Advertisement

Magnetic resonance imaging as a potential biomarker for Parkinson's disease

  • Paul Tuite
    Correspondence
    Reprint requests: Paul Tuite, Department of Neurology, University of Minnesota, MMC 295, 420 Delaware ST SE, Minneapolis, MN 55455
    Affiliations
    Department of Neurology, University of Minnesota, Minneapolis, Minnesota
    Search for articles by this author
Published:December 16, 2015DOI:https://doi.org/10.1016/j.trsl.2015.12.006
      Although a magnetic resonance imaging (MRI) biomarker for Parkinson's disease (PD) remains an unfulfilled objective, there have been numerous developments in MRI methodology and some of these have shown promise for PD. With funding from the National Institutes of Health and the Michael J Fox Foundation there will be further validation of structural, diffusion-based, and iron-focused MRI methods as possible biomarkers for PD. In this review, these methods and other strategies such as neurochemical and metabolic MRI have been covered. One of the challenges in establishing a biomarker is in the selection of individuals as PD is a heterogeneous disease with varying clinical features, different etiologies, and a range of pathologic changes. Additionally, longitudinal studies are needed of individuals with clinically diagnosed PD and cohorts of individuals who are at great risk for developing PD to validate methods. Ultimately an MRI biomarker will be useful in the diagnosis of PD, predicting the course of PD, providing a means to track its course, and provide an approach to select and monitor treatments.

      Abbreviations:

      ATP (adenosine triphosphate), BOLD (blood oxygenation level-dependent), Cr (creatine), DAT (dopamine transporter), DTI (diffusion tensor imaging), fMRI (functional MRI), FA (fractional anisotropy), GABA (gamma-aminobutyric acid), Gln (glutathione), (1H) (proton), iRBD (idiopathic rapid eye movement (REM) sleep behavior disorder), LBD (Lewy body dementia), MRI (magnetic resonance imaging), MRS (magnetic resonance spectroscopy), MTI (magnetization transfer imaging), NAA (N-acetylaspartate), NAC (N-acetylcysteine), NAD+ and NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide), phMRI (pharmacologic MRI), (31P) (phosphorus), PD (Parkinson's disease), PET (positron emission tomography), QSM (quantitative susceptibility mapping), rsfMRI (resting state functional MRI), RAFF (relaxations along a fictitious field), SN (substantia nigra), SPECT (single photon computed tomography), SWI (susceptibility-weighted imaging)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Delenclos M.
        • Jones D.R.
        • McLean P.J.
        • Uitti R.J.
        Biomarkers in Parkinson's disease: advances and strategies.
        Parkinsonism Relat Disord. 2015; 22: S106-S110
        • Braak H.
        • Bohl J.R.
        • Müller C.M.
        • Rüb U.
        • de Vos R.A.
        • Del Tredici K.
        Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered.
        Mov Disord. 2006; 21: 2042-2051
        • Braak H.
        • Del Tredici K.
        • Rüb U.
        • de Vos R.A.
        • Jansen Steur E.N.
        • Braak E.
        Staging of brain pathology related to sporadic Parkinson's disease.
        Neurobiol Aging. 2003; 24: 197-211
        • Frost B.
        • Diamond M.I.
        Prion-like mechanisms in neurodegenerative diseases.
        Nat Rev Neurosci. 2010; 11: 155-159
        • Jucker M.
        • Walker L.C.
        Self-propagation of pathogenic protein aggregates in neurodegenerative diseases.
        Nature. 2013; 501: 45-51
        • Luk K.C.
        • Kehm V.
        • Carroll J.
        • et al.
        Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice.
        Science. 2012; 338: 949-953
        • Masuda-Suzukake M.
        • Nonaka T.
        • Hosokawa M.
        • et al.
        Prion-like spreading of pathological alpha-synuclein in brain.
        Brain. 2013; 136: 1128-1138
        • Warren J.D.
        • Rohrer J.D.
        • Schott J.M.
        • Fox N.C.
        • Hardy J.
        • Rossor M.N.
        Molecular nexopathies: a new paradigm of neurodegenerative disease.
        Trends Neurosci. 2013; 36: 561-569
        • Biomarkers Definitions Working Group
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95
        • Blennow K.
        • Hampel H.
        • Weiner M.
        • Zetterberg H.
        Cerebrospinal fluid and plasma biomarkers in Alzheimer disease.
        Nat Rev Neurol. 2010; 6: 131-144
        • Arena J.E.
        • Stoessl A.J.
        Optimizing diagnosis in Parkinson's disease: radionuclide imaging.
