Advertisement

Novel imaging approaches to cerebrovascular disease

Published:March 30, 2016DOI:https://doi.org/10.1016/j.trsl.2016.03.018
      Imaging techniques available to the physician treating neurovascular disease have substantially grown over the past several decades. New techniques as well as advances in imaging modalities continuously develop and provide an extensive array of modalities to diagnose, characterize, and understand neurovascular pathology. Modern noninvasive neurovascular imaging is generally based on computed tomography (CT), magnetic resonance (MR) imaging, or nuclear imaging and includes CT angiography, CT perfusion, xenon-enhanced CT, single-photon emission CT, positron emission tomography, magnetic resonance angiography, MR perfusion, functional magnetic resonance imaging with global and regional blood oxygen level dependent imaging, and magnetic resonance angiography with the use of the noninvasive optional vessel analysis software (River Forest, Ill). In addition to a brief overview of the technique, this review article discusses the clinical indications, advantages, and disadvantages of each of those modalities.

      Abbreviations:

      CT (computed tomography), MR (magnetic resonance), MRI (magnetic resonance imaging), CBF (cerebral blood flow), AVM (arteriovenous malformation), FPCT (flat panel computed tomography), PBV (parenchymal blood volume), CBV (cerebral blood volume), MTT (mean transit time), RF (radiofrequency), TOF (time-of-flight), PC (phase-contrast), CE (contrast-enhanced), FRE (flow-related enhancement), MOTSA (multiple overlapping thin-slab angiography), VENC (velocity encoding), QMRA (quantitative magnetic resonance angiography), BPA (blood pool agents), dAVF (dural arteriovenous fistuals), SONIA (Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis), ISR (in-stent restenosis), VERiTAS (Vertebrobasilar Flow Evaluation and Risk of Transient Ischemic Attack and Stroke), MRV (magnetic resonance venography), ASL (arterial spin labeling), AIF (arterial input function), CASL (continuous arterial spin labeling), PASL (pulsed arterial spin labeling), IcG (Indocyanine green dye), NIR (near-infrared), FAAME (fluorescence angiography with augmented microscopy enhancement), iDSA (intraoperative digital subtraction angiography), iCTA (intraoperative computed tomography angiography), iMRI (intraoperative magnetic resonance imaging), VWI (vessel wall imaging), RCVS (reversible cerebral vasoconstriction syndrome), BOT (balloon occlusion test), PCA (posterior cerebral artery), ACA (anterior cerebral artery), MCA (middle cerebral artery), DSA (digital subtraction angiography), ICA (internal carotid artery), DWI (diffusion-weighted imaging), NIH (National Institutes of Health), VBD (vertebrobasilar disease), CTA (computed tomography angiography), CTP (computed tomography perfusion), Xe-CT (xenon-enhanced computed tomography), SPECT (single-photon emission computed tomography), PET (positron emission tomography), MRA (magnetic resonance angiography), MRP (magnetic resonance perfusion), fMRI (functional magnetic resonance imaging), BOLD (blood oxygen level dependent), NOVA (noninvasive optional vessel analysis), 2D (two dimensional), 3D (three dimensional), SAH (subarachnoid hemorrhage)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ferro J.M.
        Egas Moniz and internal carotid occlusion.
        Arch Neurol. 1988; 45: 563-564
        • Lowis G.W.
        • Minagar A.
        The neglected research of Egas Moniz of internal carotid artery (ICA) occlusion.
        J Hist Neurosci. 2003; 12: 286-291
        • Latchaw R.E.
        • Yonas H.
        • Hunter G.J.
        • et al.
        Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association.
        Stroke. 2003; 34: 1084-1104
        • Sanelli P.C.
        • Mifsud M.J.
        • Zelenko N.
        • Heier L.A.
        CT angiography in the evaluation of cerebrovascular diseases.
        AJR Am J Roentgenol. 2005; 184: 305-312
        • Srinivasan A.
        • Goyal M.
        • Al Azri F.
        • Lum C.
        State-of-the-art imaging of acute stroke.
        Radiographics. 2006; 26: S75-S95
        • Wallace R.C.
        • Karis J.P.
        • Partovi S.
        • Fiorella D.
        Noninvasive imaging of treated cerebral aneurysms, part II: CT angiographic follow-up of surgically clipped aneurysms.
        AJNR Am J Neuroradiol. 2007; 28: 1207-1212
        • Brown J.H.
        • Lustrin E.S.
        • Lev M.H.
        • Ogilvy C.S.
        • Taveras J.M.
        Reduction of aneurysm clip artifacts on CT angiograms: a technical note.
        AJNR Am J Neuroradiol. 1999; 20: 694-696
        • Kovacs A.
        • Flacke S.
        • Tschampa H.
        • et al.
