Advertisement

Emerging concepts: mast cell involvement in allergic diseases

Published:February 24, 2016DOI:https://doi.org/10.1016/j.trsl.2016.02.011
      In a process known as overt degranulation, mast cells can release all at once a diverse array of products that are preformed and present within cytoplasmic granules. This occurs typically within seconds of stimulation by environmental factors and allergens. These potent, preformed mediators (ie, histamine, heparin, serotonin, and serine proteases) are responsible for the acute symptoms experienced in allergic conditions such as allergic conjunctivitis, allergic rhinitis, allergy-induced asthma, urticaria, and anaphylaxis. Yet, there is reason to believe that the actions of mast cells are important when they are not degranulating. Mast cells release preformed mediators and inflammatory cytokines for periods after degranulation and even without degranulating at all. Mast cells are consistently seen at sites of chronic inflammation, including nonallergic inflammation, where they have the ability to temper inflammatory processes and shape tissue morphology. Mast cells can trigger actions and chemotaxis in other important immune cells (eg, eosinophils and the newly discovered type 2 innate lymphocytes) that then make their own contributions to inflammation and disease. In this review, we will discuss the many known and theorized contributions of mast cells to allergic diseases, focusing on several prototypical allergic respiratory and skin conditions: asthma, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, allergic conjunctivitis, atopic dermatitis, and some of the more common medication hypersensitivity reactions. We discuss traditionally accepted roles that mast cells play in the pathogenesis of each of these conditions, but we also delve into new areas of discovery and research that challenge traditionally accepted paradigms.

      Abbreviations:

      AA (arachidonic acid), AERD (aspirin exacerbated respiratory disease), BAL (bronchoalveolar lavage), CF (cystic fibrosis), CRSsNP (chronic rhinosinusitis without nasal polyps), CRSwNP (chronic rhinosinusitis with nasal polyps), ILC2 (type 2 innate lymphocytes), MCAD (mast cell activation disease), MCAS (mast cell activation syndrome), MCTCs (tryptase- and chymase-positive mast cells), MCTs (tryptase-only-positive mast cells), PAMP (pathogen-associated molecular pattern)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nakano T.
        • Sonoda T.
        • Hayashi C.
        • et al.
        Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells.
        J Exp Med. 1985; 162: 1025-1043
        • Marshall J.S.
        Mast-cell responses to pathogens.
        Nat Rev Immunol. 2004; 4: 787-799
        • Galli S.J.
        • Zsebo K.M.
        • Geissler E.N.
        The kit ligand, stem cell factor.
        Adv Immunol. 1994; 55: 1-96
        • Oliveira S.H.
        • Lukacs N.W.
        Stem cell factor: a hemopoietic cytokine with important targets in asthma.
        Curr Drug Targets Inflamm Allergy. 2003; 2: 313-318
        • Reber L.
        • Da Silva C.A.
        • Frossard N.
        Stem cell factor and its receptor c-Kit as targets for inflammatory diseases.
        Eur J Pharmacol. 2006; 533: 327-340
        • Sillaber C.
        • Strobl H.
        • Bevec D.
        • et al.
        IL-4 regulates c-kit proto-oncogene product expression in human mast and myeloid progenitor cells.
        J Immunol. 1991; 147: 4224-4228
        • Toru H.
        • Eguchi M.
        • Matsumoto R.
        • Yanagida M.
        • Yata J.
        • Nakahata T.
        Interleukin-4 promotes the development of tryptase and chymase double-positive human mast cells accompanied by cell maturation.
        Blood. 1998; 91: 187-195
        • Toru H.
        • Ra C.
        • Nonoyama S.
        • Suzuki K.
        • Yata J.
        • Nakahata T.
        Induction of the high-affinity IgE receptor (Fc epsilon RI) on human mast cells by IL-4.
        Int Immunol. 1996; 8: 1367-1373
        • Valent P.
        • Bevec D.
        • Maurer D.
        • et al.
        Interleukin 4 promotes expression of mast cell ICAM-1 antigen.
        Proc Natl Acad Sci U S A. 1991; 88: 3339-3342
        • Matsuzawa S.
        • Sakashita K.
        • Kinoshita T.
        • Ito S.
        • Yamashita T.
        • Koike K.
        IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor.
        J Immunol. 2003; 170: 3461-3467
        • Mwamtemi H.H.
        • Koike K.
        • Kinoshita T.
        • et al.
        An increase in circulating mast cell colony-forming cells in asthma.
        J Immunol. 2001; 166: 4672-4677
        • Bailey D.P.
        • Kashyap M.
        • Bouton L.A.
        • Murray P.J.
        • Ryan J.J.
        Interleukin-10 induces apoptosis in developing mast cells and macrophages.
        J Leukoc Biol. 2006; 80: 581-589
        • Royer B.
        • Varadaradjalou S.
        • Saas P.
        • Guillosson J.J.
        • Kantelip J.P.
        • Arock M.
        Inhibition of IgE-induced activation of human mast cells by IL-10.
        Clin Exp Allergy. 2001; 31: 694-704
        • Yeatman 2nd, C.F.
        • Jacobs-Helber S.M.
        • Mirmonsef P.
        • et al.
        Combined stimulation with the T helper cell type 2 cytokines interleukin (IL)-4 and IL-10 induces mouse mast cell apoptosis.
        J Exp Med. 2000; 192: 1093-1103
        • Ho L.H.
        • Ohno T.
        • Oboki K.
        • et al.
        IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals.
        J Leukoc Biol. 2007; 82: 1481-1490
        • Iikura M.
        • Suto H.
        • Kajiwara N.
        • et al.
        IL-33 can promote survival, adhesion and cytokine production in human mast cells.
        Lab Invest. 2007; 87: 971-978
        • Godot V.
        • Arock M.
        • Garcia G.
        • et al.
        H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12.
        J Allergy Clin Immunol. 2007; 120: 827-834
        • Lin T.J.
        • Issekutz T.B.
        • Marshall J.S.
        Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha.
        J Immunol. 2000; 165: 211-220
        • Macey M.R.
        • Sturgill J.L.
        • Morales J.K.
        • et al.
        IL-4 and TGF-beta 1 counterbalance one another while regulating mast cell homeostasis.
        J Immunol. 2010; 184: 4688-4695
        • Matsuda H.
        • Kannan Y.
        • Ushio H.
        • et al.
        Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells.
        J Exp Med. 1991; 174: 7-14
        • Cruse G.
        • Bradding P.
        Mast cells in airway diseases and interstitial lung disease.
        Eur J Pharmacol. 2016; 778: 125-138
        • Cheng L.E.
        • Hartmann K.
        • Roers A.
        • Krummel M.F.
        • Locksley R.M.
        Perivascular mast cells dynamically probe cutaneous blood vessels to capture immunoglobulin E.
        Immunity. 2013; 38: 166-175
        • St John A.L.
        • Abraham S.N.
        Innate immunity and its regulation by mast cells.
        J Immunol. 2013; 190: 4458-4463
        • Abraham S.N.
        • St John A.L.
        Mast cell-orchestrated immunity to pathogens.
        Nat Rev Immunol. 2010; 10: 440-452
        • Hofmann A.M.
        • Abraham S.N.
        New roles for mast cells in modulating allergic reactions and immunity against pathogens.
        Curr Opin Immunol. 2009; 21: 679-686
        • Galli S.J.
        • Maurer M.
        • Lantz C.S.
        Mast cells as sentinels of innate immunity.
        Curr Opin Immunol. 1999; 11: 53-59
        • Shikhagaie M.M.
        • Andersson C.K.
        • Mori M.
        • et al.
        Mapping of TLR5 and TLR7 in central and distal human airways and identification of reduced TLR expression in severe asthma.
        Clin Exp Allergy. 2014; 44: 184-196
        • Persson C.G.
        • Erjefält J.S.
        • Greiff L.
        • et al.
        Plasma-derived proteins in airway defence, disease and repair of epithelial injury.
        Eur Respir J. 1998; 11: 958-970
        • McDonald D.M.
        • Thurston G.
        • Baluk P.
        Endothelial gaps as sites for plasma leakage in inflammation.
        Microcirculation. 1999; 6: 7-22
        • Heissig B.
        • Rafii S.
        • Akiyama H.
        • et al.
        Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization.
        J Exp Med. 2005; 202: 739-750
        • Weller K.
        • Foitzik K.
        • Paus R.
        • Syska W.
        • Maurer M.
        Mast cells are required for normal healing of skin wounds in mice.
        FASEB J. 2006; 20: 2366-2368
        • Metz M.
        • Maurer M.
        Mast cells–key effector cells in immune responses.