        Parkinsonism Relat Disord. 2016; 22 Suppl 1: S47-S51
        • Volc D.
        • Hendrix S.
        • Thun-Hohenstein C.
        • et al.
        Results from a phase I study to assess the tolerability, safety and immunological and clinical activity of affitope PD01A in patients with early Parkinson's disease.
        Neurodegener Dis. 2015; 15: 1317
        • Lehericy S.
        • Sharman M.A.
        • Dos Santos C.L.
        • Paquin R.
        • Gallea C.
        Magnetic resonance imaging of the substantia nigra in Parkinson's disease.
        Mov Disord. 2012; 27: 822-830
        • Schuster C.
        • Elamin M.
        • Hardiman O.
        • Bede P.
        Presymptomatic and longitudinal neuroimaging in neurodegeneration—from snapshots to motion picture: a systematic review.
        J Neurol Neurosurg Psychiatry. 2015; 86: 1089-1096
        • Ofori E.
        • Du G.
        • Babcock D.
        • Huang X.
        • Vaillancourt D.E.
        Parkinson's disease biomarkers program brain imaging repository.
        Neuroimage. 2015; 124: 1120-1124
        • Hughes A.J.
        • Daniel S.E.
        • Kilford L.
        • Lees A.J.
        Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.
        J Neurol Neurosurg Psychiatry. 1992; 55: 181-184
        • Kalia L.V.
        • Lang A.E.
        Parkinson's disease.
        Lancet. 2015; 386: 896-912
        • Petrou M.
        • Dwamena B.A.
        • Foerster B.R.
        • et al.
        Amyloid deposition in Parkinson's disease and cognitive impairment: a systematic review.
        Mov Disord. 2015; 30: 928-935
        • Marek K.
        • Seibyl J.
        • Eberly S.
        • et al.
        Longitudinal follow-up of SWEDD subjects in the PRECEPT Study.
        Neurology. 2014; 82: 1791-1797
        • Halliday G.M.
        • Holton J.L.
        • Revesz T.
        • Dickson D.W.
        Neuropathology underlying clinical variability in patients with synucleinopathies.
        Acta Neuropathol. 2011; 122: 187-204
        • Boeve B.F.
        Idiopathic REM sleep behaviour disorder in the development of Parkinson's disease.
        Lancet Neurol. 2013; 12: 469-482
        • Scherfler C.
        • Frauscher B.
        • Schocke M.
        • et al.
        White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study.
        Ann Neurol. 2011; 69: 400-407
        • Ellmore T.M.
        • Castriotta R.J.
        • Hendley K.L.
        • et al.
        Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder.
        Sleep. 2013; 36: 1885-1892
        • Hanyu H.
        • Inoue Y.
        • Sakurai H.
        • et al.
        Voxel-based magnetic resonance imaging study of structural brain changes in patients with idiopathic REM sleep behavior disorder.
        Parkinsonism Relat Disord. 2012; 18: 136-139
        • Marras C.
        Subtypes of Parkinson's disease: state of the field and future directions.
        Curr Opin Neurol. 2015; 28: 382-386
        • Lawton M.
        • Baig F.
        • Rolinski M.
        • et al.
        Parkinson's disease subtypes in the Oxford Parkinson Disease Centre (OPDC) discovery cohort.
        J Parkinsons Dis. 2015; 5: 269-279
        • Ascherio A.
        • LeWitt P.A.
        • Xu K.
        • et al.
        Urate as a predictor of the rate of clinical decline in Parkinson disease.
        Arch Neurol. 2009; 66: 1460-1468
        • Schwarzschild M.A.
        • Schwid S.R.
        • Marek K.
        • et al.
        Serum urate as a predictor of clinical and radiographic progression in Parkinson disease.
        Arch Neurol. 2008; 65: 716-723
        • Rosenthal L.S.
        • Drake D.
        • Alcalay R.N.
        • et al.
        The NINDS Parkinson's disease biomarkers program.
        Mov Disord. 2015; (http://dx.doi.org/10.1002/mds.26438. [Epub ahead of print])
        • Campbell M.C.
        • Koller J.M.
        • Snyder A.Z.
        • Buddhala C.
        • Kotzbauer P.T.
        • Perlmutter J.S.
        CSF proteins and resting-state functional connectivity in Parkinson disease.
        Neurology. 2015; 84: 2413-2421
        • McKeown M.J.
        • Peavy G.M.
        Biomarkers in Parkinson disease: it's time to combine.
        Neurology. 2015; 84: 2392-2393
        • Zeighami Y.
        • Ulla M.
        • Iturria-Medina Y.
