes Infect. 2004; 6: 1351-1355
        • Yamamoto M.
        • Takeda K.
        Current views of toll-like receptor signaling pathways.
        Gastroenterol Res Pract. 2010; 2010: 8
        • Kawai T.
        • Akira S.
        Innate immune recognition of viral infection.
        Nat Immunol. 2006; 7: 131-137
        • Konner A.C.
        • Bruning J.C.
        Toll-like receptors: linking inflammation to metabolism.
        Trends Endocrinol Metab. 2011; 22: 16-23
        • Shi H.
        • Cave B.
        • Inouye K.
        • Bjorbaek C.
        • Flier J.S.
        Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance.
        Diabetes. 2006; 55: 699-707
        • Kim F.
        • Pham M.
        • Luttrell I.
        • et al.
        Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity.
        Circ Res. 2007; 100: 1589-1596
        • Tsukumo D.M.
        • Carvalho-Filho M.A.
        • Carvalheira J.B.
        • et al.
        Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance.
        Diabetes. 2007; 56: 1986-1998
        • Davis J.E.
        • Gabler N.K.
        • Walker-Daniels J.
        • Spurlock M.E.
        Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat.
        Obesity (Silver Spring). 2008; 16: 1248-1255
        • Lee B.C.
        • Lee J.
        Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.
        Biochim Biophys Acta. 2014; 1842: 446-462
        • Ghosh S.
        • Karin M.
        Missing pieces in the NF-kappaB puzzle.
        Cell. 2002; 109: S81-S96
        • Nguyen M.T.
        • Favelyukis S.
        • Nguyen A.K.
        • et al.
        A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways.
        J Biol Chem. 2007; 282: 35279-35292
        • Gupta S.
        • Barrett T.
        • Whitmarsh A.J.
        • et al.
        Selective interaction of JNK protein kinase isoforms with transcription factors.
        EMBO J. 1996; 15: 2760-2770
        • Yuan M.
        • Konstantopoulos N.
        • Lee J.
        • et al.
        Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ.
        Science. 2001; 293: 1673-1677
        • Kim J.K.
        • Kim Y.-J.
        • Fillmore J.J.
        • et al.
        Prevention of fat-induced insulin resistance by salicylate.
        J Clin Invest. 2001; 108: 437-446
        • Fleischman A.
        • Shoelson S.E.
        • Bernier R.
        • Goldfine A.B.
        Salsalate improves glycemia and inflammatory parameters in obese young adults.
        Diabetes Care. 2008; 31: 289-294
        • Bogoyevitch M.A.
        • Kobe B.
        Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases.
        Microbiol Mol Biol Rev. 2006; 70: 1061-1095
        • Papachristou D.J.
        • Batistatou A.
        • Sykiotis G.P.
        • Varakis I.
        • Papavassiliou A.G.
        Activation of the JNK-AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas.
        Bone. 2003; 32: 364-371
        • Karin M.
        The regulation of AP-1 activity by mitogen-activated protein kinases.
        J Biol Chem. 1995; 270: 16483-16486
        • Sabio G.
        • Davis R.J.
        cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance.
        Trends Biochem Sci. 2010; 35: 490-496
        • Solinas G.
        • Vilcu C.
        • Neels J.G.
        • et al.
        JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity.
        Cell Metab. 2007; 6: 386-397
        • Han M.S.
        • Jung D.Y.
        • Morel C.
        • et al.
        JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation.
        Science. 2013; 339: 218-222
        • Deng L.
        • Adachi T.
        • Kitayama K.
        • et al.
        Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.
        J Virol. 2008; 82: 10375-10385
        • Medigeshi G.R.
        • Lancaster A.M.
        • Hirsch A.J.
        • et al.
        West nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis.
        J Virol. 2007; 81: 10849-10860
        • McGuckin M.A.
        • Eri R.D.
        • Das I.
        • Lourie R.
        • Florin T.H.
        ER stress and the unfolded protein response in intestinal inflammation.
        Am J Physiol Gastrointest Liver Physiol. 2010; 298: G820-G832
        • Shenderov K.
        • Riteau N.
        • Yip R.
        • et al.
        Cutting edge: endoplasmic reticulum stress licenses macrophages to produce mature IL-1beta in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway.
        J Immunol. 2014; 192: 2029-2033
        • Zha B.S.
        • Zhou H.
        ER stress and lipid metabolism in adipocytes.
        Biochem Res Int. 2012; 2012: 312943
        • Qiu Q.
        • Zheng Z.
        • Chang L.
        • et al.
        Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis.
        EMBO J. 2013; 32: 2477-2490
        • Nakajima S.
        • Hiramatsu N.
        • Hayakawa K.
        • et al.
        Selective abrogation of BiP/GRP78 blunts activation of NF-kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and mTOR-dependent dephosphorylation of Akt.
