Advertisement

Mastocytosis in adulthood and neuropsychiatric disorders

  • Sophie Georgin-Lavialle
    Affiliations
    Service de médecine Interne, Hôpital Tenon, Université Pierre et Marie Curie, Assistance Publique-Hôpitaux de Paris, Paris, France
    Search for articles by this author
  • Raphaël Gaillard
    Affiliations
    Laboratoire de “Physiopathologie des maladies Psychiatriques”, Centre de Psychiatrie et Neurosciences U894, INSERM; Université Paris Descartes, Sorbonne Paris Cité, Paris, France

    Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France

    Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris, France
    Search for articles by this author
  • Daniela Moura
    Affiliations
    Centre de référence des mastocytoses, Université Paris Descartes, Sorbonne, Paris Cité, Hôpital Necker Enfants malades, Paris, France
    Search for articles by this author
  • Olivier Hermine
    Correspondence
    Reprint requests: Pr. Olivier Hermine, Service d'Hématologie Adultes, INSERM U1163 and CNRS ERL 8254 et centre de référence sur les mastocytoses, Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Paris Sorbonne Cité, 161 Rue des Sèvres, 75743 Paris Cedex 15, France.
    Affiliations
    Centre de référence des mastocytoses, Université Paris Descartes, Sorbonne, Paris Cité, Hôpital Necker Enfants malades, Paris, France

    INSERM U1163 and CNRS ERL 8254 and Laboratory of Physiopathology and Treatment of Hematological Disorders Hôpital Necker-Enfants malades, Institut Imagine, Paris, France

    Service d'hématologie adulte, Université Paris Descartes, Sorbonne, Paris Cité, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Hôpital Necker-Enfants malades, Paris, France
    Search for articles by this author
Published:March 22, 2016DOI:https://doi.org/10.1016/j.trsl.2016.03.013
      Patients with mastocytosis can display various disabling general and neuropsychological symptoms among one third of them, including general signs such as fatigue and musculoskeletal pain, which can have a major impact on quality of life. Neurological symptoms are less frequent and mainly consist of acute or chronic headache (35%), rarely syncopes (5%), acute onset back pain (4%), and in a few cases, clinical and radiological symptoms resembling or allowing the diagnosis of multiple sclerosis (1.3%). Headaches are associated with symptoms related to mast cell activation syndrome (flushes, prurit, and so forth) and more frequently present as migraine (37.5%), with often aura (66%). Depression-anxiety like symptoms can occur in 40% to 60% of the patients and cognitive impairment is not rare (38.6%). The pathophysiology of these symptoms could be linked to tissular mast cell infiltration or to mast cell mediators release or both. The tryptophan metabolism could be involved in mast cell–induced neuroinflammation through indoleamine-2,3-dioxygenase activation. Treatments targeting mast cell may be useful to target neuropsychological features associated with mastocytosis, including tyrosine kinase inhibitors.

      Abbreviations:

      a7nAChR (alpha-7 nicotinic receptor), DCSD (cognitive impairment without dementia), DSM (Diagnostic and Statistical Manual of Mental Disorders), EAE (experimental autoimmune encephalitis), IDO (indoleamine-2,3-dioxygenase), NMDA (N-methyl-D-aspartate), MC (mast cell), SCF (stem cell factor), SSRI (selective serotonin reuptake inhibitors), TNF (tumor necrosis factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akin C.
        • Valent P.
        Diagnostic criteria and classification of mastocytosis in 2014.
        Immunol Allergy Clin N Am. 2014; 34: 207-218
        • Hermine O.
        • Lortholary O.
        • Leventhal P.S.
        • et al.
        Case-control cohort study of patients' perceptions of disability in mastocytosis.
        PLoS One. 2008; 3: e2266
        • Moura D.S.
        • Sultan S.
        • Georgin-Lavialle S.
        • et al.
        Depression in patients with mastocytosis: prevalence, features and effects of masitinib therapy.
        PLoS One. 2011; 6: e26375
        • Moura D.S.
        • Sultan S.
        • Georgin-Lavialle S.
        • et al.
        Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression.
        PLoS One. 2012; 7: e39468
        • Castells M.
        • Austen K.F.
        Mastocytosis: mediator-related signs and symptoms.
        Int Arch Allergy Immunol. 2002; 127: 147-152
        • Smith J.H.