        Trends Immunol. 2007; 28: 234-241
        • Galli S.J.
        • Kalesnikoff J.
        • Grimbaldeston M.A.
        • Piliponsky A.M.
        • Williams C.M.
        • Tsai M.
        Mast cells as “tunable” effector and immunoregulatory cells: recent advances.
        Annu Rev Immunol. 2005; 23: 749-786
        • Ishizuka T.
        • Okayama Y.
        • Kobayashi H.
        • Mori M.
        Interleukin-10 is localized to and released by human lung mast cells.
        Clin Exp Allergy. 1999; 29: 1424-1432
        • Piliponsky A.M.
        • Chen C.C.
        • Rios E.J.
        • et al.
        The chymase mouse mast cell protease 4 degrades TNF, limits inflammation, and promotes survival in a model of sepsis.
        Am J Pathol. 2012; 181: 875-886
        • Waern I.
        • Karlsson I.
        • Thorpe M.
        • et al.
        Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.
        Biol Chem. 2012; 393: 1555-1567
        • Irani A.M.
        • Butrus S.I.
        • Tabbara K.F.
        • Schwartz L.B.
        Human conjunctival mast cells: distribution of MCT and MCTC in vernal conjunctivitis and giant papillary conjunctivitis.
        J Allergy Clin Immunol. 1990; 86: 34-40
        • Amin K.
        The role of mast cells in allergic inflammation.
        Respir Med. 2012; 106: 9-14
        • Brandt E.B.
        • Strait R.T.
        • Hershko D.
        • et al.
        Mast cells are required for experimental oral allergen-induced diarrhea.
        J Clin Invest. 2003; 112: 1666-1677
        • Hart P.H.
        Regulation of the inflammatory response in asthma by mast cell products.
        Immunol Cell Biol. 2001; 79: 149-153
        • Marone G.
        • Triggiani M.
        • de Paulis A.
        Mast cells and basophils: friends as well as foes in bronchial asthma?.
        Trends Immunol. 2005; 26: 25-31
        • Brightling C.E.
        • Symon F.A.
        • Birring S.S.
        • Bradding P.
        • Wardlaw A.J.
        • Pavord I.D.
        Comparison of airway immunopathology of eosinophilic bronchitis and asthma.
        Thorax. 2003; 58: 528-532
        • Brightling C.E.
        • Bradding P.
        • Symon F.A.
        • Holgate S.T.
        • Wardlaw A.J.
        • Pavord I.D.
        Mast-cell infiltration of airway smooth muscle in asthma.
        N Engl J Med. 2002; 346: 1699-1705
        • Cho E.Y.
        • Choi S.C.
        • Lee S.H.
        • et al.
        Nafamostat mesilate attenuates colonic inflammation and mast cell infiltration in the experimental colitis.
        Int Immunopharmacol. 2011; 11: 412-417
        • Raithel M.
        • Winterkamp S.
        • Pacurar A.
        • Ulrich P.
        • Hochberger J.
        • Hahn E.G.
        Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease.
        Scand J Gastroenterol. 2001; 36: 174-179
        • Betts C.J.
        • Else K.J.
        Mast cells, eosinophils and antibody-mediated cellular cytotoxicity are not critical in resistance to Trichuris muris.
        Parasite Immunol. 1999; 21: 45-52
        • Lantz C.S.
        • Boesiger J.
        • Song C.H.
        • et al.
        Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites.
        Nature. 1998; 392: 90-93
        • Edwards S.T.
        • Cruz A.C.
        • Donnelly S.
        • et al.
        c-Kit immunophenotyping and metalloproteinase expression profiles of mast cells in interstitial lung diseases.
        J Pathol. 2005; 206: 279-290
        • Kawanami O.
        • Ferrans V.J.
        • Fulmer J.D.
        • Crystal R.G.
        Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders.
        Lab Invest. 1979; 40: 717-734
        • Yoshizaki A.
        • Iwata Y.
        • Komura K.
        • et al.
        CD19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma.
        Am J Pathol. 2008; 172: 1650-1663
        • Reber L.L.
        • Daubeuf F.
        • Pejler G.
        • Abrink M.
        • Frossard N.
        Mast cells contribute to bleomycin-induced lung inflammation and injury in mice through a chymase/mast cell protease 4-dependent mechanism.
        J Immunol. 2014; 192: 1847-1854
        • Reber L.L.
        • Sibilano R.
        • Mukai K.
        • Galli S.J.
        Potential effector and immunoregulatory functions of mast cells in mucosal immunity.
        Mucosal Immunol. 2015; 8: 444-463
        • Papadimitriou J.C.
        • Drachenberg C.B.
        • Ramos E.
        • Ugarte R.
        • Haririan A.
        Mast cell quantitation in renal transplant biopsy specimens as a potential marker for the cumulative burden of tissue injury.
        Transplant Proc. 2013; 45: 1469-1471
        • Enerback L.
        Mast cells in rat gastrointestinal mucosa. I. Effects of fixation.
        Acta Pathol Microbiol Scand. 1966; 66: 289-302
        • Irani A.M.
        • Schwartz L.B.
        Mast cell heterogeneity.
        Clin Exp Allergy. 1989; 19: 143-155
        • Erjefalt J.S.
        Mast cells in human airways: the culprit?.
        Eur Respir Rev. 2014; 23: 299-307
        • Irani A.M.
        • Goldstein S.M.
        • Wintroub B.U.
        • Bradford T.
        • Schwartz L.B.
        Human mast cell carboxypeptidase. Selective localization to MCTC cells.
        J Immunol. 1991; 147: 247-253
        • Irani A.A.
        • Schechter N.M.
        • Craig S.S.
        • DeBlois G.
        • Schwartz L.B.
        Two types of human mast cells that have distinct neutral protease compositions.
        Proc Natl Acad Sci U S A. 1986; 83: 4464-4468
        • Irani A.M.
        • Bradford T.R.
        • Kepley C.L.
        • Schechter N.M.
        • Schwartz L.B.
        Detection of MCT and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies.
        J Histochem Cytochem. 1989; 37: 1509-1515
        • Schechter N.M.
        • Irani A.M.
        • Sprows J.L.
        • Abernethy J.
        • Wintroub B.
        • Schwartz L.B.
        Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell.
        J Immunol. 1990; 145: 2652-2661
        • Caughey G.H.
        • Raymond W.W.
        • Blount J.L.
        • et al.
        Characterization of human gamma-tryptases, novel members of the chromosome 16p mast cell tryptase and prostasin gene families.
        J Immunol. 2000; 164: 6566-6575
        • Wong G.W.
        • Tang Y.
        • Feyfant E.
        • et al.
        Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension.
        J Biol Chem. 1999; 274: 30784-30793
        • Xia H.Z.
        • Kepley C.L.
        • Sakai K.
        • Chelliah J.
        • Irani A.M.
        • Schwartz L.B.
        Quantitation of tryptase, chymase, Fc epsilon RI alpha, and Fc epsilon RI gamma mRNAs in human mast cells and basophils by competitive reverse transcription-polymerase chain reaction.
        J Immunol. 1995; 154: 5472-5480
        • Weidner N.
        • Austen K.F.
        Heterogeneity of mast cells at multiple body sites. Fluorescent determination of avidin binding and immunofluorescent determination of chymase, tryptase, and carboxypeptidase content.
        Pathol Res Pract. 1993; 189: 156-162
        • Fajt M.L.
        • Wenzel S.E.
        Mast cells, their subtypes, and relation to asthma phenotypes.
        Ann Am Thorac Soc. 2013; 10: S158-S164
        • Matin R.
        • Tam E.K.
        • Nadel J.A.
        • Caughey G.H.
        Distribution of chymase-containing mast cells in human bronchi.
        J Histochem Cytochem. 1992; 40: 781-786
        • Andersson C.K.
        • Mori M.
        • Bjermer L.
        • Löfdahl C.G.
        • Erjefält J.S.
        Novel site-specific mast cell subpopulations in the human lung.
        Thorax. 2009; 64: 297-305
        • Hayes S.M.
        • Howlin R.
        • Johnston D.A.
        • et al.
        Intracellular residency of Staphylococcus aureus within mast cells in nasal polyps: a novel observation.
        J Allergy Clin Immunol. 2015; 135: 1648-1651
        • Casale T.B.
        • Wood D.
        • Richerson H.B.
        • et al.
        Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness.
        J Clin Invest. 1987; 79: 1197-1203
        • Wenzel S.E.
        • Fowler 3rd, A.A.
        • Schwartz L.B.
        Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma.
        Am Rev Respir Dis. 1988; 137: 1002-1008
        • Wenzel S.E.
        • Westcott J.Y.
        • Larsen G.L.
        Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses.
        J Allergy Clin Immunol. 1991; 87: 540-548
        • Murray J.J.
        • Tonnel A.B.
        • Brash A.R.
        • et al.
        Release of prostaglandin D2 into human airways during acute antigen challenge.
        N Engl J Med. 1986; 315: 800-804
        • Beasley R.
        • Varley J.
        • Robinson C.
        • Holgate S.T.
        Cholinergic-mediated bronchoconstriction induced by prostaglandin D2, its initial metabolite 9 alpha,11 beta-PGF2, and PGF2 alpha in asthma.
        Am Rev Respir Dis. 1987; 136: 1140-1144
        • Wenzel S.E.
        • Larsen G.L.
        • Johnston K.
        • Voelkel N.F.
        • Westcott J.Y.
        Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge.
        Am Rev Respir Dis. 1990; 142: 112-119
        • Chhabra J.
        • Li Y.Z.
        • Alkhouri H.
        • et al.
        Histamine and tryptase modulate asthmatic airway smooth muscle GM-CSF and RANTES release.
        Eur Respir J. 2007; 29: 861-870
        • Jarjour N.N.
        • Calhoun W.J.
        • Schwartz L.B.
        • Busse W.W.
        Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction.
        Am Rev Respir Dis. 1991; 144: 83-87
        • Sekizawa K.
        • Caughey G.H.
        • Lazarus S.C.
        • Gold W.M.
        • Nadel J.A.
        Mast cell tryptase causes airway smooth muscle hyperresponsiveness in dogs.
        J Clin Invest. 1989; 83: 175-179
        • Tam E.K.
        • Caughey G.H.
        Degradation of airway neuropeptides by human lung tryptase.
        Am J Respir Cell Mol Biol. 1990; 3: 27-32
        • Franconi G.M.
        • Graf P.D.
        • Lazarus S.C.
        • Nadel J.A.
        • Caughey G.H.
        Mast cell tryptase and chymase reverse airway smooth muscle relaxation induced by vasoactive intestinal peptide in the ferret.
        J Pharmacol Exp Ther. 1989; 248: 947-951
        • Tam E.K.
        • Franconi G.M.
        • Nadel J.A.
        • Caughey G.H.
        Protease inhibitors potentiate smooth muscle relaxation induced by vasoactive intestinal peptide in isolated human bronchi.
        Am J Respir Cell Mol Biol. 1990; 2: 449-452
        • Christie P.E.
        • Spur B.W.
        • Lee T.H.
        The effects of lipoxin A4 on airway responses in asthmatic subjects.
        Am Rev Respir Dis. 1992; 145: 1281-1284
        • Clague H.
        • Ahmad D.
        • Chamberlain M.J.
        • Morgan W.K.
        • Vinitski S.
        Histamine bronchial challenge: effect on regional ventilation and aerosol deposition.
        Thorax. 1983; 38: 668-675
        • du Toit J.I.
        • Anderson S.D.
        • Jenkins C.R.
        • Woolcock A.J.
        • Rodwell L.T.
        Airway responsiveness in asthma: bronchial challenge with histamine and 4.5% sodium chloride before and after budesonide.
        Allergy Asthma Proc. 1997; 18: 7-14
        • Sampson S.E.
        • Sampson A.P.
        • Costello J.F.
        Effect of inhaled prostaglandin D2 in normal and atopic subjects, and of pretreatment with leukotriene D4.
        Thorax. 1997; 52: 513-518
        • Rafferty P.
        • Holgate S.T.
        Terfenadine (Seldane) is a potent and selective histamine H1 receptor antagonist in asthmatic airways.
        Am Rev Respir Dis. 1987; 135: 181-184
        • Curzen N.
        • Rafferty P.
        • Holgate S.T.
        Effects of a cyclo-oxygenase inhibitor, flurbiprofen, and an H1 histamine receptor antagonist, terfenadine, alone and in combination on allergen induced immediate bronchoconstriction in man.
        Thorax. 1987; 42: 946-952
        • Taylor I.K.
        • O'Shaughnessy K.M.
        • Fuller R.W.
        • Dollery C.T.
        Effect of cysteinyl-leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects.
        Lancet. 1991; 337: 690-694
        • Findlay S.R.
        • Barden J.M.
        • Easley C.B.
        • Glass M.
        Effect of the oral leukotriene antagonist, ICI 204,219, on antigen-induced bronchoconstriction in subjects with asthma.
        J Allergy Clin Immunol. 1992; 89: 1040-1045
        • Boulet L.P.
        • Chapman K.R.
        • Cote J.
        • et al.
        Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response.
        Am J Respir Crit Care Med. 1997; 155: 1835-1840
        • Fahy J.V.
        • Fleming H.E.
        • Wong H.H.
        • et al.
        The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects.
        Am J Respir Crit Care Med. 1997; 155: 1828-1834
        • Cockcroft D.W.
        • Ruffin R.E.
        • Dolovich J.
        • Hargreave F.E.
        Allergen-induced increase in non-allergic bronchial reactivity.
        Clin Allergy. 1977; 7: 503-513
        • Bentley A.M.
        • Meng Q.
        • Robinson D.S.
        • Hamid Q.
        • Kay A.B.
        • Durham S.R.
        Increases in activated T lymphocytes, eosinophils, and cytokine mRNA expression for interleukin-5 and granulocyte/macrophage colony-stimulating factor in bronchial biopsies after allergen inhalation challenge in atopic asthmatics.
        Am J Respir Cell Mol Biol. 1993; 8: 35-42
        • De Monchy J.G.
        • Kauffman H.F.
        • Venge P.
        • et al.
        Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions.
        Am Rev Respir Dis. 1985; 131: 373-376
        • Diaz P.
        • Gonzalez M.C.
        • Galleguillos F.R.
        • et al.
        Leukocytes and mediators in bronchoalveolar lavage during allergen-induced late-phase asthmatic reactions.
        Am Rev Respir Dis. 1989; 139: 1383-1389
        • Metzger W.J.
        • Zavala D.
        • Richerson H.B.
        • et al.
        Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Description of the model and local airway inflammation.
        Am Rev Respir Dis. 1987; 135: 433-440
        • Montefort S.
        • Gratziou C.
        • Goulding D.
        • et al.
        Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways.
        J Clin Invest. 1994; 93: 1411-1421
        • Tonnel A.B.
        • Joseph M.
        • Gosset P.
        • Fournier E.
        • Capron A.
        Stimulation of alveolar macrophages in asthmatic patients after local provocation test.
        Lancet. 1983; 1: 1406-1408
        • Schwartz L.B.
        Tryptase, a mediator of human mast cells.
        J Allergy Clin Immunol. 1990; 86: 594-598
        • Ruoss S.J.
        • Hartmann T.
        • Caughey G.H.
        Mast cell tryptase is a mitogen for cultured fibroblasts.
        J Clin Invest. 1991; 88: 493-499
        • Gruber B.L.
        • Kew R.R.
        • Jelaska A.
        • et al.
        Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis.
        J Immunol. 1997; 158: 2310-2317
        • Berger P.
        • Perng D.-W.
        • Thabrew H.
        • et al.
        Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells.
        J Appl Physiol. 2001; 91: 1372-1379
        • Cairns J.A.
        • Walls A.F.
        Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts.
        J Clin Invest. 1997; 99: 1313-1321
        • Panettieri R.A.
        • Yadvish P.A.
        • Kelly A.M.
        • Rubinstein N.A.
        • Kotlikoff M.I.
        Histamine stimulates proliferation of airway smooth muscle and induces c-fos expression.
        Am J Physiol. 1990; 259: L365-L371
        • Borthwick L.A.
        • Wynn T.A.
        • Fisher A.J.
        Cytokine mediated tissue fibrosis.
        Biochim Biophys Acta. 2013; 1832: 1049-1060
        • Bradding P.
        • Walls A.F.
        • Holgate S.T.
        The role of the mast cell in the pathophysiology of asthma.
        J Allergy Clin Immunol. 2006; 117: 1277-1284
        • Dvorak A.M.
        • Tepper R.I.
        • Weller P.F.
        • et al.
        Piecemeal degranulation of mast cells in the inflammatory eyelid lesions of interleukin-4 transgenic mice. Evidence of mast cell histamine release in vivo by diamine oxidase-gold enzyme-affinity ultrastructural cytochemistry.
        Blood. 1994; 83: 3600-3612
        • Theoharides T.C.
        • Kempuraj D.
        • Tagen M.
        • Conti P.
        • Kalogeromitros D.
        Differential release of mast cell mediators and the pathogenesis of inflammation.
        Immunol Rev. 2007; 217: 65-78
        • Kanoh S.