        Mol Cell Biol. 2011; 31: 1710-1718
        • Kanneganti T.D.
        • Lamkanfi M.
        • Nunez G.
        Intracellular NOD-like receptors in host defense and disease.
        Immunity. 2007; 27: 549-559
        • Bryant C.
        • Fitzgerald K.A.
        Molecular mechanisms involved in inflammasome activation.
        Trends Cell Biol. 2009; 19: 455-464
        • Benetti E.
        • Chiazza F.
        • Patel N.S.A.
        • Collino M.
        The NLRP3 inflammasome as a novel player of the intercellular crosstalk in metabolic disorders.
        Mediators Inflamm. 2013; 2013: 9
        • Lee H.M.
        • Kim J.J.
        • Kim H.J.
        • Shong M.
        • Ku B.J.
        • Jo E.K.
        Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes.
        Diabetes. 2013; 62: 194-204
        • Stienstra R.
        • Joosten L.A.
        • Koenen T.
        • et al.
        The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity.
        Cell Metab. 2010; 12: 593-605
        • Vandanmagsar B.
        • Youm Y.H.
        • Ravussin A.
        • et al.
        The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.
        Nat Med. 2011; 17: 179-188
        • Menu P.
        • Mayor A.
        • Zhou R.
        • et al.
        ER stress activates the NLRP3 inflammasome via an UPR-independent pathway.
        Cell Death Dis. 2012; 3: e261
        • Groves R.W.
        • Allen M.H.
        • Ross E.L.
        • Barker J.N.
        • MacDonald D.M.
        Tumour necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression.
        Br J Dermatol. 1995; 132: 345-352
        • Chen G.
        • Goeddel D.V.
        TNF-R1 signaling: a beautiful pathway.
        Science. 2002; 296: 1634-1635
        • McArdle M.A.
        • Finucane O.M.
        • Connaughton R.M.
        • McMorrow A.M.
        • Roche H.M.
        Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies.
        Front Endocrinol (Lausanne). 2013; 4: 52
        • Kern P.A.
        • Saghizadeh M.
        • Ong J.M.
        • Bosch R.J.
        • Deem R.
        • Simsolo R.B.
        The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase.
        J Clin Invest. 1995; 95: 2111-2119
        • Hotamisligil G.S.
        • Budavari A.
        • Murray D.
        • Spiegelman B.M.
        Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha.
        J Clin Invest. 1994; 94: 1543-1549
        • Peraldi P.
        • Hotamisligil G.S.
        • Buurman W.A.
        • White M.F.
        • Spiegelman B.M.
        Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase.
        J Biol Chem. 1996; 271: 13018-13022
        • Ruan H.
        • Hacohen N.
        • Golub T.R.
        • Van Parijs L.
        • Lodish H.F.
        Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-κB activation by TNF-α is obligatory.
        Diabetes. 2002; 51: 1319-1336
        • Dinarello C.A.
        Immunological and inflammatory functions of the interleukin-1 family.
        Annu Rev Immunol. 2009; 27: 519-550
        • Garcia M.C.
        • Wernstedt I.
        • Berndtsson A.
        • et al.
        Mature-onset obesity in interleukin-1 receptor I knockout mice.
        Diabetes. 2006; 55: 1205-1213
        • Spranger J.
        • Kroke A.
        • Mohlig M.
        • et al.
        Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.
        Diabetes. 2003; 52: 812-817
        • Juge-Aubry C.E.
        • Somm E.
        • Giusti V.
        • et al.
        Adipose tissue is a major source of interleukin-1 receptor antagonist: upregulation in obesity and inflammation.
        Diabetes. 2003; 52: 1104-1110
        • Jager J.
        • Gremeaux T.
        • Cormont M.
        • Le Marchand-Brustel Y.
        • Tanti J.F.
        Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression.
        Endocrinology. 2007; 148: 241-251
        • Stylianou E.
        • Saklatvala J.
        Interleukin-1.
        Int J Biochem Cell Biol. 1998; 30: 1075-1079
        • Fasshauer M.
        • Klein J.
        • Lossner U.
        • Paschke R.
        Interleukin (IL)-6 mRNA expression is stimulated by insulin, isoproterenol, tumour necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes.
        Horm Metab Res. 2003; 35: 147-152
        • Pradhan A.D.
        • Manson J.E.
        • Rifai N.
        • Buring J.E.
        • Ridker P.M.
        C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
        JAMA. 2001; 286: 327-334
        • Vozarova B.
        • Weyer C.
        • Hanson K.
        • Tataranni P.A.
        • Bogardus C.
        • Pratley R.E.
        Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion.
        Obes Res. 2001; 9: 414-417
        • Ruge T.
        • Lockton J.A.
        • Renstrom F.
        • et al.
        Acute hyperinsulinemia raises plasma interleukin-6 in both nondiabetic and type 2 diabetes mellitus subjects, and this effect is inversely associated with body mass index.
