Advertisement

Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology

  • Tony W. Wilson
    Correspondence
    Reprint requests: Tony W. Wilson, Center for Magnetoencephalography, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198
    Affiliations
    Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb

    Center for Magnetoencephalography, UNMC, Omaha, Neb

    Department of Neurological Sciences, UNMC, Omaha, Neb
    Search for articles by this author
  • Elizabeth Heinrichs-Graham
    Affiliations
    Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb

    Center for Magnetoencephalography, UNMC, Omaha, Neb
    Search for articles by this author
  • Amy L. Proskovec
    Affiliations
    Center for Magnetoencephalography, UNMC, Omaha, Neb

    Department of Psychology, University of Nebraska - Omaha, Neb
    Search for articles by this author
  • Timothy J. McDermott
    Affiliations
    Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb

    Center for Magnetoencephalography, UNMC, Omaha, Neb
    Search for articles by this author
Published:January 25, 2016DOI:https://doi.org/10.1016/j.trsl.2016.01.007
      Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (∼1 ms) and good spatial precision (∼3–5 mm). In a typical experiment, MEG data are acquired as healthy controls or patients with neurologic or psychiatric disorders perform a specific cognitive task, or receive sensory stimulation. The resulting data are generally analyzed using standard electrophysiological methods, coupled with advanced image reconstruction algorithms. To date, the total number of MEG instruments and associated users is significantly smaller than comparable human neuroimaging techniques, although this is likely to change in the near future with advances in the technology. Despite this small base, MEG research has made a significant impact on several areas of translational neuroscience, largely through its unique capacity to quantify the oscillatory dynamics of activated brain circuits in humans. This review focuses on the clinical areas where MEG imaging has arguably had the greatest impact in regard to the identification of aberrant neural dynamics at the regional and network level, monitoring of disease progression, determining how efficacious pharmacologic and behavioral interventions modulate neural systems, and the development of neural markers of disease. Specifically, this review covers recent advances in understanding the abnormal neural oscillatory dynamics that underlie Parkinson's disease, autism spectrum disorders, human immunodeficiency virus (HIV)-associated neurocognitive disorders, cerebral palsy, attention-deficit hyperactivity disorder, cognitive aging, and post-traumatic stress disorder. MEG imaging has had a major impact on how clinical neuroscientists understand the brain basis of these disorders, and its translational influence is rapidly expanding with new discoveries and applications emerging continuously.

      Abbreviations:

      MEG (magnetoencephalography), HIV (human immunodeficiency virus), Hz (hertz), ERD (event-related desynchronization), ERS (event-related synchronization), ASD (autism spectrum disorder), s (second), fMRI (functional magnetic resonance imaging), ADHD (attention-deficit hyperactivity disorder), DMN (default-mode network), MPFC (medial prefrontal cortices), PCC (posterior cingulate cortices), RIPL (right inferior parietal), LIPL (left inferior parietal), PTSD (post-traumatic stress disorder), HAND (HIV-associated neurocognitive disorder), PD (Parkinson’s disease), LFP (local field potential), DBS (deep-brain stimulation), PMBR (post-movement beta rebound), CP (cerebral palsy)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cohen D.S.
        Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents.
        Science. 1968; 161: 784-786
        • Wilson T.W.
        Noninvasive neurophysiological imaging with magnetoencephalography.
        in: Xiong H. Gendelman H.E. Current laboratory methods in neuroscience research. Springer Press, New York2014: 293-311
      1. Supek S. Aine C.J. Magnetoencephalography: from signals to dynamic cortical networks. Springer Press, Berlin Heidelberg2014
      2. Hansen P.C. Kringelbach M.L. Salmelin R. MEG: an introduction to the methods. Oxford University Press, New York2010
        • Hari R.
        • Salmelin R.
        Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th anniversary special edition.
        Neuroimage. 2012; 61: 386-396
        • Hämäläinen M.
        • Hari R.
        • Ilmoniemi R.J.
        • Knuutila J.
        • Lounasmaa O.V.
        Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain.
        Rev Mod Phys. 1993; 65: 413-495
        • Murakami S.
        • Okada Y.
        Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals.
        J Physiol. 2006; 575: 925-936
        • Hillebrand A.
        • Barnes G.R.
        A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex.
        Neuroimage. 2002; 16: 638-650
        • Bagić A.
        Look back to leap forward: the emerging new role of magnetoencephalography (MEG) in nonlesional epilepsy.
        Clin Neurophysiol. 2016; 127 ([Review]): 60-66
        • Stufflebeam S.M.
        Clinical magnetoencephalography for neurosurgery.
        Neurosurg Clin N Am. 2011; 22 (vii–viii): 153-167
        • Stufflebeam S.M.
        • Tanaka N.
        • Ahlfors S.P.
        Clinical applications of magnetoencephalography.
