Advertisement

Mast cells and their activation in lung disease

  • Harvinder Virk
    Affiliations
    Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
    Search for articles by this author
  • Greer Arthur
    Affiliations
    Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
    Search for articles by this author
  • Peter Bradding
    Correspondence
    Reprint requests: Peter Bradding, Department of Infection, Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester, United Kingdom
    Affiliations
    Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
    Search for articles by this author
Published:January 19, 2016DOI:https://doi.org/10.1016/j.trsl.2016.01.005
      Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes.

      Abbreviations:

      ARDS (acute respiratory distress syndrome), AHR (airway hyperresponsiveness), ASM (airway smooth muscle), BAL (bronchoalveolar lavage), CPA (carboxypeptidase A), CADM1 (cell adhesion molecule 1), COPD (chronic obstructive pulmonary disease), NADPH (dihydronicotinamide-adenine dinucleotide phosphate), ECM (extracellular matrix), FEV1 (forced expiratory volume in one second), FiO2 (fraction of oxygen in the inspired air), FcεRI (high affinity IgE receptor), IPAH (idiopathic pulmonary arterial hypertension), IgE (immunoglobulin E), ITIM (immunoreceptor tyrosine-based inhibition motif), IP3 (inositol triphosphate), IL (interleukin), IFN (interferon), LT (leukotriene), MCT (mast cells containing only tryptase), MCTC (mast cells containing tryptase, chymase, cathepsin G, and CPA), MCAS (monoclonal mast cell activation syndrome), PaO2 (partial pressure of arterial oxygen), PAF (platelet activating factor), PG (prostaglandin), PAH (pulmonary arterial hypertension), ROS (reactive oxygen species), RTK (receptor tyrosine kinase), SCF (stem cell factor), TGF-β1 (transforming growth factor beta 1), TNF-α (tumor necrosis factor α), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dahlin J.S.
        • Hallgren J.
        Mast cell progenitors: origin, development and migration to tissues.
        Mol Immunol. 2015; 63: 9-17
        • Duffy S.M.
        • Lawley W.J.
        • Kaur D.
        • Yang W.
        • Bradding P.
        Inhibition of human mast cell proliferation and survival by tamoxifen in association with ion channel modulation.
        J Allergy Clin Immunol. 2003; 112: 965-972
        • Kambe N.
        • Kambe M.
        • Kochan J.P.
        • Schwartz L.B.
        Human skin-derived mast cells can proliferate while retaining their characteristic functional and protease phenotypes.
        Blood. 2001; 97: 2045-2052
        • Mierke C.T.
        • Ballmaier M.
        • Werner U.
        • Manns M.P.
        • Welte K.
        • Bischoff S.C.
        Human endothelial cells regulate survival and proliferation of human mast cells.
        J Exp Med. 2000; 192: 801-811
        • Brightling C.E.
        • Bradding P.
        • Symon F.A.
        • Holgate S.T.
        • Wardlaw A.J.
        • Pavord I.D.
        Mast-cell infiltration of airway smooth muscle in asthma.
        N Engl J Med. 2002; 346: 1699-1705
        • Pesci A.
        • Bertorelli G.
        • Gabrielli M.
        • Olivieri D.
        Mast cells in fibrotic lung disorders.
        Chest. 1993; 103: 989-996
        • Wen L.
        • Fahrni J.A.
        • Matsui S.
        • Rosen G.D.
        Airway epithelial cells produce stem cell factor.
        Biochim Biophys Acta. 1996; 1314: 183-186
        • Kassel O.
        • Schmidlin F.
        • Duvernelle C.
        • Gasser B.
        • Massard G.
        • Frossard N.
        Human bronchial smooth muscle cells in culture produce stem cell factor.
        Eur Respir J. 1999; 13: 951-954
        • Valent P.
        • Spanblochl E.
        • Sperr W.R.
        • et al.
        Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture.
        Blood. 1992; 80: 2237-2245
        • Koma Y.
        • Ito A.
        • Watabe K.
        • et al.
        Distinct role for c-kit receptor tyrosine kinase and SgIGSF adhesion molecule in attachment of mast cells to fibroblasts.
        Lab Invest. 2005; 85: 426-435
        • Williams D.E.
        • Eisenman J.
        • Baird A.
        • et al.
        Identification of a ligand for the c-kit proto-oncogene.
        Cell. 1990; 63: 167-174
        • Li L.
        • Krilis S.
        Mast-cell growth and differentiation.
        Allergy. 1999; 54: 306-313
        • Bradding P.
        • Arthur G.
        Mast cells in asthma—state of the art.
        Clin Exp Allergy. 2015; 46: 194-263
        • Bagga S.
        • Price K.S.
        • Lin D.A.
        • Friend D.S.
        • Austen K.F.
        • Boyce J.A.
        Lysophosphatidic acid accelerates the development of human mast cells.
        Blood. 2004; 104: 4080-4087
        • Ishida S.
        • Kinoshita T.
        • Sugawara N.
        • Yamashita T.
        • Koike K.
        Serum inhibitors for human mast cell growth: possible role of retinol.
        Allergy. 2003; 58: 1044-1052
        • Welker P.
        • Grabbe J.
        • Zuberbier T.
        • Grützkau A.
        • Henz B.M.
        GM-CSF downmodulates c-kit, FcεRIα and GM-CSF receptor expression as well as histamine and tryptase levels in cultured human mast cells.
        Arch Dermatol Res. 2001; 293: 249-258
        • Gough K.
        • Maddison B.
        • Parmar A.
        • et al.
        Evidence for a novel kit adhesion domain mediating human mast cell adhesion to structural airway cells.
        Eur Respir J. 2014; 44: P3850
        • Yang W.
        • Kaur D.
        • Okayama Y.
        • et al.
        Human lung mast cells adhere to human airway smooth muscle, in part, via tumor suppressor in lung cancer-1.