        • Butterfield J.H.
        • Cutrer F.M.
        Primary headache syndromes in systemic mastocytosis.
        Cephalalgia. 2011; 31: 1522-1531
        • Smith J.H.
        • Butterfield J.H.
        • Pardanani A.
        • DeLuca G.C.
        • Cutrer F.M.
        Neurologic symptoms and diagnosis in adults with mast cell disease.
        Clin Neurol Neurosurg. 2011; 113: 570-574
        • Tajima Y.
        • Hamada K.
        • Houzenn H.
        • et al.
        Sequential magnetic resonance features of encephalopathy induced by systemic mastocytosis.
        Intern Med. 1994; 33: 23-26
        • Larroche C.
        • Chadenat M.L.
        • Chaunu M.P.
        • Abad S.
        • Casassus P.
        • Dhôte R.
        Rev Med Interne. 2005; 26: 820-823
        • Kanekura T.
        • Sekiyama M.
        • Mochitomi Y.
        • Mera Y.
        • Takeda K.
        • Kanzaki T.
        A case of mastocytosis with chorea.
        J Dermatol. 2001; 28: 451-452
        • Jost E.
        • Michaux L.
        • Vanden Abeele M.
        • et al.
        Complex karyotype and absence of mutation in the c-kit receptor in aggressive mastocytosis presenting with pelvic osteolysis, eosinophilia and brain damage.
        Ann Hematol. 2001; 80: 302-307
        • Iriarte L.M.
        • Mateu J.
        • Cruz G.
        • Escudero J.
        Chorea: a new manifestation of mastocytosis.
        J Neurol Neurosurg Psychiatry. 1988; 51: 1457-1458
        • Frijns C.J.
        • Troost J.
        Generalized mastocytosis and neurological complications in a 71-year-old patient.
        Clin Neurol Neurosurg. 1992; 94: 257-260
        • Boncoraglio G.B.
        • Brucato A.
        • Carriero M.R.
        • et al.
        Systemic mastocytosis: a potential neurologic emergency.
        Neurology. 2005; 65: 332-333
        • Arnould G.
        • Beurey J.
        • Weber M.
        • André J.M.
        Presse Médicale. 1971; 79: 1345-1346
        • Jennings S.
        • Russell N.
        • Jennings B.
        • et al.
        The Mastocytosis Society survey on mast cell disorders: patient experiences and perceptions.
        J Allergy Clin Immunol Pract. 2014; 2: 70-76
        • Rogers M.P.
        • Bloomingdale K.
        • Murawski B.J.
        • Soter N.A.
        • Reich P.
        • Austen K.F.
        Mixed organic brain syndrome as a manifestation of systemic mastocytosis.
        Psychosom Med. 1986; 48: 437-447
        • Casassus P.
        • Caillat-Vigneron N.
        • Martin A.
        • et al.
        Treatment of adult systemic mastocytosis with interferon-alpha: results of a multicentre phase II trial on 20 patients.
        Br J Haematol. 2002; 119: 1090-1097
        • Lortholary O.
        • Casassus P.
        • Laroche L.
        • Lortholary P.
        • Diebold J.
        Presse Médicale Paris Fr 1983. 1990; 19: 125-128
        • Soter N.A.
        • Austen K.F.
        • Wasserman S.I.
        Oral disodium cromoglycate in the treatment of systemic mastocytosis.
        N Engl J Med. 1979; 301: 465-469
        • Moritz S.
        • Meier B.
        • Hand I.
        • Schick M.
        • Jahn H.
        Dimensional structure of the Hamilton Depression Rating Scale in patients with obsessive-compulsive disorder.
        Psychiatry Res. 2004; 125: 171-180
        • Wasteson E.
        • Brenne E.
        • Higginson I.J.
        • et al.
        Depression assessment and classification in palliative cancer patients: a systematic literature review.
        Palliat Med. 2009; 23: 739-753
        • Zimmerman M.
        • Posternak M.A.
        • Chelminski I.
        Is the cutoff to define remission on the Hamilton Rating Scale for depression too high?.
        J Nerv Ment Dis. 2005; 193: 170-175
        • Aaronson N.K.
        • Ahmedzai S.
        • Bergman B.
        • et al.
        The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology.
        J Natl Cancer Inst. 1993; 85: 365-376
        • Georgin-Lavialle S.