        • Tanabe T.
        • Rubin B.K.
        IL-13-induced MUC5AC production and goblet cell differentiation is steroid resistant in human airway cells.
        Clin Exp Allergy. 2011; 41: 1747-1756
        • Licona-Limon P.
        • Kim L.K.
        • Palm N.W.
        • Flavell R.A.
        TH2, allergy and group 2 innate lymphoid cells.
        Nat Immunol. 2013; 14: 536-542
        • Chatila T.A.
        Interleukin-4 receptor signaling pathways in asthma pathogenesis.
        Trends Mol Med. 2004; 10: 493-499
        • Fish S.C.
        • Donaldson D.D.
        • Goldman S.J.
        • Williams C.M.
        • Kasaian M.T.
        IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13.
        J Immunol. 2005; 174: 7716-7724
        • Grunig G.
        • Warnock M.
        • Wakil A.E.
        • et al.
        Requirement for IL-13 independently of IL-4 in experimental asthma.
        Science. 1998; 282: 2261-2263
        • Izuhara K.
        • Arima K.
        • Yasunaga S.
        IL-4 and IL-13: their pathological roles in allergic diseases and their potential in developing new therapies.
        Curr Drug Targets Inflamm Allergy. 2002; 1: 263-269
        • Wenzel S.
        • Ford L.
        • Pearlman D.
        • et al.
        Dupilumab in persistent asthma with elevated eosinophil levels.
        N Engl J Med. 2013; 368: 2455-2466
        • Fort M.M.
        • Cheung J.
        • Yen D.
        • et al.
        IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo.
        Immunity. 2001; 15: 985-995
        • Hoyler T.
        • Klose Christoph S.N.
        • Souabni A.
        • et al.
        The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells.
        Immunity. 2012; 37: 634-648
        • Wong S.H.
        • Walker J.A.
        • Jolin H.E.
        • et al.
        Rorα is essential for nuocyte development.
        Nat Immunol. 2012; 13: 229-236
        • Doherty T.A.
        • Broide D.H.
        Group 2 innate lymphoid cells: new players in human allergic diseases.
        J Investig Allergol Clin Immunol. 2015; 25 (quiz 2p following): 1-11
        • Mjosberg J.M.
        • Trifari S.
        • Crellin N.K.
        • et al.
        Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161.
        Nat Immunol. 2011; 12: 1055-1062
        • Barnig C.
        • Cernadas M.
        • Dutile S.
        • et al.
        Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma.
        Sci Transl Med. 2013; 5: 174ra26
        • Monticelli L.A.
        • Sonnenberg G.F.
        • Abt M.C.
        • et al.
        Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.
        Nat Immunol. 2011; 12: 1045-1054
        • Salimi M.
        • Barlow J.L.
        • Saunders S.P.
        • et al.
        A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis.
        J Exp Med. 2013; 210: 2939-2950
        • Bartemes K.R.
        • Kephart G.M.
        • Fox S.J.
        • Kita H.
        Enhanced innate type 2 immune response in peripheral blood from patients with asthma.
        J Allergy Clin Immunol. 2014; 134: 671-678.e4
        • Chang J.E.
        • Doherty T.A.
        • Baum R.
        • Broide D.
        Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis.
        J Allergy Clin Immunol. 2014; 133: 899-901.e3
        • Xue L.
        • Salimi M.
        • Panse I.
        • et al.
        Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells.
        J Allergy Clin Immunol. 2014; 133: 1184-1194
        • Wilhelm C.
        • Hirota K.
        • Stieglitz B.
        • et al.
        An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation.
        Nat Immunol. 2011; 12: 1071-1077
        • Roediger B.
        • Kyle R.
        • Yip K.H.
        • et al.
        Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells.
        Nat Immunol. 2013; 14: 564-573
        • Madden K.B.
        • Urban Jr., J.F.
        • Ziltener H.J.
        • Schrader J.W.
        • Finkelman F.D.
        • Katona I.M.
        Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis.
        J Immunol. 1991; 147: 1387-1391
        • Okumura S.
        • Kashiwakura J.
        • Tomita H.
        • et al.
        Identification of specific gene expression profiles in human mast cells mediated by toll-like receptor 4 and FcepsilonRI.
        Blood. 2003; 102: 2547-2554
        • Balzar S.
        • Fajt M.L.
        • Comhair S.A.
        • et al.
        Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program.
        Am J Respir Crit Care Med. 2011; 183: 299-309
        • Boyce J.A.
        Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation.
        Immunol Rev. 2007; 217: 168-185
        • Schwartz L.B.
        • Irani A.M.
        • Roller K.
        • Castells M.C.
        • Schechter N.M.
        Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells.
        J Immunol. 1987; 138: 2611-2615
        • Bentley A.M.
        • Hamid Q.
        • Robinson D.S.
        • et al.
        Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa.
        Am J Respir Crit Care Med. 1996; 153: 551-556
        • Wenzel S.E.
        Asthma phenotypes: the evolution from clinical to molecular approaches.
        Nat Med. 2012; 18: 716-725
        • Woodruff P.G.
        • Modrek B.
        • Choy D.F.
        • et al.
        T-helper type 2-driven inflammation defines major subphenotypes of asthma.
        Am J Respir Crit Care Med. 2009; 180: 388-395
        • Modena B.D.
        • Tedrow J.R.
        • Milosevic J.
        • et al.
        Gene expression in relation to exhaled nitric oxide identifies novel asthma phenotypes with unique biomolecular pathways.
        Am J Respir Crit Care Med. 2014; 190: 1363-1372
        • Wu W.
        • Bleecker E.
        • Moore W.
        • et al.
        Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.
        J Allergy Clin Immunol. 2014; 133: 1280-1288
        • Carroll N.G.
        • Mutavdzic S.
        • James A.L.
        Distribution and degranulation of airway mast cells in normal and asthmatic subjects.
        Eur Respir J. 2002; 19: 879-885
        • Dougherty R.H.
        • Sidhu S.S.
        • Raman K.
        • et al.
        Accumulation of intraepithelial mast cells with a unique protease phenotype in T(H)2-high asthma.
        J Allergy Clin Immunol. 2010; 125: 1046-1053.e8
        • Bradley B.L.
        • Azzawi M.
        • Jacobson M.
        • et al.
        Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness.
        J Allergy Clin Immunol. 1991; 88: 661-674
        • Liesker J.J.
        • Ten Hacken N.H.
        • Rutgers S.R.
        • Zeinstra-Smith M.
        • Postma D.S.
        • Timens W.
        Mast cell numbers in airway smooth muscle and PC20AMP in asthma and COPD.
        Respir Med. 2007; 101: 882-887
        • Molderings G.J.
        • Brettner S.
        • Homann J.
        • Afrin L.B.
        Mast cell activation disease: a concise practical guide for diagnostic workup and therapeutic options.
        J Hematol Oncol. 2011; 4: 10
        • Molderings G.J.
        • Homann J.
        • Brettner S.
        • Raithel M.
        • Frieling T.
        [Mast cell activation disease: a concise practical guide for diagnostic workup and therapeutic options].
        Dtsch Med Wochenschr. 2014; 139 (quiz 35–8): 1523-1534
        • Laprise C.
        • Boulet L.P.
        • Morissette J.
        • Winstall E.
        • Raymond V.
        Evidence for association and linkage between atopy, airway hyper-responsiveness, and the beta subunit Glu237Gly variant of the high-affinity receptor for immunoglobulin E in the French-Canadian population.
        Immunogenetics. 2000; 51: 695-702
        • Nagata H.
        • Mutoh H.
        • Kumahara K.
        • et al.
        Association between nasal allergy and a coding variant of the Fc epsilon RI beta gene Glu237Gly in a Japanese population.
        Hum Genet. 2001; 109: 262-266
        • Rivera J.
        • Gilfillan A.M.
        Molecular regulation of mast cell activation.
        J Allergy Clin Immunol. 2006; 117 (quiz 26): 1214-1225
        • Shirakawa T.
        • Li A.
        • Dubowitz M.
        • et al.
        Association between atopy and variants of the beta subunit of the high-affinity immunoglobulin E receptor.
        Nat Genet. 1994; 7: 125-129
        • Meltzer E.O.
        • Hamilos D.L.
        • Hadley J.A.
        • et al.
        Rhinosinusitis: establishing definitions for clinical research and patient care.
        The J Allergy Clin Immunol. 2004; 114: 155-212
        • Bhattacharyya N.
        Incremental health care utilization and expenditures for chronic rhinosinusitis in the United States.
        Ann Otol Rhinol Laryngol. 2011; 120: 423-427
        • Polzehl D.
        • Moeller P.
        • Riechelmann H.