        Hum Brain Mapp. 2009; 30: 1813-1823
        • Stefan H.
        • Rampp S.
        • Knowlton R.C.
        Magnetoencephalography adds to the surgical evaluation process.
        Epilepsy Behav. 2011; 20: 172-177
        • Tanaka N.
        • Stufflebeam S.M.
        Clinical application of spatiotemporal distributed source analysis in presurgical evaluation of epilepsy.
        Front Hum Neurosci. 2014; 8 ([Review]): 62
        • Jensen O.
        • Spaak E.
        • Zumer J.M.
        Human brain oscillations: from physiological mechanisms to analysis and cognition.
        in: Supek S. Aine C.J. Magnetoencephalography: from signals to dynamic cortical networks. Springer Press, Berlin Heidelberg2014: 359-403
        • Uhlhaas P.J.
        • Pipa G.
        • Lima B.
        • et al.
        Neural synchrony in cortical networks: history, concept and current status.
        Front Integr Neurosci. 2009; 3: 17
        • Schoffelen J.M.
        • Gross J.
        Studying dynamic neural interactions with MEG.
        in: Supek S. Aine C.J. Magnetoencephalography: from signals to dynamic cortical networks. Springer Press, Berlin Heidelberg2014: 359-403
        • Rojas D.C.
        • Wilson L.B.
        γ-band abnormalities as markers of autism spectrum disorders.
        Biomark Med. 2014; 8: 353-368
        • McFadden K.L.
        • Rojas D.C.
        Electrophysiology of autism.
        in: Recent advances in autism spectrum disorders. vol II. 2013 (ISBN: 978-953-51-1022-4, InTech, Rijeka, Croatia)
        • Rojas D.C.
        The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment.
        J Neural Transm. 2014; 121: 891-905
        • Wilson T.W.
        • Rojas D.C.
        • Reite M.L.
        • Teale P.D.
        • Rogers S.J.
        Children and adolescents with autism exhibit reduced MEG steady-state gamma responses.
        Biol Psychiatry. 2007; 62: 192-197
        • Rojas D.
        • Maharajh K.
        • Teale P.
        • Rogers S.
        Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism.
        BMC Psychiatry. 2008; 8: 66
        • Gandal M.J.
        • Edgar J.C.
        • Ehrlichman R.S.
        • Mehta M.
        • Roberts T.P.
        • Siegel S.J.
        Validating γ oscillations and delayed auditory responses as translational biomarkers of autism.
        Biol Psychiatry. 2010; 68: 1100-1106
        • Edgar J.C.
        • Khan S.Y.
        • Blaskey L.
        • et al.
        Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders.
        J Autism Dev Disord. 2015; 45: 395-405
        • Rojas D.C.
        • Teale P.D.
        • Maharajh K.
        • et al.
        Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder.
        Mol Autism. 2011; 2: 11
        • Gage N.M.
        • Siegel B.
        • Roberts T.P.
        Cortical auditory system maturational abnormalities in children with autism disorder: an MEG investigation.
        Brain Res Dev Brain Res. 2003; 144: 201-209
        • Roberts T.P.
        • Khan S.Y.
        • Rey M.
        • et al.
        MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging bio-marker for autism.
        Autism Res. 2010; 3: 8-18
        • Van Hecke A.V.
        • Stevens S.
        • Carson A.M.
        • et al.
        Measuring the plasticity of social approach: a randomized controlled trial of the effects of the PEERS intervention on EEG asymmetry in adolescents with autism spectrum disorders.
        J Autism Dev Disord. 2015; 45: 316-335
        • Cornew L.
        • Roberts T.P.
        • Blaskey L.
        • Edgar J.C.
        Resting-state oscillatory activity in autism spectrum disorders.
        J Autism Dev Disord. 2012; 42: 1884-1894
        • Berman J.I.
        • Liu S.
        • Bloy L.
        • Blaskey L.
        • Roberts T.P.
        • Edgar J.C.
        Alpha-to-gamma phase-amplitude coupling methods and application to autism spectrum disorder.
        Brain Connect. 2015; 5: 80-90
        • Edgar J.C.
        • Heiken K.
        • Chen Y.H.
        • et al.
        Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume.
        J Autism Dev Disord. 2015; 45: 795-804
        • Ye A.X.
        • Leung R.C.
        • Schäfer C.B.
        • Taylor M.J.
        • Doesburg S.M.
        Atypical resting synchrony in autism spectrum disorder.
        Hum Brain Mapp. 2014; 35: 6049-6066
        • Kitzbichler M.G.
        • Khan S.
        • Ganesan S.
        • et al.
        Altered development and multifaceted band-specific abnormalities of resting state networks in autism.
        Biol Psychiatry. 2015; 77: 794-804
        • Faraone S.V.
        • Biederman J.
        • Mick E.
        The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies.