        • Moura D.S.
        • Bruneau J.
        • et al.
        Leukocyte telomere length in mastocytosis: correlations with depression and perceived stress.
        Brain Behav Immun. 2014; 35: 51-57
        • Flicker C.
        • Ferris S.H.
        • Reisberg B.
        Mild cognitive impairment in the elderly: predictors of dementia.
        Neurology. 1991; 41: 1006-1009
        • Petersen R.C.
        • Smith G.E.
        • Waring S.C.
        • Ivnik R.J.
        • Tangalos E.G.
        • Kokmen E.
        Mild cognitive impairment: clinical characterization and outcome.
        Arch Neurol. 1999; 56: 303-308
        • Creavin S.T.
        • Gallacher J.
        • Bayer A.
        • Fish M.
        • Ebrahim S.
        • Ben-Shlomo Y.
        Metabolic syndrome, diabetes, poor cognition, and dementia in the Caerphilly prospective study.
        J Alzheimers Dis. 2012; 28: 931-939
        • Peltz C.B.
        • Corrada M.M.
        • Berlau D.J.
        • Kawas C.H.
        Cognitive impairment in nondemented oldest-old: prevalence and relationship to cardiovascular risk factors.
        Alzheimers Dement. 2012; 8: 87-94
        • Rao S.M.
        • Leo G.J.
        • Ellington L.
        • Nauertz T.
        • Bernardin L.
        • Unverzagt F.
        Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning.
        Neurology. 1991; 41: 692-696
        • Bobholz J.A.
        • Rao S.M.
        Cognitive dysfunction in multiple sclerosis: a review of recent developments.
        Curr Opin Neurol. 2003; 16: 283-288
        • Capuron L.
        • Pagnoni G.
        • Demetrashvili M.F.
        • et al.
        Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy.
        Neuropsychopharmacology. 2007; 32: 2384-2392
        • Dantzer R.
        • Heijnen C.J.
        • Kavelaars A.
        • Laye S.
        • Capuron L.
        The neuroimmune basis of fatigue.
        Trends Neurosci. 2014; 37: 39-46
        • Dantzer R.
        Cytokine, sickness behavior, and depression.
        Immunol Allergy Clin N Am. 2009; 29: 247-264
        • Khalil M.
        • Ronda J.
        • Weintraub M.
        • Jain K.
        • Silver R.
        • Silverman A.J.
        Brain mast cell relationship to neurovasculature during development.
        Brain Res. 2007; 1171: 18-29
        • Edvinsson L.
        • Cervós-Navarro J.
        • Larsson L.I.
        • Owman C.
        • Rönnberg A.L.
        Regional distribution of mast cells containing histamine, dopamine, or 5-hydroxytryptamine in the mammalian brain.
        Neurology. 1977; 27: 878-883
        • Matsumoto I.
        • Inoue Y.
        • Shimada T.
        • Aikawa T.
        Brain mast cells act as an immune gate to the hypothalamic-pituitary-adrenal axis in dogs.
        J Exp Med. 2001; 194: 71-78
        • Goldschmidt R.C.
        • Hough L.B.
        • Glick S.D.
        • Padawer J.
        Mast cells in rat thalamus: nuclear localization, sex difference and left-right asymmetry.
        Brain Res. 1984; 323: 209-217
        • Taiwo O.B.
        • Kovács K.J.
        • Sun Y.
        • Larson A.A.
        Unilateral spinal nerve ligation leads to an asymmetrical distribution of mast cells in the thalamus of female but not male mice.
        Pain. 2005; 114: 131-140
        • Marathias K.
        • Lambracht-Hall M.
        • Savala J.
        • Theoharides T.C.
        Endogenous regulation of rat brain mast cell serotonin release.
        Int Arch Allergy Appl Immunol. 1991; 95: 332-340
        • Paus R.
        • Theoharides T.C.
        • Arck P.C.
        Neuroimmunoendocrine circuitry of the “brain-skin connection.”.
        Trends Immunol. 2006; 27: 32-39
        • Campbell D.J.
        • Kernan J.A.
        Mast cells in the central nervous system.
        Nature. 1966; 210: 756-757
        • Cirulli F.
        • Pistillo L.
        • de Acetis L.
        • Alleva E.
        • Aloe L.
        Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress.