        J Immunol. 2006; 176: 1238-1243
        • Moiseeva E.P.
        • Leyland M.L.
        • Bradding P.
        CADM1 isoforms differentially regulate human mast cell survival and homotypic adhesion.
        Cell Mol Life Sci. 2012; 69: 2751-2764
        • Moiseeva E.P.
        • Roach K.M.
        • Leyland M.L.
        • Bradding P.
        CADM1 is a key receptor mediating human mast cell adhesion to human lung fibroblasts and airway smooth muscle cells.
        PLoS One. 2013; 8: e61579
        • Hollins F.
        • Kaur D.
        • Yang W.
        • et al.
        Human airway smooth muscle promotes human lung mast cell survival, proliferation, and constitutive activation: cooperative roles for CADM1, stem cell factor, and IL-6.
        J Immunol. 2008; 181: 2772-2780
        • ÅBorg C.
        • Novotny J.
        • Uvnäs B.
        Ionic binding of histamine in mast cell granules.
        Acta Physiol Scand. 1967; 69: 276-283
        • Humphries D.E.
        • Wong G.W.
        • Friend D.S.
        • et al.
        Heparin is essential for the storage of specific granule proteases in mast cells.
        Nature. 1999; 400: 769-772
        • Dvorak A.M.
        • Schleimer R.P.
        • Schulman E.S.
        • Lichtenstein L.M.
        Human mast cells use conservation and condensation mechanisms during recovery from degranulation. In vitro studies with mast cells purified from human lungs.
        Lab Invest. 1986; 54: 663-678
        • Dvorak A.M.
        • Schleimer R.P.
        • Lichtenstein L.M.
        Human mast cells synthesize new granules during recovery from degranulation. In vitro studies with mast cells purified from human lungs.
        Blood. 1988; 71: 76-85
        • Djukanovic R.
        • Lai C.K.
        • Wilson J.W.
        • et al.
        Bronchial mucosal manifestations of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic nonasthmatics and healthy controls.
        Eur Respir J. 1992; 5: 538-544
        • Begueret H.
        • Berger P.
        • Vernejoux J.M.
        • Dubuisson L.
        • Marthan R.
        • Tunon-de-Lara J.M.
        Inflammation of bronchial smooth muscle in allergic asthma.
        Thorax. 2007; 62: 8-15
        • Roberts J.A.
        • Bradding P.
        • Britten K.M.
        • et al.
        The long-acting beta2-agonist salmeterol xinafoate: effects on airway inflammation in asthma.
        Eur Respir J. 1999; 14: 275-282
        • Lewis R.J.
        • Chachi L.
        • Newby C.
        • Amrani Y.
        • Bradding P.
        Bidirectional counterregulation of human lung mast cell and airway smooth muscle beta2 adrenoceptors.
        J Immunol. 2015; 196: 55-63
        • Andersson C.K.
        • Mori M.
        • Bjermer L.
        • Lofdahl C.G.
        • Erjefalt J.S.
        Novel site-specific mast cell subpopulations in the human lung.
        Thorax. 2009; 64: 297-305
        • Irani A.A.
        • Schechter N.M.
        • Craig S.S.
        • DeBlois G.
        • Schwartz L.B.
        Two types of human mast cells that have distinct neutral protease compositions.
        Proc Natl Acad Sci U S A. 1986; 83: 4464-4468
        • Horny H.P.
        • Greschniok A.
        • Jordan J.H.
        • Menke D.M.
        • Valent P.
        Chymase expressing bone marrow mast cells in mastocytosis and myelodysplastic syndromes: an immunohistochemical and morphometric study.
        J Clin Pathol. 2003; 56: 103-106
        • Yamada M.
        • Ueda M.
        • Naruko T.
        • et al.
        Mast cell chymase expression and mast cell phenotypes in human rejected kidneys.
        Kidney Int. 2001; 59: 1374-1381
        • Bradding P.
        • Walls A.F.
        • Church M.K.
        Mast cells and basophils: their role in initiating and maintaining inflammatory responses. Immunopharmacology of respiratory system.
        Academic press, London1995: 54-84
        • Sibilano R.
        • Frossi B.
        • Pucillo C.E.
        Mast cell activation: a complex interplay of positive and negative signaling pathways.
        Eur J Immunol. 2014; 44: 2558-2566
        • Gilfillan A.M.
        • Tkaczyk C.
        Integrated signalling pathways for mast-cell activation.
        Nat Rev Immunol. 2006; 6: 218-230
        • Rivera J.
        • Gilfillan A.M.
        Molecular regulation of mast cell activation.
        J Allergy Clin Immunol. 2006; 117: 1214-1225
        • Vig M.
        • DeHaven W.I.
        • Bird G.S.
        • et al.
        Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release–activated calcium channels.
        Nat Immunol. 2008; 9: 89-96
        • Zhang S.L.
        • Yu Y.
        • Roos J.
        • et al.
        STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane.
        Nature. 2005; 437: 902-905
        • Peinelt C.
        • Vig M.
        • Koomoa D.L.
        • et al.
        Amplification of CRAC current by STIM1 and CRACM1 (Orai1).
        Nat Cell Biol. 2006; 8: 771-773
        • Ashmole I.
        • Duffy S.M.
        • Leyland M.L.
        • Morrison V.S.
        • Begg M.
        • Bradding P.
        CRACM/Orai ion channel expression and function in human lung mast cells.
        J Allergy Clin Immunol. 2012; 129: 1628-1635.e2
        • Ashmole I.
        • Duffy S.M.
        • Leyland M.L.
        • Bradding P.
        The contribution of Orai (CRACM) 1 and Orai (CRACM) 2 channels in store-operated Ca2 entry and mediator release in human lung mast cells.
        PLoS One. 2013; 8: e74895
        • Baba Y.