        Psychol Med. 2006; 36: 159-165
        • Center for Disease Control and Prevention
        Mental health in the United States: prevalence of diagnosis and medication treatment for attention-deficit/hyperactivity disorder—United States, 2003.
        MMWR. 2005; 54: 842-847
        • Coghill D.
        • Seth S.
        Osmotic, controlled-release methylphenidate for the treatment of ADHD.
        Expert Opin Pharmacother. 2006; 7: 2119-2138
        • Laurienti P.J.
        • Field A.S.
        • Burdette J.H.
        • Maldjian J.A.
        • Yen Y.F.
        • Moody D.M.
        Dietary caffeine consumption modulates fMRI measures.
        Neuroimage. 2002; 17: 751-757
        • Addicott M.A.
        • Yang L.L.
        • Peiffer A.M.
        • et al.
        The effect of daily caffeine use on cerebral blood flow: how much caffeine can we tolerate?.
        Hum Brain Mapp. 2009; 30: 3102-3114
        • Honey G.
        • Bullmore E.
        Human pharmacological MRI.
        Trends Pharmacol Sci. 2004; 25 ([Review]): 366-374
        • Laurienti P.J.
        • Field A.S.
        • Burdette J.H.
        • Maldjian J.A.
        • Yen Y.F.
        • Moody D.M.
        Relationship between caffeine-induced changes in resting cerebral perfusion and blood oxygenation level-dependent signal.
        AJNR Am J Neuroradiol. 2004; 24: 1607-1611
        • Dockstader C.
        • Gaetz W.
        • Cheyne D.
        • Wang F.
        • Castellanos F.X.
        • Tannock R.
        MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD.
        Behav Brain Funct. 2008; 12: 4-8
        • Helenius P.
        • Laasonen M.
        • Hokkanen L.
        • Paetau R.
        • Niemivirta M.
        Impaired engagement of the ventral attentional pathway in ADHD.
        Neuropsychologia. 2011; 49: 1889-1896
        • Uhlhaas P.J.
        • Singer W.
        Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.
        Neuron. 2006; 52: 155-168
        • Fries P.
        • Nikolic D.
        • Singer W.
        The gamma cycle.
        Trends Neurosci. 2007; 30: 309-316
        • Fries P.
        Neuronal gamma-band synchronization as a fundamental process in cortical computation.
        Annu Rev Neurosci. 2009; 32: 209-224
        • Bartos M.
        • Vida I.
        • Jonas P.
        Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.
        Nat Rev Neurosci. 2007; 8: 45-56
        • Wilson T.W.
        • Heinrichs-Graham E.
        • White M.L.
        • Knott N.L.
        • Wetzel M.W.
        Estimating the passage of minutes: deviant oscillatory frontal activity in medicated and un-medicated ADHD.
        Neuropsychology. 2013; 27: 654-665
        • Wilson T.W.
        • Wetzel M.W.
        • White M.L.
        • Knott N.L.
        Gamma-frequency neuronal activity is diminished in adults with attention-deficit/hyperactivity disorder: a pharmaco-MEG study.
        J Psychopharmacol. 2012; 26: 771-777
        • Franzen J.D.
        • Wilson T.W.
        Amphetamines modulate prefrontal γ oscillations during attention processing.
        Neuroreport. 2012; 23: 731-735
        • Heinrichs-Graham E.
        • Franzen J.D.
        • Knott N.L.
        • White M.L.
        • Wetzel M.W.
        • Wilson T.W.
        Pharmaco-MEG evidence for attention related hyper-connectivity between auditory and prefrontal cortices in ADHD.
        Psychiatry Res. 2014; 221: 240-245
        • ter Huurne N.
        • Onnink M.
        • Kan C.
        • Franke B.
        • Buitelaar J.
        • Jensen O.
        Behavioral consequences of aberrant alpha lateralization in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2013; 74: 227-233
        • Wilson T.W.
        • Franzen J.D.
        • Heinrichs-Graham E.
        • White M.L.
        • Knott N.L.
        • Wetzel M.W.
        Broadband neurophysiological abnormalities in the medial prefrontal region of the default-mode network in adults with ADHD.
        Hum Brain Mapp. 2013; 34: 566-574
        • Franzen J.D.
        • Heinrichs-Graham E.
        • White M.L.
        • Wetzel M.W.
        • Knott N.L.
        • Wilson T.W.
        Atypical coupling between posterior regions of the default-mode network in attention-deficit/hyperactivity disorder: a pharmaco-MEG study.
        J Psychiatry Neurosci. 2013; 38: 333-340
        • American Psychiatric Association
        Diagnostic and statistical manual of mental disorders.
        5th ed. American Psychiatric Publishing, Arlington, VA2013
        • Kessler R.C.
        • Chiu W.T.
        • Demler O.
        • et al.
        Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.