        Metabolism. 2009; 58: 860-866
        • Pedersen B.K.
        • Febbraio M.A.
        Muscle as an endocrine organ: focus on muscle-derived interleukin-6.
        Physiol Rev. 2008; 88: 1379-1406
        • Virkamäki A.
        • Ueki K.
        • Kahn C.R.
        Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance.
        J Clin Invest. 1999; 103: 931-943
        • Shepherd P.R.
        • Nave B.
        • Siddle K.
        Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase.
        Biochem J. 1995; 305: 25-28
        • Reaven G.M.
        Pathophysiology of insulin resistance in human disease.
        Physiol Rev. 1995; 75: 473-486
        • Saltiel A.R.
        New perspectives into the molecular pathogenesis and treatment of type 2 diabetes.
        Cell. 2001; 104: 517-529
        • Meshkani R.
        • Taghikhani M.
        • Larijani B.
        • Khatami S.
        • Khoshbin E.
        • Adeli K.
        The relationship between homeostasis model assessment and cardiovascular risk factors in Iranian subjects with normal fasting glucose and normal glucose tolerance.
        Clin Chim Acta. 2006; 371: 169-175
        • Bjornholm M.
        • Kawano Y.
        • Lehtihet M.
        • Zierath J.R.
        Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation.
        Diabetes. 1997; 46: 524-527
        • Moeschel K.
        • Beck A.
        • Weigert C.
        • et al.
        Protein kinase C-zeta-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1.
        J Biol Chem. 2004; 279: 25157-25163
        • Yu C.
        • Chen Y.
        • Cline G.W.
        • et al.
        Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle.
        J Biol Chem. 2002; 277: 50230-50236
        • Meshkani R.
        • Adeli K.
        Hepatic insulin resistance, metabolic syndrome and cardiovascular disease.
        Clin Biochem. 2009; 42: 1331-1346
        • Rohde J.
        • Heitman J.
        • Cardenas M.E.
        The TOR kinases link nutrient sensing to cell growth.
        J Biol Chem. 2001; 276: 9583-9586
        • Ma X.M.
        • Blenis J.
        Molecular mechanisms of mTOR-mediated translational control.
        Nat Rev Mol Cell Biol. 2009; 10: 307-318
        • Harrington L.S.
        • Findlay G.M.
        • Gray A.
        • et al.
        The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins.
        J Cell Biol. 2004; 166: 213-223
        • Khamzina L.
        • Veilleux A.
        • Bergeron S.
        • Marette A.
        Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance.
        Endocrinology. 2005; 146: 1473-1481
        • Shah O.J.
        • Wang Z.
        • Hunter T.
        Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies.
        Curr Biol. 2004; 14: 1650-1656
        • Um S.H.
        • Frigerio F.
        • Watanabe M.
        • et al.
        Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity.
        Nature. 2004; 431: 200-205
        • Ozcan U.
        • Ozcan L.
        • Yilmaz E.
        • et al.
        Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis.
        Mol Cell. 2008; 29: 541-551
        • Ozes O.N.
        • Akca H.
        • Mayo L.D.
        • et al.
        A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1.
        Proc Natl Acad Sci U S A. 2001; 98: 4640-4645
        • Roszkowska A.M.
        • Tringali C.G.
        • Colosi P.
        • Squeri C.A.
        • Ferreri G.
        Corneal endothelium evaluation in type I and type II diabetes mellitus.
        Ophthalmologica. 1999; 213: 258-261
        • Kim J.-H.
        • Kim J.E.
        • Liu H.-Y.
        • Cao W.
        • Chen J.
        Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway.
        J Biol Chem. 2008; 283: 708-715
        • Ueno M.
        • Carvalheira J.
        • Tambascia R.
        • et al.
        Regulation of insulin signalling by hyperinsulinaemia: role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway.
        Diabetologia. 2005; 48: 506-518
        • Morino K.
        • Petersen K.F.
        • Dufour S.
        • et al.
        Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.
        J Clin Invest. 2005; 115: 3587-3593
        • Nishikawa T.
        • Araki E.
        Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications.
        Antioxid Redox Signal. 2007; 9: 343-353
        • Itani S.I.
        • Ruderman N.B.
        • Schmieder F.
        • Boden G.
        Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha.
        Diabetes. 2002; 51: 2005-2011
        • Kim J.K.
        • Fillmore J.J.
        • Sunshine M.J.
        • et al.
        PKC-θ knockout mice are protected from fat-induced insulin resistance.
        J Clin Invest. 2004; 114: 823-827
        • Chen X.H.
        • Zhao Y.P.
        • Xue M.
        • et al.
        TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes.
        Mol Cell Endocrinol. 2010; 328: 63-69
        • Hahn W.S.
        • Kuzmicic J.
        • Burrill J.S.
        • et al.
        Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics.