        Brain Behav Immun. 1998; 12: 123-133
        • Ng W.X.
        • Lau I.Y.
        • Graham S.
        • Sim K.
        Neurobiological evidence for thalamic, hippocampal and related glutamatergic abnormalities in bipolar disorder: a review and synthesis.
        Neurosci Biobehav Rev. 2009; 33: 336-354
        • Theoharides T.C.
        • Donelan J.
        • Kandere-Grzybowska K.
        • Konstantinidou A.
        The role of mast cells in migraine pathophysiology.
        Brain Res Brain Res Rev. 2005; 49: 65-76
        • Johnson D.
        • Krenger W.
        Interactions of mast cells with the nervous system—recent advances.
        Neurochem Res. 1992; 17: 939-951
        • Bienenstock J.
        • Tomioka M.
        • Matsuda H.
        • et al.
        The role of mast cells in inflammatory processes: evidence for nerve/mast cell interactions.
        Int Arch Allergy Appl Immunol. 1987; 82: 238-243
        • Skaper S.D.
        • Facci L.
        • Giusti P.
        Mast cells, glia and neuroinflammation: partners in crime?.
        Immunology. 2014; 141: 314-327
        • Wilhelm M.
        • Silver R.
        • Silverman A.J.
        Central nervous system neurons acquire mast cell products via transgranulation.
        Eur J Neurosci. 2005; 22: 2238-2248
        • Levy D.
        • Burstein R.
        • Kainz V.
        • Jakubowski M.
        • Strassman A.M.
        Mast cell degranulation activates a pain pathway underlying migraine headache.
        Pain. 2007; 130: 166-176
        • Ibrahim M.Z.
        • Reder A.T.
        • Lawand R.
        • Takash W.
        • Sallouh-Khatib S.
        The mast cells of the multiple sclerosis brain.
        J Neuroimmunol. 1996; 70: 131-138
        • Krüger P.G.
        Mast cells and multiple sclerosis: a quantitative analysis.
        Neuropathol Appl Neurobiol. 2001; 27: 275-280
        • Rozniecki J.J.
        • Hauser S.L.
        • Stein M.
        • Lincoln R.
        • Theoharides T.C.
        Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients.
        Ann Neurol. 1995; 37: 63-66
        • Couturier N.
        • Zappulla J.P.
        • Lauwers-Cances V.
        • et al.
        Mast cell transcripts are increased within and outside multiple sclerosis lesions.
        J Neuroimmunol. 2008; 195: 176-185
        • Secor V.H.
        • Secor W.E.
        • Gutekunst C.A.
        • Brown M.A.
        Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis.
        J Exp Med. 2000; 191: 813-822
        • Theoharides T.C.
        • Spanos C.
        • Pang X.
        • et al.
        Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect.
        Endocrinology. 1995; 136: 5745-5750
        • Theoharides T.C.
        Mast cells and stress—a psychoneuroimmunological perspective.
        J Clin Psychopharmacol. 2002; 22: 103-108
        • Theoharides T.C.
        • Cochrane D.E.
        Critical role of mast cells in inflammatory diseases and the effect of acute stress.
        J Neuroimmunol. 2004; 146: 1-12
        • Theoharides T.C.
        • Konstantinidou A.D.
        Corticotropin-releasing hormone and the blood-brain-barrier.
        Front Biosci. 2007; 12: 1615-1628
        • Theoharides T.C.
        • Valent P.
        • Akin C.
        Mast cells, mastocytosis, and related disorders.
        N Engl J Med. 2015; 373: 1885-1886
        • Silverman A.J.
        • Asarian L.
        • Khalil M.
        • Silver R.
        GnRH, brain mast cells and behavior.
        Prog Brain Res. 2002; 141: 315-325
        • Nautiyal K.M.
        • Ribeiro A.C.
        • Pfaff D.W.
        • Silver R.
        Brain mast cells link the immune system to anxiety-like behavior.
        Proc Natl Acad Sci U S A. 2008; 105: 18053-18057
        • Esposito P.
        • Gheorghe D.
        • Kandere K.
        • et al.
        Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells.
        Brain Res. 2001; 888: 117-127
        • Esposito P.
        • Chandler N.
        • Kandere K.
        • et al.
        Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress.
        J Pharmacol Exp Ther. 2002; 303: 1061-1066
        • Bugajski A.J.
        • Chłap Z.
