Original Article| Volume 166, ISSUE 6, P772-782, December 2015

Leptin knockout attenuates hypoxia-induced pulmonary arterial hypertension by inhibiting proliferation of pulmonary arterial smooth muscle cells

Published:September 24, 2015DOI:
      Pulmonary arterial hypertension (PAH) is a fatal disease characterized by excessive vascular smooth muscle cells proliferation in small pulmonary arteries, leading to elevation of pulmonary vascular resistance with consequent right ventricular (RV) failure and death. Recently, emerging evidence has shown that leptin signaling is involved in different cardiac pathologies; however, the role of leptin remains limited in the setting of PAH. Thus, in this study, we tested the hypothesis of direct involvement of leptin in the development of PAH. Our data show that leptin activity in plasma and protein level in the lung were higher in hypoxia- and monocrotaline-induced PAH models compared with control animals. Wild-type (WT) and C57BL/6J-Lepob (ob/ob) male mice were exposed to normobaric hypoxia (10% O2) or normoxia (21% O2). After 2 and 4 weeks of chronic hypoxia exposure, WT mice developed PAH as reflected by the increased values of RV systolic pressure, RV hypertrophy index, the medial wall thickness of pulmonary arterioles, and muscularization of pulmonary arterioles. And, all these alterations were attenuated in ob/ob mice treated with hypoxia. Leptin could stimulate the proliferation of pulmonary arterial smooth muscle cells (PASMCs) by activating extracellular signal–regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), and Akt pathways. These data suggest that the leptin signaling pathway is crucial for the development of PAH. Leptin activates ERK, STAT, and Akt pathways and subsequently PASMCs proliferation, providing new mechanistic information about hypoxia-induced PAH.