        Am J Physiol Endocrinol Metab. 2014; 306: E1033-E1045
        • Hotamisligil G.S.
        Inflammation and metabolic disorders.
        Nature. 2006; 444: 860-867
        • Urano F.
        • Wang X.
        • Bertolotti A.
        • et al.
        Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.
        Science. 2000; 287: 664-666
        • Özcan U.
        • Cao Q.
        • Yilmaz E.
        • et al.
        Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.
        Science. 2004; 306: 457-461
        • Xue X.
        • Piao J.H.
        • Nakajima A.
        • et al.
        Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha.
        J Biol Chem. 2005; 280: 33917-33925
        • Bashan N.
        • Dorfman K.
        • Tarnovscki T.
        • et al.
        Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity.
        Endocrinology. 2007; 148: 2955-2962
        • Liu Z.G.
        • Hsu H.
        • Goeddel D.V.
        • Karin M.
        Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death.
        Cell. 1996; 87: 565-576
        • Shoelson S.E.
        • Herrero L.
        • Naaz A.
        Obesity, inflammation, and insulin resistance.
        Gastroenterology. 2007; 132: 2169-2180
        • Gao Z.
        • Hwang D.
        • Bataille F.
        • et al.
        Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex.
        J Biol Chem. 2002; 277: 48115-48121
        • Lee D.F.
        • Kuo H.P.
        • Chen C.T.
        • et al.
        IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance.
        Int J Mol Med. 2008; 22: 633-638
        • Cai D.
        • Yuan M.
        • Frantz D.F.
        • et al.
        Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB.
        Nat Med. 2005; 11: 183-190
        • Arkan M.C.
        • Hevener A.L.
        • Greten F.R.
        • et al.
        IKK-beta links inflammation to obesity-induced insulin resistance.
        Nat Med. 2005; 11: 191-198
        • Hirosumi J.
        • Tuncman G.
        • Chang L.
        • et al.
        A central role for JNK in obesity and insulin resistance.
        Nature. 2002; 420: 333-336
        • Nguyen M.A.
        • Satoh H.
        • Favelyukis S.
        • et al.
        JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes.
        J Biol Chem. 2005; 280: 35361-35371
        • Aguirre V.
        • Uchida T.
        • Yenush L.
        • Davis R.
        • White M.F.
        The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307.
        J Biol Chem. 2000; 275: 9047-9054
        • Plomgaard P.
        • Bouzakri K.
        • Krogh-Madsen R.
        • Mittendorfer B.
        • Zierath J.R.
        • Pedersen B.K.
        Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation.
        Diabetes. 2005; 54: 2939-2945
        • Kaneto H.
        • Nakatani Y.
        • Miyatsuka T.
        • et al.
        Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide.
        Nat Med. 2004; 10: 1128-1132
        • Nakatani Y.
        • Kaneto H.
        • Kawamori D.
        • et al.
        Involvement of endoplasmic reticulum stress in insulin resistance and diabetes.
        J Biol Chem. 2005; 280: 847-851
        • Gao Z.
        • Zhang X.
        • Zuberi A.
        • et al.
        Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes.
        Mol Endocrinol. 2004; 18: 2024-2034
        • Tanti J.-F.
        • Ceppo F.
        • Jager J.
        • Berthou F.
        Implication of inflammatory signaling pathways in obesity-induced insulin resistance.
        Front Endocrinol (Lausanne). 2012; 3: 181
        • Hotamisligil G.S.
        Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes.
        Diabetes. 2005; 54: S73-S78
        • Tanti J.F.
        • Jager J.
        Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation.
        Curr Opin Pharmacol. 2009; 9: 753-762
        • Bouzakri K.
        • Roques M.
        • Gual P.
        • et al.
        Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes.
        Diabetes. 2003; 52: 1319-1325
        • DiMauro S.
        • Schon E.A.
        Mitochondrial respiratory-chain diseases.
        N Engl J Med. 2003; 348: 2656-2668
        • Souza S.C.
        • Palmer H.J.
        • Kang Y.H.
        • et al.
        TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes.
        J Cell Biochem. 2003; 89: 1077-1086
        • Emanuelli B.
        • Eberle D.
        • Suzuki R.
        • Kahn C.R.
        Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance.
        Proc Natl Acad Sci U S A. 2008; 105: 3545-3550
        • Turban S.
        • Hajduch E.
        Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance.
        FEBS Lett. 2011; 585: 269-274
        • Sampson S.R.
        • Cooper D.R.
        Specific protein kinase C isoforms as transducers and modulators of insulin signaling.
        Mol Genet Metab. 2006; 89: 32-47
        • Bruce C.R.
        • Dyck D.J.
        Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha.
        Am J Physiol Endocrinol Metab. 2004; 287: E616-E621
        • Rosenzweig T.
        • Braiman L.
        • Bak A.
        • Alt A.
        • Kuroki T.
        • Sampson S.R.