        • Gadek-Michalska
        • Bugajski J.
        Effect of isolation stress on brain mast cells and brain histamine levels in rats.
        Agents Actions. 1994; 41 (Spec No:C75–C76)
        • Kalogeromitros D.
        • Syrigou E.K.I.
        • Makris M.
        • et al.
        Nasal provocation of patients with allergic rhinitis and the hypothalamic-pituitary-adrenal axis.
        Ann Allergy Asthma Immunol. 2007; 98: 269-273
        • Gui X.Y.
        Mast cells: a possible link between psychological stress, enteric infection, food allergy and gut hypersensitivity in the irritable bowel syndrome.
        J Gastroenterol Hepatol. 1998; 13: 980-989
        • MacQueen G.
        • Marshall J.
        • Perdue M.
        • Siegel S.
        • Bienenstock J.
        Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease II.
        Science. 1989; 243: 83-85
        • Kumagai M.
        • Nagano M.
        • Suzuki H.
        • Kawana S.
        Effects of stress memory by fear conditioning on nerve-mast cell circuit in skin.
        J Dermatol. 2011; 38: 553-561
        • Gauci M.
        • Husband A.J.
        • Saxarra H.
        • King M.G.
        Pavlovian conditioning of nasal tryptase release in human subjects with allergic rhinitis.
        Physiol Behav. 1994; 55: 823-825
        • Frenzel L.
        • Hermine O.
        Mast cells and inflammation.
        Jt Bone Spine Rev Rhum. 2013; 80: 141-145
        • van Ruitenbeek P.
        • Vermeeren A.
        • Riedel W.
        Histamine H1-receptor blockade in humans affects psychomotor performance but not memory.
        J Psychopharmacol. 2008; 22: 663-672
        • Tsujii T.
        • Yamamoto E.
        • Ohira T.
        • Saito N.
        • Watanabe S.
        Effects of sedative and non-sedative H1 antagonists on cognitive tasks: behavioral and near-infrared spectroscopy (NIRS) examinations.
        Psychopharmacology (Berl). 2007; 194: 83-91
        • Tashiro M.
        • Mochizuki H.
        • Iwabuchi K.
        • et al.
        Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain.
        Life Sci. 2002; 72: 409-414
        • Nautiyal K.M.
        • Dailey C.A.
        • Jahn J.L.
        • et al.
        Serotonin of mast cell origin contributes to hippocampal function.
        Eur J Neurosci. 2012; 36: 2347-2359
        • Kushnir-Sukhov N.M.
        • Brown J.M.
        • Wu Y.
        • Kirshenbaum A.
        • Metcalfe D.D.
        Human mast cells are capable of serotonin synthesis and release.
        J Allergy Clin Immunol. 2007; 119: 498-499
        • Kushnir-Sukhov N.M.
        • Brittain E.
        • Scott L.
        • Metcalfe D.D.
        Clinical correlates of blood serotonin levels in patients with mastocytosis.
        Eur J Clin Invest. 2008; 38: 953-958
        • Georgin-Lavialle S.
        • Moura D.S.
        Mast cells involvement in inflammation pathways linked to depression: evidence in mastocytosis.
        Mol Psychiatry. 2016; (in press)
        • Capuron L.
        • Miller A.H.
        Immune system to brain signaling: neuropsychopharmacological implications.
        Pharmacol Ther. 2011; 130: 226-238
        • Haroon E.
        • Raison C.L.
        • Miller A.H.
        Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior.
        Neuropsychopharmacology. 2012; 37: 137-162
        • Miller A.H.
        • Raison C.L.
        The role of inflammation in depression: from evolutionary imperative to modern treatment target.
        Nat Rev Immunol. 2015; 16: 22-34
        • Raison C.L.
        • Borisov A.S.
        • Majer M.
        • et al.
        Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression.
        Biol Psychiatry. 2009; 65: 296-303
        • Morimoto T.
        • Sunagawa Y.
        • Katanasaka Y.
        • et al.
        Drinkable preparation of Theracurmin exhibits high absorption efficiency—a single-dose, double-blind, 4-way crossover study.
        Biol Pharm Bull. 2013; 36: 1708-1714
        • Forrest C.M.
        • Mackay G.M.
        • Oxford L.
        • et al.
        Kynurenine metabolism predicts cognitive function in patients following cardiac bypass and thoracic surgery.