        • Perner S.
        Distinct features of chronic rhinosinusitis with and without nasal polyps.
        Allergy. 2006; 61: 1275-1279
        • Kato A.
        Immunopathology of chronic rhinosinusitis.
        Allergol Int. 2015; 64: 121-130
        • Chaaban M.R.
        • Walsh E.M.
        • Woodworth B.A.
        Epidemiology and differential diagnosis of nasal polyps.
        Am J Rhinol Allergy. 2013; 27: 473-478
        • Van Zele T.
        • Claeys S.
        • Gevaert P.
        • et al.
        Differentiation of chronic sinus diseases by measurement of inflammatory mediators.
        Allergy. 2006; 61: 1280-1289
        • Zhang N.
        • Van Zele T.
        • Perez-Novo C.
        • et al.
        Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease.
        J Allergy Clin Immunol. 2008; 122: 961-968
        • Mainz J.
        • Koitschev A.
        Pathogenesis and management of nasal polyposis in cystic fibrosis.
        Curr Allergy Asthma Rep. 2012; 12: 163-174
        • Mesolella M.
        • Cimmino M.
        • Cantone E.
        • et al.
        Nasal polyposis in atypical cystic fibrosis: a case report.
        Int J Pediatr Otorhinolaryngol Extra. 2010; 5: 167-169
        • Gentile V.G.
        • Isaacson G.
        Patterns of sinusitis in cystic fibrosis.
        Laryngoscope. 1996; 106: 1005-1009
        • Sagel S.D.
        • Kapsner R.
        • Osberg I.
        • Sontag M.K.
        • Accurso F.J.
        Airway inflammation in children with cystic fibrosis and healthy children assessed by sputum induction.
        Am J Respir Crit Care Med. 2001; 164: 1425-1431
        • Balough K.
        • McCubbin M.
        • Weinberger M.
        • Smits W.
        • Ahrens R.
        • Fick R.
        The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis.
        Pediatr Pulmonol. 1995; 20: 63-70
        • Khan T.Z.
        • Wagener J.S.
        • Bost T.
        • Martinez J.
        • Accurso F.J.
        • Riches D.W.
        Early pulmonary inflammation in infants with cystic fibrosis.
        Am J Respir Crit Care Med. 1995; 151: 1075-1082
        • Rowe-Jones J.M.
        • Shembekar M.
        • Trendell-Smith N.
        • Mackay I.S.
        Polypoidal rhinosinusitis in cystic fibrosis: a clinical and histopathological study.
        Clin Otolaryngol Allied Sci. 1997; 22: 167-171
        • Nepomuceno I.B.
        • Esrig S.
        • Moss R.B.
        Allergic bronchopulmonary aspergillosis in cystic fibrosis: role of atopy and response to itraconazole.
        Chest. 1999; 115: 364-370
        • Georgy M.S.
        • Peters A.T.
        Chapter 7: nasal polyps.
        Allergy Asthma Proc. 2012; 33: S22-S23
        • Gevaert P.
        • Holtappels G.
        • Johansson S.G.
        • Cuvelier C.
        • Cauwenberge P.
        • Bachert C.
        Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue.
        Allergy. 2005; 60: 71-79
        • Slater A.
        • Smallman L.A.
        • Drake-Lee A.B.
        Increase in epithelial mast cell numbers in the nasal mucosa of patients with perennial allergic rhinitis.
        J Laryngol Otol. 1996; 110: 929-933
        • Ruhno J.
        • Howie K.
        • Anderson M.
        • et al.
        The increased number of epithelial mast cells in nasal polyps and adjacent turbinates is not allergy-dependent.
        Allergy. 1990; 45: 370-374
        • Jacobson M.R.
        • Juliusson S.
        • Löwhagen O.
        • Balder B.
        • Kay A.B.
        • Durham S.R.
        Effect of topical corticosteroids on seasonal increases in epithelial eosinophils and mast cells in allergic rhinitis: a comparison of nasal brush and biopsy methods.
        Clin Exp Allergy. 1999; 29: 1347-1355
        • Braunstahl G.J.
        • Overbeek S.E.
        • Fokkens W.J.
        • et al.
        Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa.
        Am J Respir Crit Care Med. 2001; 164: 858-865
        • Kawabori S.
        • Kanai N.
        • Tosho T.
        • Adachi T.
        Existence of c-kit receptor-positive, tryptase-negative, IgE-negative cells in human allergic nasal mucosa: a candidate for mast cell progenitor.
        Int Arch Allergy Immunol. 1997; 112: 36-43
        • Igarashi Y.
        • Goldrich M.S.
        • Kaliner M.A.
        • Irani A.M.
        • Schwartz L.B.
        • White M.V.
        Quantitation of inflammatory cells in the nasal mucosa of patients with allergic rhinitis and normal subjects.
        J Allergy Clin Immunol. 1995; 95: 716-725
        • Naclerio R.M.
        • Meier H.L.
        • Kagey-Sobotka A.
        • et al.
        Mediator release after nasal airway challenge with allergen.
        Am Rev Respir Dis. 1983; 128: 597-602
        • Schleimer R.P.
        • Fox C.C.
        • Naclerio R.M.
        • et al.
        Role of human basophils and mast cells in the pathogenesis of allergic diseases.
        J Allergy Clin Immunol. 1985; 76: 369-374
        • Settipane G.A.
        Nasal polyps: epidemiology, pathology, immunology, and treatment.
        Am J Rhinol. 1987; 1: 119-126
        • Stevenson D.D.
        • Zuraw B.L.
        Pathogenesis of aspirin-exacerbated respiratory disease.
        Clin Rev Allergy Immunol. 2003; 24: 169-188
        • Yamashita T.
        • Tsuji H.
        • Maeda N.
        • Tomoda K.
        • Kumazawa T.
        Etiology of nasal polyps associated with aspirin-sensitive asthma.
        Rhinol Suppl. 1989; 8: 15-24
        • Di Lorenzo G.
        • Drago A.
        • Esposito Pellitteri M.
        • et al.
        Measurement of inflammatory mediators of mast cells and eosinophils in native nasal lavage fluid in nasal polyposis.
        Int Arch Allergy Immunol. 2001; 125: 164-175
        • Thaçi D.
        • Simpson E.L.
        • Beck L.A.
        • et al.
        Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial.
        Lancet. 2016; 387: 40-52
        • Landolina N.
        • Gangwar R.S.
        • Levi-Schaffer F.
        Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy.
        Adv Immunol. 2015; 125: 41-85
        • Hamilos D.L.
        • Leung D.Y.
        • Wood R.
        • et al.
        Evidence for distinct cytokine expression in allergic versus nonallergic chronic sinusitis.
        J Allergy Clin Immunol. 1995; 96: 537-544
        • Chen Y.S.
        • Langhammer T.
        • Westhofen M.
        • Lorenzen J.
        Relationship between matrix metalloproteinases MMP-2, MMP-9, tissue inhibitor of matrix metalloproteinases-1 and IL-5, IL-8 in nasal polyps.
        Allergy. 2007; 62: 66-72
        • Yeo N.K.
        • Eom D.W.
        • Oh M.Y.
        • Lim H.W.
        • Song Y.J.
        Expression of matrix metalloproteinase 2 and 9 and tissue inhibitor of metalloproteinase 1 in nonrecurrent vs recurrent nasal polyps.
        Ann Allergy Asthma Immunol. 2013; 111: 205-210
        • Lee Y.M.
        • Kim S.S.
        • Kim H.A.
        • et al.
        Eosinophil inflammation of nasal polyp tissue: relationships with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta1.
        J Korean Med Sci. 2003; 18: 97-102
        • Pawankar R.
        Mast cells in allergic airway disease and chronic rhinosinusitis.
        Chem Immunol Allergy. 2005; 87: 111-129
        • Pawankar R.
        • Lee K.H.
        • Nonaka M.
        • Takizawa R.
        Role of mast cells and basophils in chronic rhinosinusitis.
        Clin Allergy Immunol. 2007; 20: 93-101
        • Nonaka M.
        • Pawankar R.
        • Fukumoto A.
        • Ogihara N.
        • Sakanushi A.
        • Yagi T.
        Induction of eotaxin production by interleukin-4, interleukin-13 and lipopolysaccharide by nasal fibroblasts.
        Clin Exp Allergy. 2004; 34: 804-811
        • Pawankar R.
        Mast cells in rhinitis.
        in: Watanabe T. Timmerman H. Yanai K. Histamine research in the new millennium. Elselvier Science, Amsterdam2001: 369-374
        • Takabayashi T.
        • Kato A.
        • Peters A.T.
        • et al.
        Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps.