        • Nishida K.
        • Fujii Y.
        • Hirano T.
        • Hikida M.
        • Kurosaki T.
        Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses.
        Nat Immunol. 2008; 9: 81-88
        • Suzuki Y.
        • Yoshimaru T.
        • Inoue T.
        • Niide O.
        • Ra C.
        Role of oxidants in mast cell activation.
        Chem Immunol Allergy. 2005; 87: 32-42
        • Suzuki Y.
        • Yoshimaru T.
        • Matsui T.
        • et al.
        Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals.
        J Immunol. 2003; 171: 6119-6127
        • Kashiwakura J.
        • Otani I.M.
        • Kawakami T.
        Monomeric IgE and mast cell development, survival and function.
        in: Mast cell biology. Springer, USA2011: 29-46
        • Cruse G.
        • Kaur D.
        • Yang W.
        • Duffy S.M.
        • Brightling C.E.
        • Bradding P.
        Activation of human lung mast cells by monomeric immunoglobulin E.
        Eur Respir J. 2005; 25: 858-863
        • Bax H.J.
        • Bowen H.
        • Dodev T.S.
        • Sutton B.J.
        • Gould H.J.
        Mechanism of the antigen-independent cytokinergic SPE-7 IgE activation of human mast cells in vitro.
        Sci Rep. 2015; 5: 9538
        • Sears M.
        • Burrows B.
        • Flannery E.
        • Herbison G.
        • Hewitt C.
        • Holdaway M.
        Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children.
        N Engl J Med. 1991; 325: 1067-1071
        • Sunyer J.
        • Antó J.M.
        • Sabrià J.
        • et al.
        Relationship between serum IgE and airway responsiveness in adults with asthma.
        J Allergy Clin Immunol. 1995; 95: 699-706
        • Burrows B.
        • Martinez F.D.
        • Halonen M.
        • Barbee R.A.
        • Cline M.G.
        Association of asthma with serum IgE levels and skin-test reactivity to allergens.
        N Engl J Med. 1989; 320: 271-277
        • Corren J.
        • Casale T.
        • Deniz Y.
        • Ashby M.
        Omalizumab, a recombinant humanized anti-IgE antibody, reduces asthma-related emergency room visits and hospitalizations in patients with allergic asthma.
        J Allergy Clin Immunol. 2003; 111: 87-90
        • Djukanovic R.
        • Wilson S.J.
        • Kraft M.
        • et al.
        Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma.
        Am J Respir Crit Care Med. 2004; 170: 583-593
        • Garcia G.
        • Magnan A.
        • Chiron R.
        • et al.
        A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma.
        Chest. 2013; 144: 411-419
        • Takhar P.
        • Corrigan C.J.
        • Smurthwaite L.
        • et al.
        Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma.
        J Allergy Clin Immunol. 2007; 119: 213-218
        • Gauchat J.
        • Henchoz S.
        • Mazzei G.
        • et al.
        Induction of human IgE synthesis in B cells by mast cells and basophils.
        Nature. 1993; 365: 340-343
        • Pawankar R.
        • Okuda M.
        • Yssel H.
        • Okumura K.
        • Ra C.
        Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells.
        J Clin Invest. 1997; 99: 1492-1499
        • Marshall J.S.
        Mast-cell responses to pathogens.
        Nat Rev Immunol. 2004; 4: 787-799
        • Malaviya R.
        • Ikeda T.
        • Ross E.
        • Abraham S.N.
        Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α.
        Nature. 1996; 381: 77-80
        • Genovese A.
        • Bouvet J.P.
        • Florio G.
        • Lamparter-Schummert B.
        • Bjorck L.
        • Marone G.
        Bacterial immunoglobulin superantigen proteins A and L activate human heart mast cells by interacting with immunoglobulin E.
        Infect Immun. 2000; 68: 5517-5524
        • Zhang D.
        • Spielmann A.
        • Wang L.
        • et al.
        Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2.
        Physiol Res. 2012; 61: 113-124
        • Freichel M.
        • Almering J.
        • Tsvilovskyy V.
        The role of TRP proteins in mast cells.
        Front Immunol. 2012; 3: 150
        • Karra L.
        • Levi-Schaffer F.
        Down-regulation of mast cell responses through ITIM containing inhibitory receptors.
        in: Mast cell biology. Springer, USA2011: 143-159
        • Bachelet I.
        • Munitz A.
        • Berent-Maoz B.
        • Mankuta D.
        • Levi-Schaffer F.
        Suppression of normal and malignant kit signaling by a bispecific antibody linking kit with CD300a.
        J Immunol. 2008; 180: 6064-6069
        • Sutherland R.E.
        • Olsen J.S.
        • McKinstry A.
        • Villalta S.A.
        • Wolters P.J.
        Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing.
        J Immunol. 2008; 181: 5598-5605
        • Xu X.
        • Zhang D.
        • Lyubynska N.
        • et al.
        Mast cells protect mice from mycoplasma pneumonia.
        Am J Respir Crit Care Med. 2006; 173: 219-225
        • Kerr A.R.
        • Irvine J.J.
        • Search J.J.
        • et al.
        Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection.
        Infect Immun. 2002; 70: 1547-1557
        • Carlos D.
        • Frantz F.G.
        • Souza-Júnior D.A.
        • et al.
        TLR2-dependent mast cell activation contributes to the control of Mycobacterium tuberculosis infection.
        Microbes Infect. 2009; 11: 770-778
        • Johnzon C.
        • Rönnberg E.
        • Pejler G.
        The role of mast cells in bacterial infection.
        Am J Pathol. 2016; 186: 4-14
        • Cruse G.
        • Fernandes V.E.
        • de Salort J.
        • et al.
        Human lung mast cells mediate pneumococcal cell death in response to activation by pneumolysin.