        J Neurochem. 2011; 119: 136-152
        • Georgin-Lavialle S.
        • Barete S.
        • Suarez F.
        • et al.
        Rev Med Interne. 2009; 30: 25-34
        • Rosenkranz M.A.
        • Davidson R.J.
        • Maccoon D.G.
        • Sheridan J.F.
        • Kalin N.H.
        • Lutz A.
        A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation.
        Brain Behav Immun. 2013; 27: 174-184
        • Hannestad J.
        • DellaGioia N.
        • Ortiz N.
        • Pittman B.
        • Bhagwagar Z.
        Citalopram reduces endotoxin-induced fatigue.
        Brain Behav Immun. 2011; 25: 256-259
        • Musselman D.L.
        • Lawson D.H.
        • Gumnick J.F.
        • et al.
        Paroxetine for the prevention of depression induced by high-dose interferon alfa.
        N Engl J Med. 2001; 344: 961-966
        • Pardanani A.
        Systemic mastocytosis in adults: 2015 update on diagnosis, risk stratification, and management.
        Am J Hematol. 2015; 90: 250-262
        • Treadway M.T.
        • Zald D.H.
        Reconsidering anhedonia in depression: lessons from translational neuroscience.
        Neurosci Biobehav Rev. 2011; 35: 537-555
        • Gaillard R.
        • Gourion D.
        • Llorca P.M.
        L'Encéphale. 2013; 39: 296-305
        • Rosenberg J.H.
        • Shafor R.
        Fatigue in multiple sclerosis: a rational approach to evaluation and treatment.
        Curr Neurol Neurosci Rep. 2005; 5: 140-146
        • Hafizi S.
        • Chandra P.
        • Cowen J.
        Neurokinin-1 receptor antagonists as novel antidepressants: trials and tribulations.
        Br J Psychiatry. 2007; 191: 282-284
        • Raison C.L.
        • Rutherford R.E.
        • Woolwine B.J.
        • et al.
        A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers.
        JAMA Psychiatry. 2013; 70: 31-41
        • Clemons A.
        • Vasiadi M.
        • Kempuraj D.
        • Kourelis T.
        • Vandoros G.
        • Theoharides T.C.
        Amitriptyline and prochlorperazine inhibit proinflammatory mediator release from human mast cells: possible relevance to chronic fatigue syndrome.
        J Clin Psychopharmacol. 2011; 31: 385-387
        • Kox M.
        • Pompe J.C.
        • Gordinou de Gouberville M.C.
        • van der Hoeven J.G.
        • Hoedemaekers C.W.
        • Pickkers P.
        Effects of the α7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans.
        Shock. 2011; 36: 5-11
        • Tracey K.J.
        Reflex control of immunity.
        Nat Rev Immunol. 2009; 9: 418-428
        • Aan Het Rot M.
        • Zarate C.A.
        • Charney D.S.
        • Mathew S.J.
        Ketamine for depression: where do we go from here?.
        Biol Psychiatry. 2012; 72: 537-547
        • De Maricourt P.
        • Jay T.
        • Goncalvès P.
        • Lôo H.
        • Gaillard R.
        L'Encéphale. 2014; 40: 15-23
        • Schwarcz R.
        • Whetsell W.O.
        • Mangano R.M.
        Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain.
        Science. 1983; 219: 316-318
        • Savitz J.
        • Drevets W.C.
        • Smith C.M.
        • et al.
        Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder.
        Neuropsychopharmacology. 2015; 40: 463-471
        • Schwarcz R.
        • Bruno J.P.
        • Muchowski P.J.
        • Wu H.Q.
        Kynurenines in the mammalian brain: when physiology meets pathology.
        Nat Rev Neurosci. 2012; 13: 465-477
        • Walker A.K.
        • Budac D.P.
        • Bisulco S.
        • et al.
        NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.
        Neuropsychopharmacology. 2013; 38: 1609-1616
        • Paul C.
        • Sans B.
        • Suarez F.
        • et al.
        Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study.
        Am J Hematol. 2010; 85: 921-925
        • Kocic I.
        • Kowianski P.
        • Rusiecka I.
        • et al.
        Neuroprotective effect of masitinib in rats with postischemic stroke.
        Naunyn Schmiedebergs Arch Pharmacol. 2015; 388: 79-86