        J Allergy Clin Immunol. 2012; 130: 410-420.e5
        • Cao P.P.
        • Zhang Y.N.
        • Liao B.
        • et al.
        Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps.
        Clin Exp Allergy. 2014; 44: 690-700
        • Bachert C.
        • Gevaert P.
        • van Cauwenberge P.
        Staphylococcus aureus superantigens and airway disease.
        Curr Allergy Asthma Rep. 2002; 2: 252-258
        • Shin S.H.
        • Ponikau J.U.
        • Sherris D.A.
        • et al.
        Chronic rhinosinusitis: an enhanced immune response to ubiquitous airborne fungi.
        J Allergy Clin Immunol. 2004; 114: 1369-1375
        • Bachert C.
        • Gevaert P.
        • Holtappels G.
        • Johansson S.G.
        • van Cauwenberge P.
        Total and specific IgE in nasal polyps is related to local eosinophilic inflammation.
        J Allergy Clin Immunol. 2001; 107: 607-614
        • Kramer M.F.
        • Burow G.
        • Pfrogner E.
        • Rasp G.
        In vitro diagnosis of chronic nasal inflammation.
        Clin Exp Allergy. 2004; 34: 1086-1092
        • Genovese A.
        • Borgia G.
        • Björck L.
        • et al.
        Immunoglobulin superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction with the kappa light chains of IgE.
        J Immunol. 2003; 170: 1854-1861
        • Genovese A.
        • Bouvet J.P.
        • Florio G.
        • Lamparter-Schummert B.
        • Björck L.
        • Marone G.
        Bacterial immunoglobulin superantigen proteins A and L activate human heart mast cells by interacting with immunoglobulin E.
        Infect Immun. 2000; 68: 5517-5524
        • Marshall J.S.
        • McCurdy J.D.
        • Olynych T.
        Toll-like receptor-mediated activation of mast cells: implications for allergic disease?.
        Int Arch Allergy Immunol. 2003; 132: 87-97
        • Sandig H.
        • Bulfone-Paus S.
        TLR signaling in mast cells: common and unique features.
        Front Immunol. 2012; 3: 185
        • Malaviya R.
        • Georges A.
        Regulation of mast cell-mediated innate immunity during early response to bacterial infection.
        Clin Rev Allergy Immunol. 2002; 22: 189-204
        • Masuda A.
        • Yoshikai Y.
        • Aiba K.
        • Matsuguchi T.
        Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways.
        J Immunol. 2002; 169: 3801-3810
        • Allakhverdi Z.
        • Comeau M.R.
        • Jessup H.K.
        • et al.
        Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells.
        J Exp Med. 2007; 204: 253-258
        • Nagarkar D.R.
        • Poposki J.A.
        • Comeau M.R.
        • et al.
        Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin.
        J Allergy Clin Immunol. 2012; 130: 225-232.e4
        • Rajan J.P.
        • Wineinger N.E.
        • Stevenson D.D.
        • White A.A.
        Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature.
        J Allergy Clin Immunol. 2015; 135: 676-681.e1
        • Sladek K.
        • Szczeklik A.
        Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma.
        Eur Respir J. 1993; 6: 391-399
        • Bochenek G.
        • Nagraba K.
        • Nizankowska E.
        • Szczeklik A.
        A controlled study of 9alpha,11beta-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge.
        J Allergy Clin Immunol. 2003; 111: 743-749
        • Robuschi M.
        • Gambaro G.
        • Sestini P.
        • et al.
        Attenuation of aspirin-induced bronchoconstriction by sodium cromoglycate and nedocromil sodium.
        Am J Respir Crit Care Med. 1997; 155: 1461-1464
        • Yoshida S.
        • Amayasu H.
        • Sakamoto H.
        • et al.
        Cromolyn sodium prevents bronchoconstriction and urinary LTE4 excretion in aspirin-induced asthma.
        Ann Allergy Asthma Immunol. 1998; 80: 171-176
        • Narayanankutty A.
        • Resendiz-Hernandez J.M.
        • Falfan-Valencia R.
        • Teran L.M.
        Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD).
        Clin Biochem. 2013; 46: 566-578
        • Mastalerz L.
        • Nizankowska E.
        • Sladek K.
        • Szczeklik A.
        Protective effects of prostaglandin E2 (PGE2) on airway obstruction induced by aspirin (ASA) in aspirin-intolerant asthmatics (AIA).
        European Respiratory Journal - Supplement [Internet]. 1994; Suppl 18 ([434s p.]. Available from:)
        • Sestini P.
        • Armetti L.
        • Gambaro G.
        • et al.
        Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma.
        Am J Respir Crit Care Med. 1996; 153: 572-575
        • Szczeklik A.
        • Sladek K.
        • Dworski R.
        • et al.
        Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics.
        Am J Respir Crit Care Med. 1996; 154: 1608-1614
        • Ferreri N.R.
        • Howland W.C.
        • Stevenson D.D.
        • Spiegelberg H.L.
        Release of leukotrienes, prostaglandins, and histamine into nasal secretions of aspirin-sensitive asthmatics during reaction to aspirin.
        Am Rev Respir Dis. 1988; 137: 847-854
        • Cahill K.N.
        • Raby B.A.
        • Zhou X.
        • et al.
        Impaired EP expression causes resistance to prostaglandin E in nasal polyp fibroblasts from subjects with AERD.
        Am J Respir Cell Mol Biol. 2016; 54: 34-40
        • Moon T.C.
        • Campos-Alberto E.
        • Yoshimura T.
        • et al.
        Expression of DP2 (CRTh2), a prostaglandin D(2) receptor, in human mast cells.
        PLoS ONE. 2014; 9: e108595
        • Takahashi G.
        • Tanaka H.
        • Higuchi N.
        • Ikeda M.
        • Inagaki N.
        • Shichijo M.
        The potential role of prostaglandin D2 in nasal congestion observed in a guinea pig model of allergic rhinitis.
        Int Arch Allergy Immunol. 2012; 158: 359-368
        • Spik I.
        • Brenuchon C.
        • Angeli V.
        • et al.
        Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse.
        J Immunol. 2005; 174: 3703-3708
        • Cahill K.N.
        • Bensko J.C.
        • Boyce J.A.
        • Laidlaw T.M.
        Prostaglandin D(2): a dominant mediator of aspirin-exacerbated respiratory disease.
        J Allergy Clin Immunol. 2015; 135: 245-252
        • Irkec M.T.
        • Bozkurt B.
        Molecular immunology of allergic conjunctivitis.
        Curr Opin Allergy Clin Immunol. 2012; 12: 534-539
        • Ono S.J.
        • Abelson M.B.
        Allergic conjunctivitis: update on pathophysiology and prospects for future treatment.
        J Allergy Clin Immunol. 2005; 115: 118-122
        • Friedlaender M.H.
        Ocular allergy.
        Curr Opin Allergy Clin Immunol. 2011; 11: 477-482
        • Chigbu D.I.
        The pathophysiology of ocular allergy: a review.
        Cont Lens Anterior Eye. 2009; 32 (quiz 43–4): 3-15
        • Hayashi D.
        • Li D.
        • Hayashi C.
        • Shatos M.
        • Hodges R.R.
        • Dartt D.A.
        Role of histamine and its receptor subtypes in stimulation of conjunctival goblet cell secretion.
        Invest Ophthalmol Vis Sci. 2012; 53: 2993-3003
        • Ohbayashi M.
        • Manzouri B.
        • Morohoshi K.
        • Fukuda K.
        • Ono S.J.
        The role of histamine in ocular allergy.
        Adv Exp Med Biol. 2010; 709: 43-52
        • Leonardi A.
        • Motterle L.
        • Bortolotti M.
        Allergy and the eye.
        Clin Exp Immunol. 2008; 153: 17-21
        • Saban D.R.
        • Calder V.
        • Kuo C.H.
        • et al.
        New twists to an old story: novel concepts in the pathogenesis of allergic eye disease.
        Curr Eye Res. 2013; 38: 317-330
        • Bonini S.
        • Bonini S.
        • Vecchione A.
        • Naim D.M.
        • Allansmith M.R.
        • Balsano F.
        Inflammatory changes in conjunctival scrapings after allergen provocation in humans.
        J Allergy Clin Immunol. 1988; 82: 462-469
        • Ueta M.
        • Nakamura T.
        • Tanaka S.
        • Kojima K.
        • Kinoshita S.
        Development of eosinophilic conjunctival inflammation at late-phase reaction in mast cell-deficient mice.
        J Allergy Clin Immunol. 2007; 120: 476-478
        • Leonardi A.
        The central role of conjunctival mast cells in the pathogenesis of ocular allergy.