        J Immunol. 2010; 184: 7108-7115
        • Thakurdas S.M.
        • Melicoff E.
        • Sansores-Garcia L.
        • et al.
        The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections.
        J Biol Chem. 2007; 282: 20809-20815
        • Metz M.
        • Maurer M.
        Mast cells—key effector cells in immune responses.
        Trends Immunol. 2007; 28: 234-241
        • Oskeritzian C.A.
        • Zhao W.
        • Min H.
        • et al.
        Surface CD88 functionally distinguishes the MC TC from the MC T type of human lung mast cell.
        J Allergy Clin Immunol. 2005; 115: 1162-1168
        • Marc M.M.
        • Korosec P.
        • Kosnik M.
        • et al.
        Complement factors c3a, c4a, and c5a in chronic obstructive pulmonary disease and asthma.
        Am J Respir Cell Mol Biol. 2004; 31: 216-219
        • Kulka M.
        • Alexopoulou L.
        • Flavell R.A.
        • Metcalfe D.D.
        Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3.
        J Allergy Clin Immunol. 2004; 114: 174-182
        • Emre U.
        • Sokolovskaya N.
        • Roblin P.M.
        • Schachter J.
        • Hammerschlag M.R.
        Detection of anti-Chlamydia pneumoniae IgE in children with reactive airway disease.
        J Infect Dis. 1995; 172: 265-267
        • Dakhama A.
        • Lee Y.
        • Ohnishi H.
        • et al.
        Virus-specific IgE enhances airway responsiveness on reinfection with respiratory syncytial virus in newborn mice.
        J Allergy Clin Immunol. 2009; 123: 138-145.e5
        • Picard M.
        • Giavina-Bianchi P.
        • Mezzano V.
        • Castells M.
        Expanding spectrum of mast cell activation disorders: monoclonal and idiopathic mast cell activation syndromes.
        Clin Ther. 2013; 35: 548-562
        • Akin C.
        • Valent P.
        • Metcalfe D.D.
        Mast cell activation syndrome: proposed diagnostic criteria.
        J Allergy Clin Immunol. 2010; 126: 1099-1104.e4
        • Valent P.
        • Akin C.
        • Sperr W.
        • et al.
        Mastocytosis: pathology, genetics, and current options for therapy.
        Leuk Lymphoma. 2005; 46: 35-48
        • Akin C.
        • Scott L.M.
        • Kocabas C.N.
        • et al.
        Demonstration of an aberrant mast-cell population with clonal markers in a subset of patients with “idiopathic” anaphylaxis.
        Blood. 2007; 110: 2331-2333
        • Valent P.
        • Horny H.
        • Escribano L.
        • et al.
        Diagnostic criteria and classification of mastocytosis: a consensus proposal.
        Leuk Res. 2001; 25: 603-625
        • Metcalfe D.D.
        Regulation of normal and neoplastic human mast cell development in mastocytosis.
        Trans Am Clin Climatol Assoc. 2005; 116 (discussion 203–4): 185-203
        • Mochizuki H.
        • Morikawa A.
        • Kurosawa M.
        Bronchial hyperresponsiveness in a patient with systemic mastocytosis.
        Respirology. 2002; 7: 285-288
        • Sancho-Chust J.N.
        • Chiner E.
        • Camarasa A.
        • Llombart M.
        Recent-onset bronchial asthma as a manifestation of systemic mastocytosis.
        J Investig Allergol Clin Immunol. 2009; 19: 513-515
        • Stutzman L.
        • Zsoldos S.
        • Ambrus J.L.
        • Asboe-Hansen G.
        Systemic mast cell disease. Physiologic considerations and report of a patient treated with nitrogen mustard.
        Am J Med. 1960; 29: 894-901
        • Bayle J.Y.
        • Arnouk H.
        • de Perthuis D.
        • et al.
        Indolent mastocytosis and bronchial hyperreactivity. A case report.
        Rev Mal Respir. 1994; 11: 503-506
        • Verstovsek S.
        Advanced systemic mastocytosis: the impact of KIT mutations in diagnosis, treatment, and progression.
        Eur J Haematol. 2013; 90: 89-98
        • Laprise C.
        • Boulet L.
        • Morissette J.
        • Winstall E.
        • Raymond V.
        Evidence for association and linkage between atopy, airway hyper-responsiveness, and the β subunit Glu237Gly variant of the high-affinity receptor for immunoglobulin E in the French-Canadian population.
        Immunogenetics. 2000; 51: 695-702
        • Cruse G.
        • Music S.
        • Bradding P.
        • Beaven M.
        • Metcalfe D.
        MS4A4 regulates KIT receptor trafficking, signaling and function in mast cells (HYP3P. 343).
        J Immunol. 2014; 192 (54.1)
        • Cruse G.
        • Beaven M.A.
        • Music S.C.
        • Bradding P.
        • Metcalfe D.D.
        The Fc [epsilon] ri [beta] homologue, MS4A4, promotes Fc [epsilon] ri-dependent human mast cell degranulation by facilitating PLC [gamma] 1 signaling.
        J Allergy Clin Immunol. 2015; 135: AB240
        • Cruse G.
        • Kaur D.
        • Leyland M.
        • Bradding P.
        A novel FcepsilonRIbeta-chain truncation regulates human mast cell proliferation and survival.
        FASEB J. 2010; 24: 4047-4057
        • Cruse G.
        • Beaven M.A.
        • Music S.C.
        • Bradding P.
        • Gilfillan A.M.
        • Metcalfe D.D.
        The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling.
        Mol Biol Cell. 2015; 26: 1711-1727
        • Sampson H.A.
        • Muñoz-Furlong A.
        • Campbell R.L.
        • et al.
        Second symposium on the definition and management of anaphylaxis: summary report—Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium.
        Ann Emerg Med. 2006; 47: 373-380
        • Braganza S.C.