        Differential effects of tumor necrosis factor-alpha on protein kinase C isoforms alpha and delta mediate inhibition of insulin receptor signaling.
        Diabetes. 2002; 51: 1921-1930
        • Galic S.
        • Sachithanandan N.
        • Kay T.W.
        • Steinberg G.R.
        Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity.
        Biochem J. 2014; 461: 177-188
        • Emanuelli B.
        • Peraldi P.
        • Filloux C.
        • et al.
        SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice.
        J Biol Chem. 2001; 276: 47944-47949
        • Steinberg G.R.
        • Smith A.C.
        • Van Denderen B.J.
        • et al.
        AMP-activated protein kinase is not down-regulated in human skeletal muscle of obese females.
        J Clin Endocrinol Metab. 2004; 89: 4575-4580
        • Rieusset J.
        • Bouzakri K.
        • Chevillotte E.
        • et al.
        Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients.
        Diabetes. 2004; 53: 2232-2241
        • Lebrun P.
        • Van Obberghen E.
        SOCS proteins causing trouble in insulin action.
        Acta Physiol (Oxf). 2008; 192: 29-36
        • Ueki K.
        • Kadowaki T.
        • Kahn C.R.
        Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome.
        Hepatol Res. 2005; 33: 185-192
        • Lebrun P.
        • Cognard E.
        • Bellon-Paul R.
        • et al.
        Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice.
        Diabetologia. 2009; 52: 2201-2212
        • Jorgensen S.B.
        • O'Neill H.M.
        • Sylow L.
        • et al.
        Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity.
        Diabetes. 2013; 62: 56-64
        • Banks A.S.
        • Li J.
        • McKeag L.
        • et al.
        Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans.
        J Clin Invest. 2005; 115: 2462-2471
        • Bedard S.
        • Marcotte B.
        • Marette A.
        Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase.
        Biochem J. 1997; 325: 487-493
        • Yasukawa T.
        • Tokunaga E.
        • Ota H.
        • Sugita H.
        • Martyn J.J.
        • Kaneki M.
        S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance.
        J Biol Chem. 2005; 280: 7511-7518
        • Sugita H.
        • Fujimoto M.
        • Yasukawa T.
        • et al.
        Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells.
        J Biol Chem. 2005; 280: 14203-14211
        • Perreault M.
        • Marette A.
        Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle.
        Nat Med. 2001; 7: 1138-1143
        • Fujimoto M.
        • Shimizu N.
        • Kunii K.
        • Martyn J.J.
        • Ueki K.
        • Kaneki M.
        A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice.
        Diabetes. 2005; 54: 1340-1348
        • Taheripak G.
        • Bakhtiyari S.
        • Rajabibazl M.
        • Pasalar P.
        • Meshkani R.
        Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells.
        Free Radic Biol Med. 2013; 65: 1435-1446
        • Xu E.
        • Schwab M.
        • Marette A.
        Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance.
        Rev Endocr Metab Disord. 2014; 15: 79-97
        • Nasimian A.
        • Taheripak G.
        • Gorgani-Firuzjaee S.
        • Sadeghi A.
        • Meshkani R.
        Protein tyrosine phosphatase 1B (PTP1B) modulates palmitate-induced cytokine production in macrophage cells.
        Inflamm Res. 2013; 62: 239-246
        • Ahmad F.
        • Azevedo J.L.
        • Cortright R.
        • Dohm G.L.
        • Goldstein B.J.
        Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes.
        J Clin Invest. 1997; 100: 449-458
        • Berdnikovs S.
        • Pavlov V.I.
        • Abdala-Valencia H.
        • et al.
        PTP1B deficiency exacerbates inflammation and accelerates leukocyte trafficking in vivo.
        J Immunol. 2012; 188: 874-884
        • Holland W.L.
        • Bikman B.T.
        • Wang L.-P.
        • et al.
        Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice.
        J Clin Invest. 2011; 121: 1858-1870
        • Mohammad Taghvaei N.
        • Taheripak G.
        • Taghikhani M.
        • Meshkani R.
        Palmitate-induced PTP1B expression is mediated by ceramide-JNK and nuclear factor κB (NF-κB) activation.
        Cell Signal. 2012; 24: 1964-1970
        • Elchebly M.
        • Payette P.
        • Michaliszyn E.
        • et al.
        Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene.
        Science. 1999; 283: 1544-1548
        • Klaman L.D.
        • Boss O.
        • Peroni O.D.
        • et al.
        Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice.
        Mol Cell Biol. 2000; 20: 5479-5489
        • Gum R.J.
        • Gaede L.L.
        • Koterski S.L.
        • et al.
        Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice.
        Diabetes. 2003; 52: 21-28
        • Bakhtiyari S.
        • Meshkani R.
        • Taghikhani M.
        • Larijani B.
        • Adeli K.