        Curr Allergy Asthma Rep. 2002; 2: 325-331
        • Anderson D.F.
        • Zhang S.
        • Bradding P.
        • McGill J.I.
        • Holgate S.T.
        • Roche W.R.
        The relative contribution of mast cell subsets to conjunctival TH2-like cytokines.
        Invest Ophthalmol Vis Sci. 2001; 42: 995-1001
        • Cook E.B.
        • Stahl J.L.
        • Miller S.T.
        • et al.
        Isolation of human conjunctival mast cells and epithelial cells: tumor necrosis factor-alpha from mast cells affects intercellular adhesion molecule 1 expression on epithelial cells.
        Invest Ophthalmol Vis Sci. 1998; 39: 336-343
        • Chen J.J.
        • Applebaum D.S.
        • Sun G.S.
        • Pflugfelder S.C.
        Atopic keratoconjunctivitis: a review.
        J Am Acad Dermatol. 2014; 70: 569-575
        • Leonardi A.
        • Di Stefano A.
        • Vicari C.
        • Motterle L.
        • Brun P.
        Histamine H4 receptors in normal conjunctiva and in vernal keratoconjunctivitis.
        Allergy. 2011; 66: 1360-1366
        • Bielory L.
        • Ghafoor S.
        Histamine receptors and the conjunctiva.
        Curr Opin Allergy Clin Immunol. 2005; 5: 437-440
        • Leonardi A.
        • DeFranchis G.
        • De Paoli M.
        • Fregona I.
        • Plebani M.
        • Secchi A.
        Histamine-induced cytokine production and ICAM-1 expression in human conjunctival fibroblasts.
        Curr Eye Res. 2002; 25: 189-196
        • Allansmith M.R.
        • Greiner J.V.
        • Baird R.S.
        Number of inflammatory cells in the normal conjunctiva.
        Am J Ophthalmol. 1978; 86: 250-259
        • Morgan S.J.
        • Williams J.H.
        • Walls A.F.
        • Church M.K.
        • Holgate S.T.
        • McGill J.I.
        Mast cell numbers and staining characteristics in the normal and allergic human conjunctiva.
        J Allergy Clin Immunol. 1991; 87: 111-116
        • Anderson D.F.
        • MacLeod J.D.
        • Baddeley S.M.
        • et al.
        Seasonal allergic conjunctivitis is accompanied by increased mast cell numbers in the absence of leucocyte infiltration.
        Clin Exp Allergy. 1997; 27: 1060-1066
        • Bieber T.
        Atopic dermatitis.
        N Engl J Med. 2008; 358: 1483-1494
        • Schultz Larsen F.
        The epidemiology of atopic dermatitis.
        Monogr Allergy. 1993; 31: 9-28
        • Hanifin J.M.
        • Reed M.L.
        • Eczema P.
        • Impact Working G.
        A population-based survey of eczema prevalence in the United States.
        Dermatitis. 2007; 18: 82-91
        • Otsuka A.
        • Kabashima K.
        Mast cells and basophils in cutaneous immune responses.
        Allergy. 2015; 70: 131-140
        • Boguniewicz M.
        • Leung D.
        Atopic dermatitis.
        in: Adkinson Jr., N.F. Bochner B.S. Busse W.W. Middleton's allergy: principles and practice. 7th ed. Mosby, Philadelphia, PA2009: 1083
        • Schneider L.
        • Tilles S.
        • Lio P.
        • et al.
        Atopic dermatitis: a practice parameter update 2012.
        J Allergy Clin Immunol. 2013; 131: 295-299.e1–27
        • Kabashima K.
        New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity.
        J Dermatol Sci. 2013; 70: 3-11
        • Otsuka A.
        • Doi H.
        • Egawa G.
        • et al.
        Possible new therapeutic strategy to regulate atopic dermatitis through upregulating filaggrin expression.
        J Allergy Clin Immunol. 2014; 133: 139-146.e1–10
        • Moniaga C.S.
        • Egawa G.
        • Kawasaki H.
        • et al.
        Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract.
        Am J Pathol. 2010; 176: 2385-2393
        • Boguniewicz B.
        • Abrams M.
        • Fonacier L.
        Atopic dermatitis and contact dermatitis.
        in: Adelman D.C. Casale T.B. Corren J. Manual of Allergy and Immunology. 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA2012: 494
        • Krathen R.A.
        • Hsu S.
        Failure of omalizumab for treatment of severe adult atopic dermatitis.
        J Am Acad Dermatol. 2005; 53: 338-340
        • Lane J.E.
        • Cheyney J.M.
        • Lane T.N.
        • Kent D.E.
        • Cohen D.J.
        Treatment of recalcitrant atopic dermatitis with omalizumab.
        J Am Acad Dermatol. 2006; 54: 68-72
        • Gonzalez de Olano D.
        • de la Hoz Caballer B.
        • Nunez Lopez R.
        • et al.
        Prevalence of allergy and anaphylactic symptoms in 210 adult and pediatric patients with mastocytosis in Spain: a study of the Spanish network on mastocytosis (REMA).
        Clin Exp Allergy. 2007; 37: 1547-1555
        • Jarvikallio A.
        • Naukkarinen A.
        • Harvima I.T.
        • Aalto M.L.
        • Horsmanheimo M.
        Quantitative analysis of tryptase- and chymase-containing mast cells in atopic dermatitis and nummular eczema.
        Br J Dermatol. 1997; 136: 871-877
        • Irani A.M.
        • Sampson H.A.
        • Schwartz L.B.
        Mast cells in atopic dermatitis*.
        Allergy. 1989; 44: 31-34
        • Algermissen B.
        • Bauer F.
        • Schadendorf D.
        • Kropp J.D.
        • Czarnetzki B.M.
        Analysis of mast cell subpopulations (MCT, MCTC) in cutaneous inflammation using novel enzyme-histochemical staining techniques.
        Exp Dermatol. 1994; 3: 290-297
        • Oldhoff J.M.
        • Darsow U.
        • Werfel T.
        • et al.
        Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis.
        Allergy. 2005; 60: 693-696
        • Leung D.Y.
        • Boguniewicz M.
        • Howell M.D.
        • Nomura I.
        • Hamid Q.A.
        New insights into atopic dermatitis.
        J Clin Invest. 2004; 113: 651-657
        • Omoto M.
        • Gu L.H.
        • Sugiura H.
        • Uehara M.
        Heterogeneity of dermal deposition of eosinophil granule major basic protein in acute lesions of atopic dermatitis.
        Arch Dermatol Res. 2000; 292: 51-54
        • Boehme S.A.
        • Franz-Bacon K.
        • Chen E.P.
        • Ly T.W.
        • Kawakami Y.
        • Bacon K.B.
        Murine bone marrow-derived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2).
        Int Immunol. 2009; 21: 621-632
        • Boehme S.A.
        • Chen E.P.
        • Franz-Bacon K.
        • et al.
        Antagonism of CRTH2 ameliorates chronic epicutaneous sensitization-induced inflammation by multiple mechanisms.
        Int Immunol. 2009; 21: 1-17
        • Boehme S.A.
        • Franz-Bacon K.
        • Chen E.P.
        • et al.
        A small molecule CRTH2 antagonist inhibits FITC-induced allergic cutaneous inflammation.
        Int Immunol. 2009; 21: 81-93
        • Satoh T.
        • Moroi R.
        • Aritake K.
        • et al.
        Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor.
        J Immunol. 2006; 177: 2621-2629
        • Gschwandtner M.
        • Mildner M.
        • Mlitz V.
        • et al.
        Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model.
        Allergy. 2013; 68: 37-47
        • Ling P.
        • Ngo K.
        • Nguyen S.
        • et al.
        Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation.
        Br J Pharmacol. 2004; 142: 161-171
        • Hofstra C.L.
        • Desai P.J.
        • Thurmond R.L.
        • Fung-Leung W.P.
        Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells.
        J Pharmacol Exp Ther. 2003; 305: 1212-1221
        • Sonkoly E.
        • Muller A.
        • Lauerma A.I.
        • et al.
        IL-31: a new link between T cells and pruritus in atopic skin inflammation.
        J Allergy Clin Immunol. 2006; 117: 411-417
        • Raap U.
        • Wichmann K.
        • Bruder M.
        • et al.
        Correlation of IL-31 serum levels with severity of atopic dermatitis.
        J Allergy Clin Immunol. 2008; 122: 421-423
        • Brandt E.B.
        • Sivaprasad U.
        Th2 cytokines and atopic dermatitis.
        J Clin Cell Immunol. 2011; 2: 1-25
        • Dillon S.R.
        • Sprecher C.
        • Hammond A.
        • et al.
        Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice.