        Arch Gen Psychiatry. 2005; 62: 617-622
        • Kilpatrick D.G.
        • Resnick H.S.
        • Milanik M.E.
        • et al.
        National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria.
        J Trauma Stress. 2013; 26: 537-547
        • Seal K.
        • Bertenthal D.
        • Miner C.
        • et al.
        Bringing the war back home: mental health disorders among 103,788 US veterans returning from Iraq and Afghanistan seen at Department of Veterans Affairs Facilities.
        Arch Intern Med. 2007; 167: 476-482
        • Seal K.
        • Metzler T.
        • Gima K.
        • et al.
        Trends and risk factors for mental health diagnoses among Iraq and Afghanistan veterans using Department of Veterans Affairs Health Care, 2002–2008.
        Am J Public Health. 2009; 99: 1651-1658
        • Engdahl B.
        • Leuthold A.C.
        • Tan H.-R.M.
        • et al.
        Post-traumatic stress disorder: a right temporal lobe syndrome?.
        J Neural Eng. 2010; 7: 066005
        • Georgopoulos A.P.
        • Tan H.-R.M.
        • Lewis S.M.
        • et al.
        The synchronous neural interactions test as a functional neuromarker for post-traumatic stress disorder (PTSD): a robust classification method based on the bootstrap.
        J Neural Eng. 2010; 7: 16011
        • James L.M.
        • Belitskaya-Lévy I.
        • Lu Y.
        • et al.
        Development and application of a diagnostic algorithm for posttraumatic stress disorder.
        Psychiatry Res. 2015; 231: 1-7
        • Anders S.L.
        • Peterson C.K.
        • James L.M.
        • Engdahl B.
        • Leuthold A.C.
        • Georgopoulos A.P.
        Neural communication in posttraumatic growth.
        Exp Brain Res. 2015; 233: 2013-2020
        • James L.M.
        • Engdahl B.E.
        • Leuthold A.C.
        • Lewis S.M.
        • Van Kampen E.
        • Georgopoulos A.P.
        Neural network modulation by trauma as a marker of resilience: differences between veterans with posttraumatic stress disorder and resilient controls.
        JAMA Psychiatry. 2013; 70: 410-418
        • Kolassa I.T.
        • Wienbruch C.
        • Neuner F.
        • et al.
        Altered oscillatory brain dynamics after repeated traumatic stress.
        BMC Psychiatry. 2007; 7: 56
        • Adenauer H.
        • Pinösch S.
        • Catani C.
        • et al.
        Early processing of threat cues in posttraumatic stress disorder-evidence for a cortical vigilance-avoidance reaction.
        Biol Psychiatry. 2010; 68: 451-458
        • Todd R.M.
        • MacDonald M.J.
        • Sedge P.
        • et al.
        Soldiers with posttraumatic stress disorder see a world full of threat: magnetoencephalography reveals enhanced tuning to combat-related cues.
        Biol Psychiatry. 2015; 78: 821-829
        • Badura-Brack A.S.
        • Becker K.M.
        • McDermott T.J.
        • et al.
        Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder.
        Psychiatry Res. 2015; 233: 194-200
        • McDermott T.J.
        • Badura-Brack A.S.
        • Becker K.M.
        • et al.
        Male veterans with PTSD exhibit aberrant neural dynamics during working memory encoding: an MEG study.
        J Psychiatry Neurosci. 2015; 41 ([Epub ahead of print]): 150058
      3. McDermott, T.J., Badura-Brack, A.S., Becker, K.M., et al. Attention training improves aberrant neural dynamics during working memory encoding in male veterans with PTSD, Cogn Affect Behave Neurosci [Under review].

        • Dunkley B.T.
        • Doesburg S.M.
        • Sedge P.A.
        • et al.
        Resting-state hippocampal connectivity correlates with symptom severity in post-traumatic stress disorder.
        Neuroimage Clin. 2014; 5: 377-384
        • Dunkley B.T.
        • Sedge P.A.
        • Doesburg S.M.
        • et al.
        Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.
        PLoS One. 2015; 10: e0123541
        • Dunkley B.T.
        • Doesburg S.M.
        • Jetly R.
        • Sedge P.A.
        • Pang E.W.
        • Taylor M.J.
        Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder.
        Psychiatry Res. 2015; 234: 172-181
        • Antiretroviral Therapy Cohort Collaboration
        Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies.
        Lancet. 2008; 372: 293-299
        • Nakagawa F.
        • May M.
        • Phillips A.
        Life expectancy living with HIV: recent estimates and future implications.
        Curr Opin Infect Dis. 2016; 26: 17-25
        • Antinori A.
        • Arendt G.
        • Becker J.T.
        • et al.
        Updated research nosology for HIV-associated neurocognitive disorders.
        Neurology. 2007; 69: 1789-1799
        • Cysique L.A.
        • Brew B.J.
        Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review.
        Neuropsychol Rev. 2009; 19 ([Review]): 169-185
        • Gannon P.
        • Khan M.Z.
        • Kolson D.L.
        Current understanding of HIV-associated neurocognitive disorders pathogenesis.
        Curr Opin Neurol. 2011; 24 ([Review]): 275-283
        • Heaton R.K.
        • Clifford D.B.
        • Franklin Jr., D.R.
        • et al.
        HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study.
        Neurology. 2010; 75: 2087-2096
        • Heaton R.K.
        • Franklin D.R.
        • Ellis R.J.
        • et al.
        HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors.
        J Neurovirol. 2001; 17: 3-16
        • Robertson K.R.
        • Smurzynski M.
        • Parsons T.D.
        • et al.
        The prevalence and incidence of neurocognitive impairment in the HAART era.
        AIDS. 2007; 21: 1915-1921
        • Simioni S.
        • Cavassini M.
        • Annoni J.M.
        • et al.
        Cognitive dysfunction in HIV patients despite long-standing suppression of viremia.
        AIDS. 2010; 24: 1243-1250
        • Tozzi V.
        • Balestra P.
        • Bellagamba R.
        • et al.
        Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors.
        J Acquir Immune Defic Syndr. 2007; 45: 174-182
        • Wilson T.W.
        • Heinrichs-Graham E.
        • Robertson K.R.
        • et al.
        Functional brain abnormalities during finger-tapping in HIV-infected older adults: a magnetoencephalography study.
        J Neuroimmune Pharmacol. 2013; 8: 965-974
        • Wilson T.W.
        • Fox H.S.
        • Robertson K.R.
        • et al.
        Abnormal MEG oscillatory activity during visual processing in the prefrontal cortices and frontal eye-fields of the aging HIV brain.
        PLoS One. 2013; 8: e66241
        • Becker J.T.
        • Bajo R.
        • Fabrizio M.
        • et al.
        Functional connectivity measured with magnetoencephalography identifies persons with HIV disease.
        Brain Imaging Behav. 2012; 6: 366-373
        • Becker K.M.
        • Heinrichs-Graham E.
        • Fox H.S.
        • et al.
        Decreased MEG beta oscillations in HIV-infected older adults during the resting state.
        J Neurovirol. 2013; 19: 586-594
        • Wilson T.W.
        • Heinrichs-Graham E.
        • Becker K.M.
        • et al.
        Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults.
        Hum Brain Mapp. 2015; 36: 897-910
        • Becker J.T.
        • Fabrizio M.
        • Sudre G.
        • et al.
        Potential utility of resting-state magnetoencephalography as a biomarker of CNS abnormality in HIV disease.
        J Neurosci Methods. 2012; 206: 176-182
        • Schrag A.
        • Ben-Shlomo Y.
        • Quinn N.
        How valid is the clinical diagnosis of Parkinson's disease in the community?.
        J Neurol Neurosurg Psychiatr. 2002; 73: 529-534
        • Wright Willis A.
        • Evanoff B.A.
        • Lian M.
        • Criswell S.R.
        • Racette B.A.
        Geographic and ethnic variation in Parkinson disease: a population-based study of US Medicare beneficiaries.
        Neuroepidemiology. 2012; 34: 143-151
        • Dorsey E.R.
        • Constantinescu R.
        • Thompson J.P.
        • et al.
        Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030.
        Neurology. 2007; 68: 384-386
        • Bartels A.L.
        • Balash Y.
        • Gurevich T.
        • Schaafsma J.D.
        • Hausdorff J.M.
        • Giladi N.
        Relationship between freezing of gait (FOG) and other features of Parkinson's: FOG is not correlated with bradykinesia.
        J Clin Neurosci. 2003; 10: 584-588
        • Dewey Jr., R.B.
        • Taneja A.
        • McClintock S.M.
        • et al.
        Motor symptoms at onset of Parkinson disease and risk for cognitive impairment and depression.
        Cogn Behav Neurol. 2012; 25: 115-120
        • Fahn S.
        The history of dopamine and levodopa in the treatment of Parkinson's disease.
        Mov Disord. 2008; 23: S497-S508
        • Fahn S.
        • Oakes D.
        • Shoulson I.
        • et al.
        Levodopa and the progression of Parkinson's disease.
        N Engl J Med. 2004; 351: 2498-2508
        • Jankovic J.
        Parkinson's disease: clinical features and diagnosis.
        J Neurol Neurosurg Psychiatr. 2008; 79: 368-376
        • Damier P.
        • Hirsch E.C.
        • Agid Y.
        • Graybiel A.M.
        The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease.
        Brain. 1999; 122: 1437-1448
        • Litvak V.
        • Jha A.
        • Eusebio A.
        • et al.
        Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease.
        Brain. 2011; 134: 359-374
        • Litvak V.