        • Acworth J.P.
        • Mckinnon D.R.
        • Peake J.E.
        • Brown A.F.
        Paediatric emergency department anaphylaxis: different patterns from adults.
        Arch Dis Child. 2006; 91: 159-163
        • Vadas P.
        • Gold M.
        • Perelman B.
        • et al.
        Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis.
        N Engl J Med. 2008; 358: 28-35
        • Bock S.A.
        • Muñoz-Furlong A.
        • Sampson H.A.
        Fatalities due to anaphylactic reactions to foods.
        J Allergy Clin Immunol. 2001; 107: 191-193
        • Molderings G.J.
        • Kolck U.W.
        • Scheurlen C.
        • Brüss M.
        • Homann J.
        • Von Kügelgen I.
        Multiple novel alterations in Kit tyrosine kinase in patients with gastrointestinally pronounced systemic mast cell activation disorder.
        Scand J Gastroenterol. 2007; 42: 1045-1053
        • Molderings G.J.
        • Meis K.
        • Kolck U.W.
        • Homann J.
        • Frieling T.
        Comparative analysis of mutation of tyrosine kinase kit in mast cells from patients with systemic mast cell activation syndrome and healthy subjects.
        Immunogenetics. 2010; 62: 721-727
        • Lawley W.
        • Hird H.
        • Mallinder P.
        • et al.
        Detection of an activating c-kit mutation by real-time PCR in patients with anaphylaxis.
        Mutat Res. 2005; 572: 1-13
        • Masoli M.
        • Fabian D.
        • Holt S.
        • Beasley R.
        The global burden of asthma: executive summary of the GINA Dissemination Committee report.
        Allergy. 2004; 59: 469-478
        • Choy D.F.
        • Hart K.M.
        • Borthwick L.A.
        • et al.
        TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma.
        Sci Transl Med. 2015; 7: 301ra129
        • Bradding P.
        • Roberts J.A.
        • Britten K.M.
        • et al.
        Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines.
        Am J Respir Cell Mol Biol. 1994; 10: 471-480
        • Carroll N.G.
        • Mutavdzic S.
        • James A.L.
        Distribution and degranulation of airway mast cells in normal and asthmatic subjects.
        Eur Respir J. 2002; 19: 879-885
        • Carroll N.G.
        • Mutavdzic S.
        • James A.L.
        Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma.
        Thorax. 2002; 57: 677-682
        • Woodman L.
        • Siddiqui S.
        • Cruse G.
        • et al.
        Mast cells promote airway smooth muscle cell differentiation via autocrine up-regulation of TGF-beta 1.
        J Immunol. 2008; 181: 5001-5007
        • El-Shazly A.
        • Berger P.
        • Girodet P.O.
        • et al.
        Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma.
        J Immunol. 2006; 176: 1860-1868
        • Ghaffar O.
        • Hamid Q.
        • Renzi P.M.
        • et al.
        Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells.
        Am J Respir Crit Care Med. 1999; 159: 1933-1942
        • Brightling C.E.
        • Ammit A.J.
        • Kaur D.
        • et al.
        The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle.
        Am J Respir Crit Care Med. 2005; 171: 1103-1108
        • Berger P.
        • Girodet P.O.
        • Begueret H.
        • et al.
        Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis.
        FASEB J. 2003; 17: 2139-2141
        • Sutcliffe A.
        • Hollins F.
        • Gomez E.
        • et al.
        Increased nicotinamide adenine dinucleotide phosphate oxidase 4 expression mediates intrinsic airway smooth muscle hypercontractility in asthma.
        Am J Respir Crit Care Med. 2012; 185: 267-274
        • Swindle E.J.
        • Hunt J.A.
        • Coleman J.W.
        A comparison of reactive oxygen species generation by rat peritoneal macrophages and mast cells using the highly sensitive real-time chemiluminescent probe pholasin: inhibition of antigen-induced mast cell degranulation by macrophage-derived hydrogen peroxide.
        J Immunol. 2002; 169: 5866-5873
        • Martin N.
        • Ruddick A.
        • Arthur G.K.
        • et al.
        Primary human airway epithelial cell-dependent inhibition of human lung mast cell degranulation.
        PLoS One. 2012; 7: e43545
        • American Thoracic Society
        Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement.
        Am J Respir Crit Care Med. 2000; 161: 646-664
        • Ahluwalia N.
        • Shea B.S.
        • Tager A.M.
        New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses.
        Am J Respir Crit Care Med. 2014; 190: 867-878
        • Hunt L.W.
        • Colby T.V.
        • Weiler D.A.
        • Sur S.
        • Butterfield J.H.
        Immunofluorescent staining for mast cells in idiopathic pulmonary fibrosis: quantification and evidence for extracellular release of mast cell tryptase.
        Mayo Clinic Proceedings. 1992; 67: 941-948
        • Kawanami O.
        • Ferrans V.J.
        • Fulmer J.D.
        • Crystal R.G.
        Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders.
        Lab Invest. 1979; 40: 717-734
        • Rankin J.A.
        • Kaliner M.
        • Reynolds H.Y.
        Histamine levels in bronchoalveolar lavage from patients with asthma, sarcoidosis, and idiopathic pulmonary fibrosis.
        J Allergy Clin Immunol. 1987; 79: 371-377
        • Casale T.B.
        • Trapp S.
        • Zehr B.
        • Hunninghake G.W.
        Bronchoalveolar lavage fluid histamine levels in interstitial lung diseases.
        Am Rev Respir Dis. 1988; 138: 1604-1608
        • Yang F.C.
        • Chen S.
        • Clegg T.
        • et al.
        Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling.
        Hum Mol Genet. 2006; 15: 2421-2437
        • Inoue Y.
        • King Jr., T.E.
        • Tinkle S.S.
        • Dockstader K.
        • Newman L.S.
        Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders.