        • et al.
        Network structure of brain atrophy in de novo Parkinson's disease.
        Elife. 2015; 4
      1. The Parkinson Progression Marker Initiative (PPMI).
        Prog Neurobiol. 2011; 95: 629-635
        • Pyatigorskaya N.
        • Gallea C.
        • Garcia-Lorenzo D.
        • Vidailhet M.
        • Lehericy S.
        A review of the use of magnetic resonance imaging in Parkinson's disease.
        Ther Adv Neurol Disord. 2014; 7: 206-220
        • Stoessl A.J.
        • Lehericy S.
        • Strafella A.P.
        Imaging insights into basal ganglia function, Parkinson's disease, and dystonia.
        Lancet. 2014; 384: 532-544
        • Tuite P.J.
        • Mangia S.
        • Michaeli S.
        Magnetic resonance imaging (MRI) in Parkinson's disease.
        J Alzheimers Dis Parkinsonism. 2013; : 001
        • Gorell J.M.
        • Ordidge R.J.
        • Brown G.G.
        • Deniau J.C.
        • Buderer N.M.
        • Helpern J.A.
        Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease.
        Neurology. 1995; 45: 1138-1143
        • Martin W.R.
        • Wieler M.
        • Gee M.
        Midbrain iron content in early Parkinson disease: a potential biomarker of disease status.
        Neurology. 2008; 70: 1411-1417
        • Rossi M.E.
        • Ruottinen H.
        • Saunamaki T.
        • Elovaara I.
        • Dastidar P.
        Imaging brain iron and diffusion patterns: a follow-up study of Parkinson's disease in the initial stages.
        Acad Radiol. 2014; 21: 64-71
        • Ulla M.
        • Bonny J.M.
        • Ouchchane L.
        • Rieu I.
        • Claise B.
        • Durif F.
        Is R2* a new MRI biomarker for the progression of Parkinson's disease? A longitudinal follow-up.
        PLoS One. 2013; 8: e57904
        • Wieler M.
        • Gee M.
        • Martin W.R.
        Longitudinal midbrain changes in early Parkinson's disease: iron content estimated from R2*/MRI.
        Parkinsonism Relat Disord. 2015; 21: 179-183
        • Ward R.J.
        • Zucca F.A.
        • Duyn J.H.
        • Crichton R.R.
        • Zecca L.
        The role of iron in brain ageing and neurodegenerative disorders.
        Lancet Neurol. 2014; 13: 1045-1060
        • Grolez G.
        • Moreau C.
        • Sablonniere B.
        • et al.
        Ceruloplasmin activity and iron chelation treatment of patients with Parkinson's disease.
        BMC Neurol. 2015; 15: 74
        • He N.
        • Ling H.
        • Ding B.
        • et al.
        Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping.
        Hum Brain Mapp. 2015; 36: 4407-4420
        • Du G.
        • Lewis M.M.
        • Styner M.
        • et al.
        Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson's disease.
        Mov Disord. 2011; 26: 1627-1632
        • Barbosa J.H.
        • Santos A.C.
        • Tumas V.
        • et al.
        Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2.
        Magn Reson Imaging. 2015; 33: 559-565
        • Reiter E.
        • Mueller C.
        • Pinter B.
        • et al.
        Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism.
        Mov Disord. 2015; 30: 1068-1076
        • Schwarz S.T.
        • Afzal M.
        • Morgan P.S.
        • Bajaj N.
        • Gowland P.A.
        • Auer D.P.
        The ‘swallow tail’ appearance of the healthy nigrosome—a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T.
        PLoS One. 2014; 9: e93814
        • Blazejewska A.I.
        • Schwarz S.T.
        • Pitiot A.
        • et al.
        Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI.
        Neurology. 2013; 81: 534-540
        • Mueller C.
        • Pinter B.
        • Reiter E.
        • et al.
        Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7T MRI.
        Neurology. 2014; 82: 1752
        • Cho Z.H.
        • Min H.K.
        • Oh S.H.
        • et al.
        Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging.
        J Neurosurg. 2010; 113: 639-647
        • Lehericy S.
        • Bardinet E.
        • Poupon C.
        • Vidailhet M.
        • Francois C.
        7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson's disease.
        Mov Disord. 2014; 29: 1574-1581
        • Péran P.
        • Cherubini A.
        • Assogna F.
        • et al.
        Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature.
        Brain. 2010; 133: 3423-3433
        • Balaban R.S.
        • Ceckler T.L.
        Magnetization transfer contrast in magnetic resonance imaging.
        Magn Reson Q. 1992; 8: 116-137
        • Mangia S.