        Nat Immunol. 2004; 5: 752-760
        • Niyonsaba F.
        • Ushio H.
        • Hara M.
        • et al.
        Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells.
        J Immunol. 2010; 184: 3526-3534
        • Kopfnagel V.
        • Harder J.
        • Werfel T.
        Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions.
        Curr Opin Allergy Clin Immunol. 2013; 13: 531-536
        • Liew F.Y.
        • Pitman N.I.
        • McInnes I.B.
        Disease-associated functions of IL-33: the new kid in the IL-1 family.
        Nat Rev Immunol. 2010; 10: 103-110
        • Allakhverdi Z.
        • Smith D.E.
        • Comeau M.R.
        • Delespesse G.
        Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells.
        J Immunol. 2007; 179: 2051-2054
        • Saluja R.
        • Khan M.
        • Church M.K.
        • Maurer M.
        The role of IL-33 and mast cells in allergy and inflammation.
        Clin Transl Allergy. 2015; 5: 33
        • Shimizu M.
        • Matsuda A.
        • Yanagisawa K.
        • et al.
        Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis.
        Hum Mol Genet. 2005; 14: 2919-2927
        • Savinko T.
        • Matikainen S.
        • Saarialho-Kere U.
        • et al.
        IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors.
        J Invest Dermatol. 2012; 132: 1392-1400
        • Meephansan J.
        • Tsuda H.
        • Komine M.
        • Tominaga S.
        • Ohtsuki M.
        Regulation of IL-33 expression by IFN-gamma and tumor necrosis factor-alpha in normal human epidermal keratinocytes.
        J Invest Dermatol. 2012; 132: 2593-2600
        • Imai Y.
        • Yasuda K.
        • Sakaguchi Y.
        • et al.
        Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice.
        Proc Natl Acad Sci U S A. 2013; 110: 13921-13926
        • Rankin A.L.
        • Mumm J.B.
        • Murphy E.
        • et al.
        IL-33 induces IL-13-dependent cutaneous fibrosis.
        J Immunol. 2010; 184: 1526-1535
        • Aronson J.K.
        • Ferner R.E.
        Joining the DoTS: new approach to classifying adverse drug reactions.
        BMJ. 2003; 327: 1222-1225
        • Wheatley L.M.
        • Plaut M.
        • Schwaninger J.M.
        • et al.
        Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy.
        J Allergy Clin Immunol. 2015; 136: 262-271.e2
      1. Blanca-López N, Torres M, Seoane M, et al. Immediate Hypersensitivity Reactions To Quinolones. J Allergy Clin Immunol. 127(2):AB191.

        • Wang H.
        • Wang H.S.
        • Liu Z.P.
        Agents that induce pseudo-allergic reaction.
        Drug Discov Ther. 2011; 5: 211-219
      2. Society TM. http://www.tmsforacure.org 2015.

      3. Drug allergy: an updated practice parameter.
        Ann Allergy Asthma Immunol. 2010; 105: 259-273
        • Guedes A.G.
        • Papich M.G.
        • Rude E.P.
        • Rider M.A.
        Comparison of plasma histamine levels after intravenous administration of hydromorphone and morphine in dogs.
        J Vet Pharmacol Ther. 2007; 30: 516-522
        • Woodall H.E.
        • Chiu A.
        • Weissman D.E.
        Opioid allergic reactions #175.
        J Palliat Med. 2008; 11: 1340-1341
        • Casale T.B.
        • Bowman S.
        • Kaliner M.
        Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and nonopiate receptor participation.
        J Allergy Clin Immunol. 1984; 73: 775-781
        • Trescot A.M.
        • Datta S.
        • Lee M.
        • Hansen H.
        Opioid pharmacology.
        Pain Physician. 2008; 11: S133-S153
        • Liu N.J.
        • vonGizycki H.
        • Gintzler A.R.
        Phospholipase Cbeta1 modulates pain sensitivity, opioid antinociception and opioid tolerance formation.
        Brain Res. 2006; 1069: 47-53
        • Veien M.
        • Szlam F.
        • Holden J.T.
        • et al.
        Mechanisms of nonimmunological histamine and tryptase release from human cutaneous mast cells.
        Anesthesiology. 2000; 92: 1074-1081
        • Gilfillan A.M.
        • Tkaczyk C.
        Integrated signalling pathways for mast-cell activation.
        Nat Rev Immunol. 2006; 6: 218-230
        • Klinker J.F.
        • Seifert R.
        Morphine and muscle relaxants are receptor-independent G-protein activators and cromolyn is an inhibitor of stimulated G-protein activity.
        Inflamm Res. 1997; 46: 46-50
        • Levy J.H.
        • Brister N.W.
        • Shearin A.
        • et al.
        Wheal and flare responses to opioids in humans.
        Anesthesiology. 1989; 70: 756-760
        • Grimbaldeston M.A.
        Mast cell-MrgprB2: sensing secretagogues or a means to overreact.
        Immunol Cell Biol. 2015; 93 ([quest]): 221-223
        • McNeil B.D.
        • Pundir P.
        • Meeker S.
        • et al.
        Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions.
        Nature. 2015; 519: 237-241
        • Sivagnanam S.
        • Deleu D.
        Red man syndrome.
        Critical Care. 2003; 7: 119-120
        • Bruniera F.R.
        • Ferreira F.M.
        • Saviolli L.R.
        • et al.
        The use of vancomycin with its therapeutic and adverse effects: a review.
        Eur Rev Med Pharmacol Sci. 2015; 19: 694-700
        • Horinouchi Y.
        • Abe K.
        • Kubo K.
        • Oka M.
        Mechanisms of vancomycin-induced histamine release from rat peritoneal mast cells.
        Agents Actions. 1993; 40: 28-36
        • Shuto H.
        • Sueyasu M.
        • Otsuki S.
        • et al.
        Potentiation of vancomycin-induced histamine release by muscle relaxants and morphine in rats.
        Antimicrob Agents Chemother. 1999; 43: 2881-2884
        • Szebeni J.
        Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity.
        Toxicology. 2005; 216: 106-121
        • Banerji A.
        • Lax T.
        • Guyer A.
        • Hurwitz S.
        • Camargo C.A.
        • Long A.A.
        Management of hypersensitivity reactions to carboplatin and paclitaxel in an outpatient oncology infusion center: a 5-year review.
        J Allergy Clin Immunol Pract. 2014; 2: 428-433
        • White A.A.
        • Stevenson D.D.
        • Woessner K.M.
        • Simon R.A.
        Approach to patients with aspirin hypersensitivity and acute cardiovascular emergencies.
        Allergy Asthma Proc. 2013; 34: 138-142
        • Kowalski M.L.
        • Makowska J.S.
        • Blanca M.
        • et al.
        Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs)—classification, diagnosis and management: review of the EAACI/ENDA and GA2LEN/HANNA.
        Allergy. 2011; 66: 818-829
        • Sanchez-Borges M.
        • Capriles-Hulett A.
        • Caballero-Fonseca F.
        NSAID-induced urticaria and angioedema: a reappraisal of its clinical management.
        Am J Clin Dermatol. 2002; 3: 599-607
        • Sanchez-Borges M.
        • Caballero-Fonseca F.
        • Capriles-Hulett A.
        • Gonzalez-Aveledo L.
        Aspirin-exacerbated cutaneous disease (AECD) is a distinct subphenotype of chronic spontaneous urticaria.
        J Eur Acad Dermatol Venereol. 2015; 29: 698-701
        • Mastalerz L.
        • Setkowicz M.
        • Sanak M.
        • Szczeklik A.
        Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma.
        J Allergy Clin Immunol. 2004; 113: 771-775
        • Setkowicz M.
        • Mastalerz L.
        • Podolec-Rubis M.
        • Sanak M.
        • Szczeklik A.
        Clinical course and urinary eicosanoids in patients with aspirin-induced urticaria followed up for 4 years.
        J Allergy Clin Immunol. 2009; 123: 174-178
        • Settipane R.A.
        • Constantine H.P.
        • Settipane G.A.
        Aspirin intolerance and recurrent urticaria in normal adults and children. Epidemiology and review.
        Allergy. 1980; 35: 149-154
        • Gomes E.
        • Cardoso M.F.
        • Praça F.
        • Gomes L.
        • Mariño E.
        • Demoly P.
        Self-reported drug allergy in a general adult Portuguese population.
        Clin Exp Allergy. 2004; 34: 1597-1601
        • Steinke J.W.
        • Negri J.
        • Liu L.
        • Payne S.C.
        • Borish L.
        Aspirin activation of eosinophils and mast cells: implications in the pathogenesis of aspirin-exacerbated respiratory disease.
        J Immunol. 2014; 193: 41-47