        Am J Pathol. 1996; 149: 2037-2054
        • Taipale J.
        • Lohi J.
        • Saarinen J.
        • Kovanen P.T.
        • Keski-Oja J.
        Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells.
        J Biol Chem. 1995; 270: 4689-4696
        • Lindstedt K.A.
        • Wang Y.
        • Shiota N.
        • et al.
        Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase.
        FASEB J. 2001; 15: 1377-1388
        • Kosanovic D.
        • Luitel H.
        • Dahal B.K.
        • et al.
        Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis.
        Eur Respir J. 2015; 46: 1084-1094
        • Wygrecka M.
        • Dahal B.K.
        • Kosanovic D.
        • et al.
        Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-α/Raf-1/p44/42 signaling pathway.
        Am J Pathol. 2013; 182: 2094-2108
        • Gailit J.
        • Marchese M.J.
        • Kew R.R.
        • Gruber B.L.
        The differentiation and function of myofibroblasts is regulated by mast cell mediators.
        J Invest Dermatol. 2001; 117: 1113-1119
        • Rubenfeld G.D.
        • Herridge M.S.
        Epidemiology and outcomes of acute lung injury.
        Chest. 2007; 131: 554-562
        • Seeley E.J.
        Updates in the acute respiratory distress syndrome definitions, epidemiology, pathogenesis, and treatment.
        ICU Director. 2012; 3: 224-229
        • Matthay M.A.
        • Zemans R.L.
        The acute respiratory distress syndrome: pathogenesis and treatment.
        Annu Rev Pathol. 2011; 6: 147-163
        • Seeley E.J.
        • McAuley D.F.
        • Eisner M.
        • et al.
        Decreased respiratory system compliance on the sixth day of mechanical ventilation is a predictor of death in patients with established acute lung injury.
        Respir Res. 2011; 12: 52
        • Meduri G.U.
        • Tolley E.A.
        • Chinn A.
        • Stentz F.
        • Postlethwaite A.
        Critical Care and Pulmonary Circulation: Procollagen types I and III aminoterminal propeptide levels during acute respiratory distress syndrome and in response to methylprednisolone treatment.
        Am J Respir Crit Care Med. 1998; 158: 1432-1441
        • Gan X.
        • Liu D.
        • Huang P.
        • Gao W.
        • Chen X.
        • Hei Z.
        Mast-cell-releasing tryptase triggers acute lung injury induced by small intestinal ischemia–reperfusion by activating PAR-2 in rats.
        Inflammation. 2012; 35: 1144-1153
        • Zhao W.
        • Gan X.
        • Su G.
        • et al.
        The interaction between oxidative stress and mast cell activation plays a role in acute lung injuries induced by intestinal ischemia–reperfusion.
        J Surg Res. 2014; 187: 542-552
        • Villar J.
        • Cabrera-Benítez N.E.
        • Valladares F.
        • et al.
        Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury.
        Crit Care. 2015; 19: 1-9
        • Luo C.
        • Yuan D.
        • Zhao W.
        • et al.
        Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress.
        Mol Med Rep. 2015; 12: 1082-1090
        • Liebler J.M.
        • Qu Z.
        • Buckner B.
        • Powers M.R.
        • Rosenbaum J.T.
        Fibroproliferation and mast cells in the acute respiratory distress syndrome.
        Thorax. 1998; 53: 823-829
        • Zhang A.
        • Chi X.
        • Luo G.
        • et al.
        Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.
        PLoS One. 2013; 8: e75262
        • Thomas K.C.
        • Roberts J.K.
        • Deering-Rice C.E.
        • et al.
        Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2012; 302: 111-119
        • Tsuji F.
        • Murai M.
        • Oki K.
        • et al.
        Effects of SA13353, a transient receptor potential vanilloid 1 agonist, on leukocyte infiltration in lipopolysaccharide-induced acute lung injury and ovalbumin-induced allergic airway inflammation.
        J Pharmacol Sci. 2010; 112: 487-490
        • Ang S.F.
        • Sio S.W.
        • Moochhala S.M.
        • MacAry P.A.
        • Bhatia M.
        Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation.
        J Immunol. 2011; 187: 4778-4787
        • Costa B.
        • Comelli F.
        • Bettoni I.
        • Colleoni M.
        • Giagnoni G.
        The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors.
        Pain. 2008; 139: 541-550
        • Di A.
        • Gao X.P.
        • Qian F.
        • et al.
        The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation.
        Nat Immunol. 2012; 13: 29-34
        • Tauseef M.
        • Knezevic N.
        • Chava K.R.
        • et al.
        TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation.
        J Exp Med. 2012; 209: 1953-1968
        • Alvarez D.F.
        • King J.A.
        • Weber D.
        • Addison E.
        • Liedtke W.
        • Townsley M.I.
        Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury.
        Circ Res. 2006; 99: 988-995
        • Hamanaka K.
        • Jian M.Y.
        • Townsley M.I.
        • et al.
        TRPV4 channels augment macrophage activation and ventilator-induced lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2010; 299: 353-362
        • Hamanaka K.
        • Jian M.Y.
        • Weber D.S.
        • et al.
        TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs.
        Am J Physiol Lung Cell Mol Physiol. 2007; 293: 923-932
        • Simonneau G.
        • Gatzoulis M.A.
        • Adatia I.
        • et al.
        Updated clinical classification of pulmonary hypertension.
        J Am Coll Cardiol. 2013; 62: D34-D41
        • Hoffmann J.
        • Yin J.
        • Kukucka M.
        • et al.
        Mast cells promote lung vascular remodelling in pulmonary hypertension.
        Eur Respir J. 2011; 37: 1400-1410
        • Montani D.
        • Lang I.M.
        Mast cells: bridging the gap between pre- and post-capillary pulmonary hypertension?.