        • De Martino F.
        • Liimatainen T.
        • Garwood M.
        • Michaeli S.
        Magnetization transfer using inversion recovery during off-resonance irradiation.
        Magn Reson Imaging. 2011; 29: 1346-1350
        • Tambasco N.
        • Belcastro V.
        • Sarchielli P.
        • et al.
        A magnetization transfer study of mild and advanced Parkinson's disease.
        Eur J Neurol. 2011; 18: 471-477
        • Eckert T.
        • Sailer M.
        • Kaufmann J.
        • et al.
        Differentiation of idiopathic Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging.
        Neuroimage. 2004; 21: 229-235
        • Anik Y.
        • Iseri P.
        • Demirci A.
        • Komsuoglu S.
        • Inan N.
        Magnetization transfer ratio in early period of Parkinson disease.
        Acad Radiol. 2007; 14: 189-192
        • Morgen K.
        • Sammer G.
        • Weber L.
        • et al.
        Structural brain abnormalities in patients with Parkinson disease: a comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging.
        AJNR Am J Neuroradiol. 2011; 32: 2080-2086
        • Tambasco N.
        • Pelliccioli G.P.
        • Chiarini P.
        • et al.
        Magnetization transfer changes of grey and white matter in Parkinson's disease.
        Neuroradiology. 2003; 45: 224-230
        • Tuite P.J.
        • Mangia S.
        • Tyan A.E.
        • Lee M.K.
        • Garwood M.
        • Michaeli S.
        Magnetization transfer and adiabatic R 1rho MRI in the brainstem of Parkinson's disease.
        Parkinsonism Relat Disord. 2012; 18: 623-625
        • Padovani A.
        • Borroni B.
        • Brambati S.M.
        • et al.
        Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy.
        J Neurol Neurosurg Psychiatry. 2006; 77: 457-463
        • Hussl A.
        • Mahlknecht P.
        • Scherfler C.
        • et al.
        Diagnostic accuracy of the magnetic resonance Parkinsonism index and the midbrain-to-pontine area ratio to differentiate progressive supranuclear palsy from Parkinson's disease and the Parkinson variant of multiple system atrophy.
        Mov Disord. 2010; 25: 2444-2449
        • Massey L.A.
        • Jager H.R.
        • Paviour D.C.
        • et al.
        The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy.
        Neurology. 2013; 80: 1856-1861
        • Brooks D.J.
        • Seppi K.
        Proposed neuroimaging criteria for the diagnosis of multiple system atrophy.
        Mov Disord. 2009; 24: 949-964
        • Meijer F.J.
        • Bloem B.R.
        • Mahlknecht P.
        • Seppi K.
        • Goraj B.
        Update on diffusion MRI in Parkinson's disease and atypical parkinsonism.
        J Neurol Sci. 2013; 332: 21-29
        • Seppi K.
        • Schocke M.F.
        • Esterhammer R.
        • et al.
        Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy.
        Neurology. 2003; 60: 922-927
        • Seppi K.
        • Schocke M.F.
        • Prennschuetz-Schuetzenau K.
        • et al.
        Topography of putaminal degeneration in multiple system atrophy: a diffusion magnetic resonance study.
        Mov Disord. 2006; 21: 847-852
        • Wadia P.M.
        • Howard P.
        • Ribeirro M.Q.
        • et al.
        The value of GRE, ADC and routine MRI in distinguishing Parkinsonian disorders.
        Can J Neurol Sci. 2013; 40: 389-402
        • Meijer F.J.
        • van Rumund A.
        • Fasen B.A.
        • et al.
        Susceptibility-weighted imaging improves the diagnostic accuracy of 3T brain MRI in the work-up of parkinsonism.
        AJNR Am J Neuroradiol. 2015; 36: 454-460
        • Tessa C.
        • Lucetti C.
        • Giannelli M.
        • et al.
        Progression of brain atrophy in the early stages of Parkinson's disease: a longitudinal tensor-based morphometry study in de novo patients without cognitive impairment.
        Hum Brain Mapp. 2014; 35: 3932-3944
        • Duncan G.W.
        • Firbank M.J.
        • O'Brien J.T.
        • Burn D.J.
        Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson's disease?.
        Mov Disord. 2013; 28: 425-438
        • Song S.K.
        • Lee J.E.
        • Park H.J.
        • Sohn Y.H.
        • Lee J.D.
        • Lee P.H.
        The pattern of cortical atrophy in patients with Parkinson's disease according to cognitive status.
        Mov Disord. 2011; 26: 289-296
        • Kostic V.S.