      PAH (pulmonary arterial hypertension), PASMC (pulmonary arterial smooth muscle cells), MCT (monocrotaline), RVSP (right ventricular systolic pressure), RVHI (right ventricular hypertrophy index), SMCM (smooth muscle cell medium), FBS (fetal bovine serum), CFSE (5(6)-Carboxyfluorescein N-hydroxysuccinimidyl ester), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), α-SMA (α-smooth muscle actin), vWF (von Willebrand factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Tuder R.M.
        • Marecki J.C.
        • Richter A.
        • Fijalkowska I.
        • Flores S.
        Pathology of pulmonary hypertension.
        Clin Chest Med. 2007; 28: 23-42
        • Voelkel N.F.
        • Gomez-Arroyo J.
        • Abbate A.
        • Bogaard H.J.
        • Nicolls M.R.
        Pathobiology of pulmonary arterial hypertension and right ventricular failure.
        Eur Respir J. 2012; 40: 1555-1565
        • Rubin L.J.
        Pulmonary arterial hypertension.
        Proc Am Thorac Soc. 2006; 3: 111-115
        • Humbert M.
        • Morrell N.W.
        • Archer S.L.
        • et al.
        Cellular and molecular pathobiology of pulmonary arterial hypertension.
        J Am Coll Cardiol. 2004; 43: 13S-24S
        • Lagna G.
        • Ku M.M.
        • Nguyen P.H.
        • Neuman N.A.
        • Davis B.N.
        • Hata A.
        Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors.
        J Biol Chem. 2007; 282L: 37244-37255
        • Humbert M.
        • Sitbon O.
        • Yaici A.
        • et al.
        Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension.
        Eur Respir J. 2010; 36: 549-555
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue.
        Nature. 1994; 372: 425-432
        • Vernooy J.H.
        • Drummen N.E.
        • van Suylen R.J.
        • et al.
        Enhanced pulmonary leptin expression in patients with severe COPD and asymptomatic smokers.
        Thorax. 2009; 64: 26-32
        • Fruhbeck G.
        Intracellular signalling pathways activated by leptin.
        Biochem J. 2006; 393: 7-20
        • Schafer K.
        • Halle M.
        • Goeschen C.
        • et al.
        Leptin promotes vascular remodeling and neointimal growth in mice.
        Arterioscler Thromb Vasc Biol. 2004; 24: 112-117
        • Nakata M.
        • Yada T.
        • Soejima N.
        • Maruyama I.
        Leptin promotes aggregation of human platelets via the long form of its receptor.
        Diabetes. 1999; 48: 426-429
        • Bodary P.F.
        • Westrick R.J.
        • Wickenheiser K.J.
        • Shen Y.
        • Eitzman D.T.
        Effect of leptin on arterial thrombosis following vascular injury in mice.
        JAMA. 2002; 287: 1706-1709
        • Konstantinides S.
        • Schafer K.
        • Koschnick S.
        • Loskutoff D.J.
        Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity.
        J Clin Invest. 2001; 108: 1533-1540
        • Huang F.
        • Xiong X.
        • Wang H.
        • You S.
        • Zeng H.
        Leptin-induced vascular smooth muscle cell proliferation via regulating cell cycle, activating ERK1/2 and NF-kappaB.
        Acta Biochim Biophys Sin (Shanghai). 2010; 42: 325-331
        • Oda A.
        • Taniguchi T.
        • Yokoyama M.
        Leptin stimulates rat aortic smooth muscle cell proliferation and migration.
        Kobe J Med Sci. 2001; 47: 141-150
        • Huertas A.
        • Tu L.
        • Thuillet R.
        • et al.
        Leptin signalling system as a target for pulmonary arterial hypertension therapy.
        Eur Respir J. 2015; 45: 1066-1080
        • Huertas A.
        • Tu L.
        • Gambaryan N.
        • et al.
        Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension.
        Eur Respir J. 2012; 40: 895-904
        • Michelakis E.D.
        • McMurtry M.S.
        • Wu X.C.
        • et al.
        Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels.
        Circulation. 2002; 105: 244-250
        • Wang W.
        • Liu J.
        • Ma A.
        • et al.
        mTORC1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch 3.
        J Cell Physiol. 2014; 229: 2117-2125
        • Girgis R.E.
        • Li D.
        • Zhan X.
        • et al.
        Attenuation of chronic hypoxic pulmonary hypertension by simvastatin.
        Am J Physiol Heart Circ Physiol. 2003; 285: H938-H945
        • Hausman G.J.
        • Richardson R.L.
        Adipose tissue angiogenesis.
        J Anim Sci. 2004; 82: 925-934
        • Polotsky V.Y.
        • Li J.
        • Punjabi N.M.
        • et al.
        Intermittent hypoxia increases insulin resistance in genetically obese mice.
        J Physiol. 2003; 552: 253-264
        • Ambrosini G.
        • Nath A.K.
        • Sierra-Honigmann M.R.
        • Flores-Riveros J.
        Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia-inducible factor 1.
        J Biol Chem. 2002; 277: 34601-34609
        • Chaiban J.T.
        • Bitar F.F.
        • Azar S.T.
        Effect of chronic hypoxia on leptin, insulin, adiponectin, and ghrelin.
        Metabolism. 2008; 57: 1019-1022
        • Meissner U.
        • Hänisch C.
        • Ostreicher I.
        • et al.
        Differential regulation of leptin synthesis in rats during short-term hypoxia and short-term carbon monoxide inhalation.
        Endocrinology. 2005; 146: 215-220
        • Grosfeld A.
        • Zilberfarb V.
        • Turban S.
        • André J.
        • Guerre-Millo M.
        • Issad T.
        Hypoxia increases leptin expression in human PAZ6 adipose cells.
        Diabetologia. 2002; 45: 527-530
        • Rubin L.J.
        Primary pulmonary hypertension.
        N Engl J Med. 1997; 336: 112-117
        • Runo J.R.
        • Loyd J.E.
        Primary pulmonary hypertension.
        Lancet. 2003; 361: 1533-1544
        • Baliga R.S.
        • MacAllister R.J.
        • Hobbs A.J.
        New perspectives for the treatment of pulmonary hypertension.
        Br J Pharmacol. 2011; 163: 125-140
        • Fei H.
        • Okano H.J.
        • Li C.
        • et al.
        Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues.
        Proc Natl Acad Sci U S A. 1997; 94: 7001-7005
        • Gorska E.
        • Popko K.
        • Stelmaszczyk-Emmel A.
        • Ciepiela O.
        • Kucharska A.
        • Wasik M.
        Leptin receptors.
        Eur J Med Res. 2010; 15: 50-54
        • Li Z.
        • Shen J.
        • Wu W.K.
        • et al.
        Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways.
        PLoS One. 2012; 7: e53176
        • Stenmark K.R.
        • Meyric kB.
        • Galie N.
        • Mooi W.J.
        • McMurtry I.F.
        Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure.
        Am J Physiol Lung Cell Mol Physiol. 2009; 297: L1013-L1032
        • Rabinovitch M.
        • Gamble W.J.
        • Nadas A.S.
        • Miettinen O.S.
        • Reid L.
        Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features.
        Am J Physiol. 1979; 236: H818-H827
        • Zhao L.
        • Mason N.A.
        • Morrell N.W.
        • et al.
        Sildenafil inhibits hypoxia-induced pulmonary hypertension.
        Circulation. 2001; 104: 424-428
        • Frisdal E.
        • Gest V.
        • Vieillard-Baron A.
        • et al.
        Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension.
        Eur Respir J. 2001; 18: 838-845
        • Weissmann N.
        • Nollen M.
        • Gerigk B.
        • et al.
        Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide.
        Am J Physiol Heart Circ Physiol. 2003; 284: H931-H938
        • Quinlan T.R.
        • Li D.
        • Laubach V.E.
        • Shesely E.G.
        • Zhou N.
        • Johns R.A.
        eNOS-deficient mice show reduced pulmonary vascular proliferation and remodeling to chronic hypoxia.
        Am J Physiol Lung Cell Mol Physiol. 2000; 279: L641-L650
        • Stenmark K.R.
        • Gerasimovskaya E.
        • Nemenoff R.A.
        • Das M.
        Hypoxic activation of adventitial fibroblasts: role in vascular remodeling.
        Chest. 2002; 122: 326S-334S
        • Aytekin M.
        • Tonelli A.R.
        • Farver C.F.
        • Feldstein A.E.
        • Dweik R.A.
        Leptin deficiency recapitulates the histological features of pulmonary arterial hypertension in mice.
        Int J Clin Exp Pathol. 2014; 7: 1935-1946