        Protein tyrosine phosphatase-1B (PTP-1B) knockdown improves palmitate-induced insulin resistance in C2C12 skeletal muscle cells.
        Lipids. 2010; 45: 237-244
        • Zabolotny J.M.
        • Kim Y.-B.
        • Welsh L.A.
        • Kershaw E.E.
        • Neel B.G.
        • Kahn B.B.
        Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo.
        J Biol Chem. 2008; 283: 14230-14241
        • Parvaneh L.
        • Meshkani R.
        • Bakhtiyari S.
        • et al.
        Palmitate and inflammatory state additively induce the expression of PTP1B in muscle cells.
        Biochem Biophys Res Commun. 2010; 396: 467-471
        • Mohammad Taghvaei N.
        • Meshkani R.
        • Taghikhani M.
        • Larijani B.
        • Adeli K.
        Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells.
        Inflammation. 2011; 34: 43-48
        • Inada S.
        • Ikeda Y.
        • Suehiro T.
        • et al.
        Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes.
        Mol Cell Endocrinol. 2007; 271: 64-70
        • Nieto-Vazquez I.
        • Fernandez-Veledo S.
        • de Alvaro C.
        • Rondinone C.M.
        • Valverde A.M.
        • Lorenzo M.
        Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance.
        Diabetes. 2007; 56: 404-413
        • Gorgani-Firuzjaee S.
        • Bakhtiyari S.
        • Golestani A.
        • Meshkani R.
        Leukocyte antigen-related inhibition attenuates palmitate-induced insulin resistance in muscle cells.
        J Endocrinol. 2012; 215: 71-77
        • Fukui K.
        • Wada T.
        • Kagawa S.
        • et al.
        Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5′-phosphatase 2) on insulin signaling and glucose metabolism in mice.
        Diabetes. 2005; 54: 1958-1967
        • Clement S.
        • Krause U.
        • Desmedt F.
        • et al.
        The lipid phosphatase SHIP2 controls insulin sensitivity.
        Nature. 2001; 409: 92-97
        • Gorgani-Firuzjaee S.
        • Ahmadi S.
        • Meshkani R.
        Palmitate induces SHIP2 expression via the ceramide-mediated activation of NF-kappaB, and JNK in skeletal muscle cells.
        Biochem Biophys Res Commun. 2014; 450: 494-499
        • Gorgani-Firuzjaee S.
        • Adeli K.
        • Meshkani R.
        Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells.
        Biochem Biophys Res Commun. 2015; 464: 441-446
        • Ugi S.
        • Imamura T.
        • Maegawa H.
        • et al.
        Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes.
        Mol Cell Biol. 2004; 24: 8778-8789
        • Standaert M.L.
        • Bandyopadhyay G.
        • Sajan M.P.
        • Cong L.
        • Quon M.J.
        • Farese R.V.
        Okadaic acid activates atypical protein kinase C (zeta/lambda) in rat and 3T3/L1 adipocytes. An apparent requirement for activation of Glut4 translocation and glucose transport.
        J Biol Chem. 1999; 274: 14074-14078
        • Begum N.
        • Ragolia L.
        Altered regulation of insulin signaling components in adipocytes of insulin-resistant type II diabetic Goto-Kakizaki rats.
        Metabolism. 1998; 47: 54-62
        • Begum N.
        • Ragolia L.
        • Srinivasan M.
        Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells.
        Eur J Biochem. 1996; 238: 214-220
        • Levin K.
        • Daa Schroeder H.
        • Alford F.P.
        • Beck-Nielsen H.
        Morphometric documentation of abnormal intramyocellular fat storage and reduced glycogen in obese patients with type II diabetes.
        Diabetologia. 2001; 44: 824-833
        • Teruel T.
        • Hernandez R.
        • Lorenzo M.
        Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state.
        Diabetes. 2001; 50: 2563-2571
        • Ruderman N.B.
        • Saha A.K.
        • Vavvas D.
        • Witters L.A.
        Malonyl-CoA, fuel sensing, and insulin resistance.
        Am J Physiol. 1999; 276: e1-e18
        • Bandyopadhyay G.K.
        • Yu J.G.
        • Ofrecio J.
        • Olefsky J.M.
        Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
        Diabetes. 2006; 55: 2277-2285
        • Steinberg G.R.
        • Michell B.J.
        • van Denderen B.J.
        • et al.
        Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling.
        Cell Metab. 2006; 4: 465-474
        • Novotny G.W.
        • Lundh M.
        • Backe M.B.
        • et al.
        Transcriptional and translational regulation of cytokine signaling in inflammatory β-cell dysfunction and apoptosis.
        Arch Biochem Biophys. 2012; 528: 171-184
        • Timper K.
        • Donath M.Y.
        Diabetes mellitus type 2—the new face of an old lady.
        Swiss Med Wkly. 2012; 142: w13635
        • Bradley D.
        • Conte C.
        • Mittendorfer B.