        • Agosta F.
        • Petrovic I.
        • et al.
        Regional patterns of brain tissue loss associated with depression in Parkinson disease.
        Neurology. 2010; 75: 857-863
        • Feldmann A.
        • Illes Z.
        • Kosztolanyi P.
        • et al.
        Morphometric changes of gray matter in Parkinson's disease with depression: a voxel-based morphometry study.
        Mov Disord. 2008; 23: 42-46
        • Garg A.
        • Appel-Cresswell S.
        • Popuri K.
        • McKeown M.J.
        • Beg M.F.
        Morphological alterations in the caudate, putamen, pallidum, and thalamus in Parkinson's disease.
        Front Neurosci. 2015; 9: 101
        • Nemmi F.
        • Sabatini U.
        • Rascol O.
        • Peran P.
        Parkinson's disease and local atrophy in subcortical nuclei: insight from shape analysis.
        Neurobiol Aging. 2015; 36: 424-433
        • Cho Z.H.
        • Oh S.H.
        • Kim J.M.
        • et al.
        Direct visualization of Parkinson's disease by in vivo human brain imaging using 7.0T magnetic resonance imaging.
        Mov Disord. 2011; 26: 713-718
        • Summerfield C.
        • Junque C.
        • Tolosa E.
        • et al.
        Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study.
        Arch Neurol. 2005; 62: 281-285
        • Beyer M.K.
        • Janvin C.C.
        • Larsen J.P.
        • Aarsland D.
        A magnetic resonance imaging study of patients with Parkinson's disease with mild cognitive impairment and dementia using voxel-based morphometry.
        J Neurol Neurosurg Psychiatry. 2007; 78: 254-259
        • Baudrexel S.
        • Seifried C.
        • Penndorf B.
        • et al.
        The value of putaminal diffusion imaging versus 18-fluorodeoxyglucose positron emission tomography for the differential diagnosis of the Parkinson variant of multiple system atrophy.
        Mov Disord. 2014; 29: 380-387
        • Gupta D.
        • Saini J.
        • Kesavadas C.
        • Sarma P.S.
        • Kishore A.
        Utility of susceptibility-weighted MRI in differentiating Parkinson's disease and atypical parkinsonism.
        Neuroradiology. 2010; 52: 1087-1094
        • Wang Y.
        • Butros S.R.
        • Shuai X.
        • et al.
        Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging.
        AJNR Am J Neuroradiol. 2012; 33: 266-273
        • Zucca F.A.
        • Segura-Aguilar J.
        • Ferrari E.
        • et al.
        Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson's disease.
        Prog Neurobiol. 2015; (http://dx.doi.org/10.1016/j.pneurobio.2015.09.012. [Epub ahead of print])
        • Castellanos G.
        • Fernandez-Seara M.A.
        • Lorenzo-Betancor O.
        • et al.
        Automated neuromelanin imaging as a diagnostic biomarker for Parkinson's disease.
        Mov Disord. 2015; 30: 945-952
        • Sasaki M.
        • Shibata E.
        • Tohyama K.
        • et al.
        Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease.
        Neuroreport. 2006; 17: 1215-1218
        • Schwarz S.T.
        • Rittman T.
        • Gontu V.
        • Morgan P.S.
        • Bajaj N.
        • Auer D.P.
        T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson's disease.
        Mov Disord. 2011; 26: 1633-1638
        • Kashihara K.
        • Shinya T.
        • Higaki F.
        Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson's disease.
        J Clin Neurosci. 2011; 18: 1093-1096
        • Ogisu K.
        • Kudo K.
        • Sasaki M.
        • et al.
        3D Neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson's disease.
        Neuroradiology. 2013; 55: 719-724
        • Ohtsuka C.
        • Sasaki M.
        • Konno K.
        • et al.
        Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson's disease using neuromelanin-sensitive MR imaging.
        Neurosci Lett. 2013; 541: 93-98
        • Garcia-Lorenzo D.
        • Longo-Dos Santos C.
        • Ewenczyk C.
        • et al.
        The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson's disease.
        Brain. 2013; 136 (England): 2120-2129
        • Reimao S.
        • Pita Lobo P.
        • Neutel D.
        • et al.
        Substantia nigra neuromelanin-MR imaging differentiates essential tremor from Parkinson's disease.
        Mov Disord. 2015; 30: 953-959
        • Michaeli S.
        • Oz G.
        • Sorce D.J.
        • et al.
        Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts.
        Mov Disord. 2007; 22: 334-340
        • Michaeli S.
        • Sorce D.
        • Garwood M.