        Eur Respir J. 2011; 37: 1303-1305
        • Farha S.
        • Dweik R.
        • Rahaghi F.
        • et al.
        Imatinib in pulmonary arterial hypertension: c-kit inhibition.
        Pulm Circ. 2014; 4: 452
        • Montani D.
        • Perros F.
        • Gambaryan N.
        • et al.
        C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension.
        Am J Respir Crit Care Med. 2011; 184: 116-123
        • Farha S.
        • Sharp J.
        • Asosingh K.
        • et al.
        Mast cell number, phenotype, and function in human pulmonary arterial hypertension.
        Pulm Circ. 2012; 2: 220
        • Mitani Y.
        • Ueda M.
        • Maruyama K.
        • et al.
        Mast cell chymase in pulmonary hypertension.
        Thorax. 1999; 54: 88-90
        • Heath D.
        • Yacoub M.
        Lung mast cells in plexogenic pulmonary arteriopathy.
        J Clin Pathol. 1991; 44: 1003-1006
        • Hoeper M.M.
        • Barst R.J.
        • Bourge R.C.
        • et al.
        Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study.
        Circulation. 2013; 127: 1128-1138
        • Mauad T.
        • Pozzan G.
        • Lanças T.
        • et al.
        Immunopathological aspects of schistosomiasis-associated pulmonary arterial hypertension.
        J Infect. 2014; 68: 90-98
        • Hamada H.
        • Terai M.
        • Kimura H.
        • Hirano K.
        • Oana S.
        • Niimi H.
        Increased expression of mast cell chymase in the lungs of patients with congenital heart disease associated with early pulmonary vascular disease.
        Am J Respir Crit Care Med. 1999; 160: 1303-1308
        • Grützkau A.
        • Krüger-Krasagakes S.
        • Baumeister H.
        • et al.
        Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206.
        Mol Biol Cell. 1998; 9: 875-884
        • Boesiger J.
        • Tsai M.
        • Maurer M.
        • et al.
        Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression.
        J Exp Med. 1998; 188: 1135-1145
        • Abdel-Majid R.M.
        • Marshall J.S.
        Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells.
        J Immunol. 2004; 172: 1227-1236
        • Kumpers P.
        • Nickel N.
        • Lukasz A.
        • et al.
        Circulating angiopoietins in idiopathic pulmonary arterial hypertension.
        Eur Heart J. 2010; 31: 2291-2300
        • Voelkel N.F.
        • Gomez-Arroyo J.
        The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox.
        Am J Respir Cell Mol Biol. 2014; 51: 474-484
        • Archer S.L.
        • Weir E.K.
        • Wilkins M.R.
        Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies.
        Circulation. 2010; 121: 2045-2066
        • Louis R.E.
        • Cataldo D.
        • Buckley M.G.
        • et al.
        Evidence of mast-cell activation in a subset of patients with eosinophilic chronic obstructive pulmonary disease.
        Eur Respir J. 2002; 20: 325-331
        • Andersson C.K.
        • Mori M.
        • Bjermer L.
        • Löfdahl C.
        • Erjefält J.S.
        Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2010; 181: 206-217
        • Gosman M.M.
        • Postma D.S.
        • Vonk J.M.
        • et al.
        Association of mast cells with lung function in chronic obstructive pulmonary disease.
        Respir Res. 2008; 9: 64
        • Kosanovic D.
        • Dahal B.K.
        • Peters D.M.
        • et al.
        Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease.
        Pulm Circ. 2014; 4: 128
        • Ekberg-Jansson A.
        • Amin K.
        • Bake B.
        • et al.
        Bronchial mucosal mast cells in asymptomatic smokers relation to structure, lung function and emphysema.
        Respir Med. 2005; 99: 75-83
        • Kalenderian R.
        • Raju L.
        • Roth W.
        • Schwartz L.
        • Gruber B.
        • Janoff A.
        Elevated histamine and tryptase levels in smokers' bronchoalveolar lavage fluid. Do lung mast cells contribute to smokers' emphysema?.
        Chest. 1988; 94: 119-123
        • Zhang X.
        • Zheng H.
        • Ma W.
        • et al.
        Tryptase enzyme activity is correlated with severity of chronic obstructive pulmonary disease.
        Tohoku J Exp Med. 2011; 224: 179-187
        • Zhu J.
        • Bandi V.
        • Qiu S.
        • et al.
        Cysteinyl leukotriene 1 receptor expression associated with bronchial inflammation in severe exacerbations of COPD.
        Chest. 2012; 142: 347-357
        • Ballarin A.
        • Bazzan E.
        • Zenteno R.H.
        • et al.
        Mast cell infiltration discriminates between histopathological phenotypes of chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2012; 186: 233-239
        • Theoharides T.C.
        • Conti P.
        Mast cells: the Jekyll and Hyde of tumor growth.
        Trends Immunol. 2004; 25: 235-241
        • Takanami I.
        • Takeuchi K.
        • Naruke M.
        Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma.
        Cancer. 2000; 88: 2686-2692
        • Imada A.
        • Shijubo N.
        • Kojima H.
        • Abe S.
        Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma.
        Eur Respir J. 2000; 15: 1087-1093
        • Welsh T.J.
        • Green R.H.
        • Richardson D.
        • Waller D.A.
        • O'Byrne K.J.
        • Bradding P.
        Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer.
        J Clin Oncol. 2005; 23: 8959-8967
        • Humbert M.
        • De Blay F.
        • Garcia G.
        • et al.
        Masitinib, ac-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics.
        Allergy. 2009; 64: 1194-1201
        • Bowler R.P.
        • Crapo J.D.
        Oxidative stress in allergic respiratory diseases.
        J Allergy Clin Immunol. 2002; 110: 349-356
        • Holguin F.
        Oxidative stress in airway diseases.
        Ann Am Thorac Soc. 2013; 10: S150-S157
        • Kinnula V.L.