        • Eusebio A.
        • Jha A.
        • et al.
        Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings.
        J Neurosci. 2012; 32: 10541-10553
        • Hirschmann J.
        • Ozkurt T.E.
        • Butz M.
        • et al.
        Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease.
        Neuroimage. 2011; 55: 1159-1168
        • Hirschmann J.
        • Hartmann C.J.
        • Butz M.
        • et al.
        A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson's disease.
        Brain. 2013; 136: 3659-3670
        • Bock A.
        • Kuhn A.A.
        • Trahms L.
        • Sander T.H.
        Validity of subthalamic-cortical coherency observed in patients with Parkinson's disease.
        Biomed Eng. 2013; 58: 157-164
        • Hirschmann J.
        • Ozkurt T.E.
        • Butz M.
        • et al.
        Differential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson's disease.
        Neuroimage. 2013; 68: 203-213
        • Brown P.
        • Williams D.
        Basal ganglia local field potential activity: character and functional significance in the human.
        Clin Neurophysiol. 2005; 116: 2510-2519
        • Hutchison W.D.
        • Dostrovsky J.O.
        • Walters J.R.
        • et al.
        Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings.
        J Neurosci. 2004; 24: 9240-9243
        • Salenius S.
        • Avikainen S.
        • Kaakkola S.
        • Hari R.
        • Brown P.
        Defective cortical drive to muscle in Parkinson's disease and its improvement with levodopa.
        Brain. 2002; 125: 491-500
        • Pollok B.
        • Kamp D.
        • Butz M.
        • et al.
        Increased SMA-M1 coherence in Parkinson's disease—pathophysiology or compensation?.
        Exp Neurol. 2013; 247: 178-181
        • Pollok B.
        • Makhloufi H.
        • Butz M.
        • et al.
        Levodopa affects functional brain networks in Parkinsonian resting tremor.
        Mov Disord. 2009; 24: 91-98
        • Timmermann L.
        • Gross J.
        • Dirks M.
        • Volkmann J.
        • Freund H.J.
        • Schnitzler A.
        The cerebral oscillatory network of parkinsonian resting tremor.
        Brain. 2003; 126: 199-212
        • Bosboom J.L.
        • Stoffers D.
        • Stam C.J.
        • et al.
        Resting state oscillatory brain dynamics in Parkinson's disease: an MEG study.
        Clin Neurophysiol. 2006; 117: 2521-2531
        • Stoffers D.
        • Bosboom J.L.
        • Deijen J.B.
        • Wolters E.
        • Stam C.J.
        • Berendse H.W.
        Increased cortico-cortical functional connectivity in early-stage Parkinson's disease: an MEG study.
        Neuroimage. 2008; 41: 212-222
        • Stoffers D.
        • Bosboom J.L.
        • Deijen J.B.
        • Wolters E.C.
        • Berendse H.W.
        • Stam C.J.
        Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia.
        Brain. 2007; 130: 1847-1860
        • Heinrichs-Graham E.
        • Kurz M.J.
        • Becker K.M.
        • Santamaria P.M.
        • Gendelman H.E.
        • Wilson T.W.
        Hypersynchrony despite pathologically reduced beta oscillations in patients with Parkinson's disease: a pharmaco-magnetoencephalography study.
        J Neurophysiol. 2014; 112: 1739-1747
        • Heinrichs-Graham E.
        • Wilson T.W.
        • Santamaria P.M.
        • et al.
        Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson's disease.
        Cereb Cortex. 2014; 24: 2669-2678
        • Gaetz W.
        • Macdonald M.
        • Cheyne D.
        • Snead O.C.
        Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound.
        Neuroimage. 2010; 51: 792-807
        • Cheyne D.
        • Bakhtazad L.
        • Gaetz W.
        Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach.
        Hum Brain Mapp. 2006; 27: 213-229
        • Jurkiewicz M.T.
        • Gaetz W.C.
        • Bostan A.C.
        • Cheyne D.
        Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings.
        Neuroimage. 2006; 32: 1281-1289
        • Wilson T.W.
        • Slason E.
        • Asherin R.
        • et al.
        Abnormal gamma and beta MEG activity during finger movements in early-onset psychosis.
        Dev Neuropsychol. 2011; 36: 596-613
        • Wilson T.W.
        • Slason E.
        • Asherin R.
        • et al.
        An extended motor network generates beta and gamma oscillatory perturbations during development.
        Brain Cogn. 2010; 73: 75-84
        • Heinrichs-Graham E.
        • Wilson T.W.
        Coding complexity in the human motor circuit.
        Hum Brain Mapp. 2015; 36: 5155-5167
        • Wilson T.W.
        • Heinrichs-Graham E.
        • Becker K.M.
        Circadian modulation of motor-related beta oscillatory responses.
        Neuroimage. 2014; 102: 531-539
        • Wilson T.W.