        T2rho and T1rho adiabatic relaxations and contrasts.
        Curr Anal Chem. 2008; 4: 8-25
        • Nestrasil I.
        • Michaeli S.
        • Liimatainen T.
        • et al.
        T1rho and T2rho MRI in the evaluation of Parkinson's disease.
        J Neurol. 2010; 257: 964-968
        • Boeve B.F.
        Predicting the future in idiopathic rapid-eye movement sleep behaviour disorder.
        Lancet Neurol. 2010; 9: 1040-1042
        • Boeve B.F.
        REM sleep behavior disorder: updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions.
        Ann N Y Acad Sci. 2010; 1184: 15-54
      2. Mangia S, Burton P, Svatkova A, et al. MRI signatures of the brain of PD and iRBD subjects. ISMRM 24th Annual Meeting 07–13. May 2016; 2016; Singapore.

        • Le Bihan D.
        • Breton E.
        • Lallemand D.
        • Grenier P.
        • Cabanis E.
        • Laval-Jeantet M.
        MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.
        Radiology. 1986; 161: 401-407
        • Le Bihan D.
        Looking into the functional architecture of the brain with diffusion MRI.
        Nat Rev Neurosci. 2003; 4: 469-480
        • Chan L.L.
        • Rumpel H.
        • Yap K.
        • et al.
        Case control study of diffusion tensor imaging in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2007; 78: 1383-1386
        • Vaillancourt D.E.
        • Spraker M.B.
        • Prodoehl J.
        • et al.
        High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease.
        Neurology. 2009; 72: 1378-1384
        • Yoshikawa K.
        • Nakata Y.
        • Yamada K.
        • Nakagawa M.
        Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI.
        J Neurol Neurosurg Psychiatry. 2004; 75: 481-484
        • Zhan W.
        • Kang G.A.
        • Glass G.A.
        • et al.
        Regional alterations of brain microstructure in Parkinson's disease using diffusion tensor imaging.
        Mov Disord. 2012; 27: 90-97
        • Wang J.J.
        • Lin W.Y.
        • Lu C.S.
        • et al.
        Parkinson disease: diagnostic utility of diffusion kurtosis imaging.
        Radiology. 2011; 261: 210-217
        • Menke R.A.
        • Jbabdi S.
        • Miller K.L.
        • Matthews P.M.
        • Zarei M.
        Connectivity-based segmentation of the substantia Nigra in human and its implications in Parkinson's disease.
        Neuroimage. 2010; 52: 1175-1180
        • Schwarz S.T.
        • Abaei M.
        • Gontu V.
        • Morgan P.S.
        • Bajaj N.
        • Auer D.P.
        Diffusion tensor imaging of nigral degeneration in Parkinson's disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis.
        Neuroimage Clin. 2013; 3: 481-488
        • Ziegler E.
        • Rouillard M.
        • Andre E.
        • et al.
        Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson's disease.
        Neuroimage. 2014; 99: 498-508
        • Kamagata K.
        • Motoi Y.
        • Abe O.
        • et al.
        White matter alteration of the cingulum in Parkinson disease with and without dementia: evaluation by diffusion tensor tract-specific analysis.
        AJNR Am J Neuroradiol. 2012; 33: 890-895
        • Prodoehl J.
        • Li H.
        • Planetta P.J.
        • et al.
        Diffusion tensor imaging of Parkinson's disease, atypical parkinsonism, and essential tremor.
        Mov Disord. 2013; 28: 1816-1822
        • Ibarretxe-Bilbao N.
        • Junque C.
        • Marti M.J.
        • Tolosa E.
        Brain structural MRI correlates of cognitive dysfunctions in Parkinson's disease.
        J Neurol Sci. 2011; 310: 70-74
        • Ibarretxe-Bilbao N.
        • Junque C.
        • Marti M.J.
        • et al.
        Olfactory impairment in Parkinson's disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study.
        Mov Disord. 2010; 25: 1888-1894
        • Ibarretxe-Bilbao N.
        • Tolosa E.
        • Junque C.
        • Marti M.J.
        MRI and cognitive impairment in Parkinson's disease.
        Mov Disord. 2009; 24: S748-S753
        • Rolheiser T.M.
        • Fulton H.G.
        • Good K.P.
        • et al.
        Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson's disease.
        J Neurol. 2011; 258: 1254-1260
        • Ofori E.
        • Pasternak O.
        • Planetta P.J.
        • et al.
        Longitudinal changes in free-water within the substantia nigra of Parkinson's disease.
        Brain. 2015; 138: 2322-2331
        • Menke R.A.