        • Fattman C.L.
        • Tan R.J.
        • Oury T.D.
        Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy.
        Am J Respir Crit Care Med. 2005; 172: 417-422
        • Swindle E.J.
        • Metcalfe D.D.
        The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes.
        Immunol Rev. 2007; 217: 186-205
        • Oh M.H.
        • Oh S.Y.
        • Lu J.
        • et al.
        TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis.
        J Immunol. 2013; 191: 5371-5382
        • Oda S.
        • Uchida K.
        • Wang X.
        • et al.
        TRPM2 contributes to antigen-stimulated Ca2 influx in mucosal mast cells.
        Pflugers Arch. 2013; 465: 1023-1030
        • Banasova A.
        • Maxova H.
        • Hampl V.
        • et al.
        Prevention of mast cell degranulation by disodium cromoglycate attenuates the development of hypoxic pulmonary hypertension in rats exposed to chronic hypoxia.
        Respiration. 2008; 76: 102-107
        • Novotný T.
        • Krejčí J.
        • Malíková J.
        • et al.
        Mast cell stabilization with sodium cromoglycate modulates pulmonary vessel wall remodeling during four-day hypoxia in rats.
        Exp Lung Res. 2015; 41: 283-292
        • Okayama Y.
        • Church M.
        Comparison of the modulatory effect of ketotifen, sodium cromoglycate, procaterol and salbutamol in human skin, lung and tonsil mast cells.
        Int Arch Allergy Immunol. 1992; 97: 216-225
        • Cruse G.
        • Yang W.
        • Duffy S.M.
        • et al.
        Counterregulation of β 2-adrenoceptor function in human mast cells by stem cell factor.
        J Allergy Clin Immunol. 2010; 125: 257-263.e1–5
        • Holgate S.T.
        New strategies with anti-IgE in allergic diseases.
        World Allergy Organ J. 2014; 7: 1-7
        • Normansell R.
        • Walker S.
        • Milan S.J.
        • Walters E.H.
        • Nair P.
        Omalizumab for asthma in adults and children.
        The Cochrane Library, 2014 (CD003559)
        • Matsubara S.
        • Li G.
        • Takeda K.
        • et al.
        Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness.
        Am J Respir Crit Care Med. 2006; 173: 56-63
        • Duffy S.M.
        • Lawley W.J.
        • Conley E.C.
        • Bradding P.
        Resting and activation-dependent ion channels in human mast cells.
        J Immunol. 2001; 167: 4261-4270
        • Duffy S.M.
        • Berger P.
        • Cruse G.
        • Yang W.
        • Bolton S.J.
        • Bradding P.
        The K channel iK CA 1 potentiates Ca 2 influx and degranulation in human lung mast cells.
        J Allergy Clin Immunol. 2004; 114: 66-72
        • Duffy S.M.
        • Ashmole I.
        • Smallwood D.T.
        • Leyland M.L.
        • Bradding P.
        Orai/CRACM1 and KCa3.1 ion channels interact in the human lung mast cell plasma membrane.
        Cell Commun Signal. 2015; 13: 32
        • Van Der Velden J.
        • Sum G.
        • Barker D.
        • et al.
        K Ca 3.1 channel-blockade attenuates airway pathophysiology in a sheep model of chronic asthma.
        PLoS One. 2013; 8: e66886
        • Girodet P.
        • Ozier A.
        • Carvalho G.
        • et al.
        Ca2-activated K channel–3.1 blocker TRAM-34 attenuates airway remodeling and eosinophilia in a murine asthma model.
        Am J Respir Cell Mol Biol. 2013; 48: 212-219
        • Arthur G.K.
        • Duffy S.M.
        • Roach K.M.
        • et al.
        KCa3. 1 K channel expression and function in human bronchial epithelial cells.
        PLoS One. 2015; 10: e0145259
        • Roach K.M.
        • Duffy S.M.
        • Coward W.
        • Feghali-Bostwick C.
        • Wulff H.
        • Bradding P.
        The K channel KCa3. 1 as a novel target for idiopathic pulmonary fibrosis.
        PLoS One. 2013; 8: e85244
        • Chachi L.
        • Shikotra A.
        • Duffy S.M.
        • et al.
        Functional KCa3.1 channels regulate steroid insensitivity in bronchial smooth muscle cells.
        J Immunol. 2013; 191: 2624-2636
        • Clark J.M.
        • Abraham W.M.
        • Fishman C.E.
        • et al.
        Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep.
        Am J Respir Crit Care Med. 1995; 152: 2076-2083
        • Erin E.
        • Leaker B.
        • Zacharasiewicz A.
        • et al.
        Effects of a reversible β-tryptase and trypsin inhibitor (RWJ-58643) on nasal allergic responses.
        Clin Exp Allergy. 2006; 36: 458-464
        • Sakaguchi M.
        • Takai S.
        • Jin D.
        • et al.
        A specific chymase inhibitor, NK3201, suppresses bleomycin-induced pulmonary fibrosis in hamsters.
        Eur J Pharmacol. 2004; 493: 173-176
        • Tomimori Y.
        • Muto T.
        • Saito K.
        • et al.
        Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice.
        Eur J Pharmacol. 2003; 478: 179-185
        • Diamant Z.
        • Sidharta P.
        • Singh D.
        • et al.
        Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics.
        Clin Exp Allergy. 2014; 44: 1044-1052
        • Haldar P.
        • Brightling C.E.
        • Hargadon B.
        • et al.
        Mepolizumab and exacerbations of refractory eosinophilic asthma.
        N Engl J Med. 2009; 360: 973-984
        • Corren J.
        • Lemanske Jr., R.F.
        • Hanania N.A.
        • et al.
        Lebrikizumab treatment in adults with asthma.
        N Engl J Med. 2011; 365: 1088-1098