        • Fleischer A.
        • Archer D.
        • Hayasaka S.
        • Sawaki L.
        Oscillatory MEG motor activity reflects therapy-related plasticity in stroke patients.
        Neurorehabil Neural Repair. 2011; 25: 188-193
        • te Woerd E.S.
        • Oostenveld R.
        • de Lange F.P.
        • Praamstra P.
        A shift from prospective to reactive modulation of beta-band oscillations in Parkinson's disease.
        Neuroimage. 2014; 100: 507-519
        • te Woerd E.S.
        • Oostenveld R.
        • Bloem B.R.
        • de Lange F.P.
        • Praamstra P.
        Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease.
        Neuroimage Clin. 2015; 9: 300-309
        • Christensen D.
        • Van Naarden B.K.
        • Doernberg N.S.
        • et al.
        Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning—autism and developmental disabilities monitoring network, USA, 2008.
        Dev Med Child Neurol. 2014; 56: 59-65
        • Yeargin-Allsopp M.
        • Van Naarden B.K.
        • Doernberg N.S.
        • Benedict R.E.
        • Kirby K.S.
        • Durkin M.S.
        Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002:a multisite collaboration.
        Pediatrics. 2008; 121: 547-554
        • Center for Disease Control and Prevention
        Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment—United States, 2003.
        MMWR Morb Mortal Wkly Rep. 2004; 53: 57-59
        • Kurz M.J.
        • Wilson T.W.
        Neuromagnetic activity in the somatosensory cortices of children with cerebral palsy.
        Neurosci Lett. 2011; 490: 1-5
        • Kurz M.J.
        • Wilson T.W.
        • Corr B.
        • Volkman K.G.
        Neuromagnetic activity of the somatosensory cortices associated with body weight-supported treadmill training in children with cerebral palsy.
        J Neurol Phys Ther. 2012; 36: 166-172
        • Kurz M.J.
        • Heinrichs-Graham E.
        • Arpin D.J.
        • Becker K.M.
        • Wilson T.W.
        Aberrant synchrony in the somatosensory cortices predicts motor performance errors in children with cerebral palsy.
        J Neurophysiol. 2014; 111: 573-579
        • Kurz M.J.
        • Heinrichs-Graham E.
        • Becker K.M.
        • Wilson T.W.
        The magnitude of the somatosensory cortical activity is related to the mobility and strength impairments seen in children with cerebral palsy.
        J Neurophysiol. 2015; 113: 3143-3150
        • Kurz M.J.
        • Becker K.M.
        • Heinrichs-Graham E.
        • Wilson T.W.
        Children with cerebral palsy have uncharacteristic somatosensory cortical oscillations after stimulation of the hand mechanoreceptors.
        Neuroscience. 2015; 305: 67-75
        • Kurz M.J.
        • Becker K.M.
        • Heinrichs-Graham E.
        • Wilson T.W.
        Neurophysiological abnormalities in the sensorimotor cortices during the motor planning and movement execution stages of children with cerebral palsy.
        Dev Med Child Neurol. 2014; 56: 1072-1077
        • Valvano J.
        Neurophysiological evidence for motor planning limitations in children with cerebral palsy.
        Dev Med Child Neurol. 2014; 56: 1035-1036
        • Salthouse T.A.
        • Babcock R.L.
        • Shaw R.J.
        Effects of adult age on structural and operational capacities in working memory.
        Psychol Aging. 1991; 6: 118-127
        • Park D.C.
        • Lautenschlager G.
        • Hedden T.
        • Davidson N.S.
        • Smith A.D.
        • Smith P.K.
        Models of visuospatial and verbal memory across the adult life span.
        Psychol Aging. 2002; 17: 299-320
        • Reuter-Lorenz P.A.
        • Cappell K.A.
        Neurocognitive aging and the compensation hypothesis.
        Curr Dir Psychol Sci. 2008; 17: 177-182
        • Park J.
        • Carp J.
        • Kennedy K.M.
        • et al.
        Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample.
        J Neurosci. 2012; 32: 2154-2158
        • Alain C.
        • McDonald K.L.
        Age-related differences in neuromagnetic brain activity underlying concurrent sound perception.
        J Neurosci. 2007; 27: 1308-1314
        • Matilainen L.E.
        • Talvitie S.S.
        • Pekkonen E.
        • Alku P.
        • May P.J.
        • Tiitinen H.
        The effects of healthy aging on auditory processing in humans as indexed by transient brain responses.
        Clin Neurophysiol. 2010; 121: 902-911
        • Cheng C.H.
        • Baillet S.
        • Hsiao F.J.
        • Lin Y.Y.
        Effects of aging on the neuromagnetic mismatch detection to speech sounds.
        Biol Psychol. 2015; 104: 48-55
        • Aine C.J.
        • Adair J.C.