        • Scholz J.
        • Miller K.L.
        • et al.
        MRI characteristics of the substantia nigra in Parkinson's disease: a combined quantitative T1 and DTI study.
        Neuroimage. 2009; 47: 435-441
        • Schuff N.
        • Wu I.W.
        • Buckley S.
        • et al.
        Diffusion imaging of nigral alterations in early Parkinson's disease with dopaminergic deficits.
        Mov Disord. 2015; 30: 1885-1892
        • Sharman M.
        • Valabregue R.
        • Perlbarg V.
        • et al.
        Parkinson's disease patients show reduced cortical-subcortical sensorimotor connectivity.
        Mov Disord. 2013; 28: 447-454
        • Zhang Y.
        • Wu I.W.
        • Buckley S.
        • et al.
        Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease.
        Mov Disord. 2015; 30: 1229-1236
        • Griffanti L.
        • Rolinski M.
        • Szewczyk-Krolikowski K.
        • et al.
        Challenges in the reproducibility of clinical studies with resting state fMRI: an example in early Parkinson's disease.
        Neuroimage. 2015; 124: 704-713
        • Wu T.
        • Wang L.
        • Hallett M.
        • Chen Y.
        • Li K.
        • Chan P.
        Effective connectivity of brain networks during self-initiated movement in Parkinson's disease.
        Neuroimage. 2011; 55: 204-215
        • Wu T.
        • Long X.
        • Zang Y.
        • et al.
        Regional homogeneity changes in patients with Parkinson's disease.
        Hum Brain Mapp. 2009; 30: 1502-1510
        • Kwak Y.
        • Peltier S.
        • Bohnen N.I.
        • Müller M.L.
        • Dayalu P.
        • Seidler R.D.
        Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease.
        Front Syst Neurosci. 2010; 4: 143
        • Baudrexel S.
        • Witte T.
        • Seifried C.
        • et al.
        Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease.
        Neuroimage. 2011; 55: 1728-1738
        • Skidmore F.M.
        • Yang M.
        • Baxter L.
        • et al.
        Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease.
        Neuroimage. 2013; 75: 249-261
        • Krajcovicova L.
        • Mikl M.
        • Marecek R.
        • Rektorova I.
        The default mode network integrity in patients with Parkinson's disease is levodopa equivalent dose-dependent.
        J Neural Transm. 2012; 119: 443-454
        • Rolinski M.
        • Griffanti L.
        • Szewczyk-Krolikowski K.
        • et al.
        Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease.
        Neuroimage Clin. 2015; 8: 126-132
        • Skidmore F.M.
        • Yang M.
        • Baxter L.
        • et al.
        Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease.
        Neuroimage. 2013; 81: 484-495
        • Festini S.B.
        • Bernard J.A.
        • Kwak Y.
        • et al.
        Altered cerebellar connectivity in Parkinson's patients ON and OFF L-DOPA medication.
        Front Hum Neurosci. 2015; 9: 214
        • Kwak Y.
        • Peltier S.J.
        • Bohnen N.I.
        • Muller M.L.
        • Dayalu P.
        • Seidler R.D.
        L-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson's disease: a resting state fMRI study.
        Front Syst Neurosci. 2012; 6: 52
        • Monchi O.
        • Petrides M.
        • Mejia-Constain B.
        • Strafella A.P.
        Cortical activity in Parkinson's disease during executive processing depends on striatal involvement.
        Brain. 2007; 130: 233-244
        • Rieckmann A.
        • Gomperts S.N.
        • Johnson K.A.
        • Growdon J.H.
        • Van Dijk K.R.
        Putamen-midbrain functional connectivity is related to striatal dopamine transporter availability in patients with Lewy body diseases.
        Neuroimage Clin. 2015; 8: 554-559
        • Schuff N.
        Potential role of high-field MRI for studies in Parkinson's disease.
        Mov Disord. 2009; 24: S684-S690
        • Fernandez-Seara M.A.
        • Mengual E.
        • Vidorreta M.
        • et al.
        Resting state functional connectivity of the subthalamic nucleus in Parkinson's disease assessed using arterial spin-labeled perfusion fMRI.
        Hum Brain Mapp. 2015; 36: 1937-1950
        • Kamagata K.
        • Motoi Y.
        • Hori M.
        • et al.
        Posterior hypoperfusion in Parkinson's disease with and without dementia measured with arterial spin labeling MRI.
        J Magn Reson Imaging. 2011; 33: 803-807
        • Teune L.K.
        • Renken R.J.
        • de Jong B.M.
        • et al.
        Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging.