        • et al.
        Gastric bypass and banding equally improve insulin sensitivity and β cell function.
        J Clin Invest. 2012; 122: 4667
        • Maedler K.
        • Sergeev P.
        • Ehses J.A.
        • et al.
        Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets.
        Proc Natl Acad Sci U S A. 2004; 101: 8138-8143
        • Brooks-Worrell B.
        • Palmer J.
        Immunology in the Clinic Review Series; focus on metabolic diseases: development of islet autoimmune disease in type 2 diabetes patients: potential sequelae of chronic inflammation.
        Clin Exp Immunol. 2012; 167: 40-46
        • Donath M.Y.
        • Mandrup-Poulsen T.
        The use of interleukin-1-receptor antagonists in the treatment of diabetes mellitus.
        Nat Clin Pract Endocrinol Metab. 2008; 4: 240-241
        • Donath M.Y.
        • Böni-Schnetzler M.
        • Ellingsgaard H.
        • Ehses J.A.
        Islet inflammation impairs the pancreatic β-cell in type 2 diabetes.
        Physiology. 2009; 24: 325-331
        • Esser N.
        • Legrand-Poels S.
        • Piette J.
        • Scheen A.J.
        • Paquot N.
        Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.
        Diabetes Res Clin Pract. 2014; 105: 141-150
        • Ogihara T.
        • Mirmira R.G.
        An islet in distress: β cell failure in type 2 diabetes.
        J Diabetes Investig. 2010; 1: 123-133
        • Ehses J.A.
        • Perren A.
        • Eppler E.
        • et al.
        Increased number of islet-associated macrophages in type 2 diabetes.
        Diabetes. 2007; 56: 2356-2370
        • Eguchi K.
        • Manabe I.
        Macrophages and islet inflammation in type 2 diabetes.
        Diabetes Obes Metab. 2013; 15: 152-158
        • Pietropaolo M.
        • Barinas-Mitchell E.
        • Kuller L.H.
        The heterogeneity of diabetes unraveling a dispute: is systemic inflammation related to islet autoimmunity?.
        Diabetes. 2007; 56: 1189-1197
        • Boni-Schnetzler M.
        • Thorne J.
        • Parnaud G.
        • et al.
        Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation.
        J Clin Endocrinol Metab. 2008; 93: 4065-4074
        • Eguchi K.
        • Manabe I.
        • Oishi-Tanaka Y.
        • et al.
        Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation.
        Cell Metab. 2012; 15: 518-533
        • Donath M.Y.
        • Gross D.J.
        • Cerasi E.
        • Kaiser N.
        Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes.
        Diabetes. 1999; 48: 738-744
        • Maedler K.
        • Spinas G.A.
        • Lehmann R.
        • et al.
        Glucose induces β-cell apoptosis via upregulation of the Fas receptor in human islets.
        Diabetes. 2001; 50: 1683-1690
        • Maedler K.
        • Sergeev P.
        • Ris F.
        • et al.
        Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets.
        J Clin Invest. 2002; 110: 851-860
        • Schumann D.M.
        • Maedler K.
        • Franklin I.
        • et al.
        The Fas pathway is involved in pancreatic β cell secretory function.
        Proc Natl Acad Sci U S A. 2007; 104: 2861-2866
        • Cernea S.
        • Dobreanu M.
        Diabetes and beta cell function: from mechanisms to evaluation and clinical implications.
        Biochem Med. 2013; 23: 266-280
        • Zhou R.
        • Tardivel A.
        • Thorens B.
        • Choi I.
        • Tschopp J.
        Thioredoxin-interacting protein links oxidative stress to inflammasome activation.
        Nat Immunol. 2010; 11: 136-140
        • Montane J.
        • Klimek-Abercrombie A.
        • Potter K.
        • Westwell-Roper C.
        • Bruce Verchere C.
        Metabolic stress, IAPP and islet amyloid.
        Diabetes Obes Metab. 2012; 14: 68-77
        • Subramanian S.
        • Hull R.
        • Zraika S.
        • Aston-Mourney K.
        • Udayasankar J.
        • Kahn S.
        cJUN N-terminal kinase (JNK) activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets.
        Diabetologia. 2012; 55: 166-174
        • Masters S.L.
        • Dunne A.
        • Subramanian S.L.
        • et al.
        Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 [beta] in type 2 diabetes.
        Nat Immunol. 2010; 11: 897-904
        • Imai Y.
        • Dobrian A.D.
        • Morris M.A.
        • Nadler J.L.
        Islet inflammation: a unifying target for diabetes treatment?.
        Trends Endocrinol Metab. 2013; 24: 351-360
        • Boni-Schnetzler M.
        • Boller S.
        • Debray S.
        • et al.
        Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I.
        Endocrinology. 2009; 150: 5218-5229
        • Ehses J.
        • Lacraz G.
        • Giroix M.-H.