        • Knoefel J.E.
        • et al.
        Temporal dynamics of age-related differences in auditory incidental verbal learning.
        Cogn Brain Res. 2005; 24: 1-18
        • Kovacevic S.
        • Qualls C.
        • Adair J.C.
        • et al.
        Age-related effects on superior temporal gyrus activity during an auditory oddball task.
        Neuroreport. 2005; 16: 1075-1079
        • Cheng C.H.
        • Lin Y.Y.
        The effects of aging on lifetime of auditory sensory memory in humans.
        Biol Psychol. 2012; 89: 306-312
        • Ross B.
        • Fujioka T.
        • Tremblay K.L.
        • Picton T.W.
        Aging in binaural hearing begins in mid-life: evidence from cortical auditory-evoked responses to changes in interaural phase.
        J Neurosci. 2007; 27: 11172-11178
        • Ross B.
        • Snyder J.S.
        • Aalto M.
        • et al.
        Neural encoding of sound duration persists in older adults.
        Neuroimage. 2009; 47: 678-687
        • Huttunen J.
        • Wikstrom H.
        • Salonen O.
        • Ilmoniemi R.J.
        Human somatosensory cortical activation strengths: comparison between males and females and age-related changes.
        Brain Res. 1999; 818: 196-203
        • Stephen J.M.
        • Ranken D.
        • Best E.
        • et al.
        Aging changes and gender differences in response to median nerve stimulation measured with MEG.
        Clin Neurophysiol. 2006; 117: 131-143
        • Hagiwara K.
        • Ogata K.
        • Okamoto T.
        • et al.
        Age-related changes across the primary and secondary somatosensory areas: an analysis of neuromagnetic oscillatory activities.
        Clin Neurophysiol. 2014; 125: 1021-1029
        • Zappasodi F.
        • Pasqualetti P.
        • Tombini M.
        • et al.
        Hand cortical representation at rest and during activation: gender and age effects in the two hemispheres.
        Clin Neurophysiol. 2006; 117: 1518-1528
        • Goto S.
        • Fujisawa Y.
        • Uemura J.
        • Yamada S.
        • Hoshiyama M.
        • Hirayama M.
        Disinhibitory shift of recovery curve of somatosensory-evoked response in elderly: a magnetoencephalographic study.
        Clin Neurophysiol. 2015; 126: 1228-1233
        • Cheng C.H.
        • Chan P.Y.
        • Baillet S.
        • Lin Y.Y.
        Age-related reduced somatosensory gating is associated with altered alpha frequency desynchronization.
        Neural Plast. 2015; 2015: 302878
        • Vlahou E.L.
        • Thurm F.
        • Kolassa I.T.
        • Schlee W.
        Resting-state slow wave power, healthy aging and cognitive performance.
        Sci Rep. 2014; 4: 5101
        • Leirer V.M.
        • Wienbruch C.
        • Kolassa S.
        • Schlee W.
        • Elbert T.
        • Kolassa I.T.
        Changes in cortical slow wave activity in healthy aging.
        Brain Imaging Behav. 2011; 5: 222-228
        • Schlee W.
        • Leirer V.
        • Kolassa S.
        • Thurm F.
        • Elbert T.
        • Kolassa I.T.
        Development of large-scale functional networks over the lifespan.
        Neurobiol Aging. 2012; 33: 2411-2421
        • Schlee W.
        • Leirer V.
        • Kolassa I.T.
        • Weisz N.
        • Elbert T.
        Age-related changes in neural functional connectivity and its behavioral relevance.
        BMC Neurosci. 2012; 13: 16
      4. Proskovec, A.L., Heinrichs-Graham, E. & Wilson, T.W. Aging modulates the oscillatory dynamics underlying successful working memory encoding and maintenance. Hum Brain Mapp, in press.

        • Aine C.J.
        • Woodruff C.C.
        • Knoefel J.E.
        • et al.
        Aging: compensation or maturation?.
        Neuroimage. 2006; 32: 1891-1904
        • Bonnefond M.
        • Jensen O.
        Alpha oscillations serve to protect working memory maintenance against anticipated distracters.
        Curr Biol. 2012; 22: 1969-1974
        • Jiang H.
        • van Gerven M.A.
        • Jensen O.
        Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.
        J Cogn Neurosci. 2015; 27: 583-592
        • Tuladhar A.M.
        • ter Huurne N.
        • Schoffelen J.M.
        • Maris E.
        • Oostenveld R.
        • Jensen O.
        Parieto-occipital sources account for the increase in alpha activity with working memory load.
        Hum Brain Mapp. 2007; 28: 785-792
        • Alem O.
        • Benison A.M.
        • Barth D.S.
        • Kitching J.
        • Knappe S.
        Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode.
        J Neurosci. 2014; 34: 14324-14327

      CHORUS Manuscript

      View Open Manuscript