        Neuroimage Clin. 2014; 5: 240-244
        • Le Heron C.J.
        • Wright S.L.
        • Melzer T.R.
        • et al.
        Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.
        J Cereb Blood Flow Metab. 2014; 34: 964-970
        • Black K.J.
        • Koller J.M.
        • Campbell M.C.
        • Gusnard D.A.
        • Bandak S.I.
        Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease.
        J Neurosci. 2010; 30: 16284-16292
        • Stewart S.B.
        • Koller J.M.
        • Campbell M.C.
        • Black K.J.
        Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI.
        Peer J. 2014; 2: e687
        • Andersen A.H.
        • Hardy P.A.
        • Forman E.
        • et al.
        Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.
        Neurobiol Aging. 2015; 36: 1174-1182
        • Oz G.
        • Terpstra M.
        • Tkác I.
        • et al.
        Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations.
        Magn Reson Med. 2006; 55: 296-301
        • Oz G.
        MR spectroscopy: a longitudinal biomarker for substantia nigra pathology in Parkinson's disease?.
        Mov Disord. 2015; 30: 1304-1305
        • Seraji-Bozorgzad N.
        • Bao F.
        • George E.
        • et al.
        Longitudinal study of the substantia nigra in Parkinson disease: a high-field (1) H-MR spectroscopy imaging study.
        Mov Disord. 2015; 30: 1400-1404
        • Emir U.E.
        • Tuite P.J.
        • Oz G.
        Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS.
        PLoS One. 2012; 7: e30918
        • Pearce R.K.
        • Owen A.
        • Daniel S.
        • Jenner P.
        • Marsden C.D.
        Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease.
        J Neural Transm. 1997; 104: 661-677
        • Holmay M.J.
        • Terpstra M.
        • Coles L.D.
        • et al.
        N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases.
        Clin Neuropharmacol. 2013; 36: 103-106
        • Coles L.D.
        • Terpstra M.
        • Oz G.
        • et al.
        Repeated-dose oral N-acetylcysteine: pharmacokinetics and effect on brain glutathione.
        Mov Disord. 2015; 30: e10
        • Mischley L.K.
        • Leverenz J.B.
        • Lau R.C.
        • et al.
        A randomized, double-blind phase I/IIa study of intranasal glutathione in Parkinson's disease.
        Mov Disord. 2015; 30: 1696-1701
        • Mazuel L.
        • Chassain C.
        • Jean B.
        • et al.
        Proton MR spectroscopy for diagnosis and evaluation of treatment efficacy in Parkinson disease.
        Radiology. 2015; ([Epub ahead of print]): 142764
        • Franco-Iborra S.
        • Vila M.
        • Perier C.
        The Parkinson disease mitochondrial hypothesis: where are we at?.
        Neuroscientist. 2015; ([Epub ahead of print])
        • Weiduschat N.
        • Mao X.
        • Beal M.F.
        • Nirenberg M.J.
        • Shungu D.C.
        • Henchcliffe C.
        Sex differences in cerebral energy metabolism in Parkinson's disease: a phosphorus magnetic resonance spectroscopic imaging study.
        Parkinsonism Relat Disord. 2014; 20: 545-548
        • Weiduschat N.
        • Mao X.
        • Beal M.F.
        • Nirenberg M.J.
        • Shungu D.C.
        • Henchcliffe C.
        Usefulness of proton and phosphorus MR spectroscopic imaging for early diagnosis of Parkinson's disease.
        J Neuroimaging. 2015; 25: 105-110
        • Du F.
        • Zhu X.H.
        • Zhang Y.
        • et al.
        Tightly coupled brain activity and cerebral ATP metabolic rate.
        Proc Natl Acad Sci U S A. 2008; 105: 6409-6414
        • Mortiboys H.
        • Aasly J.
        • Bandmann O.
        Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson's disease.
        Brain. 2013; 136: 3038-3050
        • Zhu X.-H.
        • Lee B.-Y.
        • Rolandelli S.
        • Tuite P.
        • Chen W.
        Abnormal occipital metabolism in mild-moderate Parkinson's disease revealed by in vivo 31P-MRS at 7T.
        Mov Disord. 2014; 29: e2
        • Mortiboys H.
        • Furmston R.
        • Bronstad G.
        • Aasly J.
        • Elliott C.
        • Bandmann O.
        UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2G2019S carriers and in vivo.
        Neurology. 2015; 85: 846-852
        • Parry G.J.
        • Rodrigues C.M.
        • Aranha M.M.
        • et al.
        Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis.
        Clin Neuropharmacol. 2010; 33: 17-21