        • et al.
        IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat.
        Proc Natl Acad Sci U S A. 2009; 106: 13998-14003
        • Marselli L.
        • Sgroi D.
        • Thorne J.
        • et al.
        Evidence of inflammatory markers in beta cells of type 2 diabetic subjects.
        Diabetologia. 2007; 50: S178-S179
        • Donath M.Y.
        • Böni-Schnetzler M.
        • Ellingsgaard H.
        • Halban P.A.
        • Ehses J.A.
        Cytokine production by islets in health and diabetes: cellular origin, regulation and function.
        Trends Endocrinol Metab. 2010; 21: 261-267
        • Bending D.
        • Zaccone P.
        • Cooke A.
        Inflammation and type one diabetes.
        Int Immunol. 2012; 24: 339-346
        • Donath M.Y.
        • Shoelson S.E.
        Type 2 diabetes as an inflammatory disease.
        Nat Rev Immunol. 2011; 11: 98-107
        • Newsholme P.
        • Krause M.
        Nutritional regulation of insulin secretion: implications for diabetes.
        Clin Biochem Rev. 2012; 33: 35
        • Mabley J.
        • Hasko G.
        • Liaudet L.
        • et al.
        NFkappaB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes.
        J Endocrinol. 2002; 173: 457-464
        • Kharroubi I.
        • Ladrière L.
        • Cardozo A.K.
        • Dogusan Z.
        • Cnop M.
        • Eizirik D.L.
        Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress.
        Endocrinology. 2004; 145: 5087-5096
        • Cardozo A.K.
        • Ortis F.
        • Storling J.
        • et al.
        Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells.
        Diabetes. 2005; 54: 452-461
        • Miani M.
        • Barthson J.
        • Colli M.L.
        • Brozzi F.
        • Cnop M.
        • Eizirik D.L.
        Endoplasmic reticulum stress sensitizes pancreatic beta cells to interleukin-1β-induced apoptosis via Bim/A1 imbalance.
        Cell Death Dis. 2013; 4: e701
        • DeFronzo R.A.
        • Ferrannini E.
        Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease.
        Diabetes Care. 1991; 14: 173-194
        • Kruszynska Y.T.
        • Olefsky J.M.
        Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus.
        J Investig Med. 1996; 44: 413-428
        • Kahn S.E.
        Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes.
        J Clin Endocrinol Metab. 2001; 86: 4047-4058
        • Mitrakou A.
        • Kelley D.
        • Mokan M.
        • et al.
        Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance.
        N Engl J Med. 1992; 326: 22-29
        • Guerrero-Romero F.
        • Rodriguez-Moran M.
        Assessing progression to impaired glucose tolerance and type 2 diabetes mellitus.
        Eur J Clin Invest. 2006; 36: 796-802
        • Kitabchi A.E.
        • Temprosa M.
        • Knowler W.C.
        • et al.
        Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin.
        Diabetes. 2005; 54: 2404-2414
        • Cnop M.
        • Vidal J.
        • Hull R.L.
        • et al.
        Progressive loss of beta-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes.
        Diabetes Care. 2007; 30: 677-682
        • Ward W.K.
        • Johnston C.L.
        • Beard J.C.
        • Benedetti T.J.
        • Halter J.B.
        • Porte Jr., D.
        Insulin resistance and impaired insulin secretion in subjects with histories of gestational diabetes mellitus.
        Diabetes. 1985; 34: 861-869
        • Fukushima M.
        • Usami M.
        • Ikeda M.
        • et al.
        Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes.
        Metabolism. 2004; 53: 831-835
        • Iwahashi H.
        • Okauchi Y.
        • Ryo M.
        • et al.
        Insulin-secretion capacity in normal glucose tolerance, impaired glucose tolerance, and diabetes in obese and non-obese Japanese patients.
        J Diabetes Investig. 2012; 3: 271-275
        • Yabe D.
        • Seino Y.
        • Fukushima M.
        • Seino S.
        Beta cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in East Asians.
        Curr Diab Rep. 2015; 15: 602
        • Kahn S.E.
        • Cooper M.E.
        • Del Prato S.
        Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.
        Lancet. 2014; 383: 1068-1083
        • DeFronzo R.A.
        • Tripathy D.
        Skeletal muscle insulin resistance is the primary defect in type 2 diabetes.
        Diabetes Care. 2009; 32: S157-S163
        • Cerf M.E.
        Beta cell dysfunction and insulin resistance.
        Front Endocrinol (Lausanne). 2013; 4: 37
        • Ashcroft F.M.
        • Rorsman P.
        Diabetes mellitus and the beta cell: the last ten years.
        Cell. 2012; 148: 1160-1171
        • Staiger H.
        • Machicao F.
        • Fritsche A.
        • Haring H.U.
        Pathomechanisms of type 2 diabetes genes.
        Endocr Rev. 2009; 30: 557-585