        Gated multidetector computed tomography. A technique to reduce intracranial aneurysm clip and coil artifacts.
        Clin Neuroradiol. 2010; 20: 99-107
        • Mamourian A.C.
        • Pluta D.J.
        • Eskey C.J.
        • Merlis A.L.
        Optimizing computed tomography to reduce artifacts from titanium aneurysm clips: an in vitro study. Technical note.
        J Neurosurg. 2007; 107: 1238-1243
        • Duffis E.J.
        • Jethwa P.
        • Gupta G.
        • Bonello K.
        • Gandhi C.D.
        • Prestigiacomo C.J.
        Accuracy of computed tomographic angiography compared to digital subtraction angiography in the diagnosis of intracranial stenosis and its impact on clinical decision-making.
        J Stroke Cerebrovasc Dis. 2013; 22: 1013-1017
        • Hashimoto K.
        • Nozaki K.
        • Hashimoto N.
        Optic strut as a radiographic landmark in evaluating neck location of a paraclinoid aneurysm.
        Neurosurgery. 2006; 59 (discussion 896–887): 880-895
        • Gupta R.
        • Cheung A.C.
        • Bartling S.H.
        • et al.
        Flat-panel volume CT: fundamental principles, technology, and applications.
        Radiographics. 2008; 28: 2009-2022
        • Kamran M.
        • Byrne J.V.
        C-Arm flat detector CT parenchymal blood volume thresholds for identification of infarcted parenchyma in the neurointerventional suite.
        AJNR Am J Neuroradiol. 2015; 36: 1748-1755
        • Fiorella D.
        • Turk A.
        • Chaudry I.
        • et al.
        A prospective, multicenter pilot study investigating the utility of flat detector derived parenchymal blood volume maps to estimate cerebral blood volume in stroke patients.
        J Neurointerv Surg. 2014; 6: 451-456
        • Struffert T.
        • Deuerling-Zheng Y.
        • Engelhorn T.
        • et al.
        Feasibility of cerebral blood volume mapping by flat panel detector CT in the angiography suite: first experience in patients with acute middle cerebral artery occlusions.
        AJNR Am J Neuroradiol. 2012; 33: 618-625
        • Pierot L.
        • van der Bom I.M.
        • Wakhloo A.K.
        Advances in stroke: advances in interventional neuroradiology.
        Stroke. 2012; 43: 310-313
        • Prell D.
        • Kyriakou Y.
        • Struffert T.
        • Dorfler A.
        • Kalender W.A.
        Metal artifact reduction for clipping and coiling in interventional C-arm CT.
        AJNR Am J Neuroradiol. 2010; 31: 634-639
        • Molina C.A.
        • Saver J.L.
        Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies.
        Stroke. 2005; 36: 2311-2320
        • Miles K.A.
        • Griffiths M.R.
        • Perfusion C.T.
        A worthwhile enhancement?.
        Br J Radiol. 2003; 76: 220-231
        • Skagervik I.
        • Wikholm G.
        • Rosengren L.
        • Lundqvist C.
        • Rashid A.
        • Kondziella D.
        Brain CT perfusion in stroke in progression.
        Eur Neurol. 2008; 59: 98-100
        • Shetty S.K.
        • Lev M.H.
        CT perfusion in acute stroke.
        Neuroimaging Clin N Am. 2005; 15 (ix): 481-501
        • Hoeffner E.G.
        • Case I.
        • Jain R.
        • et al.
        Cerebral perfusion CT: technique and clinical applications.
        Radiology. 2004; 231: 632-644
        • Bivard A.
        • Levi C.
        • Krishnamurthy V.
        • et al.
        Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion.
        J Neuroradiol. 2014; 41: 307-315
        • Lin L.
        • Bivard A.
        • Parsons M.W.
        Perfusion patterns of ischemic stroke on computed tomography perfusion.
        J Stroke. 2013; 15: 164-173
        • Kamalian S.
        • Kamalian S.
        • Maas M.B.
        • et al.
        CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform.
        Stroke. 2011; 42: 1923-1928
        • Wechsler L.R.
        Imaging evaluation of acute ischemic stroke.
        Stroke. 2011; 42: S12-S15
        • Kidwell C.S.
        • Saver J.L.
        • Mattiello J.
        • et al.
        Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging.
        Ann Neurol. 2000; 47: 462-469
        • Kidwell C.S.
        • Wintermark M.
        • De Silva D.A.
        • et al.
        Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke.
        Stroke. 2013; 44: 73-79
        • Kamalian S.
        • Kamalian S.
        • Konstas A.A.
        • et al.
        CT perfusion mean transit time maps optimally distinguish benign oligemia from true “at-risk” ischemic penumbra, but thresholds vary by postprocessing technique.
        AJNR Am J Neuroradiol. 2012; 33: 545-549
        • Jovin T.G.
        • Yonas H.
        • Gebel J.M.
        • et al.
        The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion.
        Stroke. 2003; 34: 2426-2433
        • Ochi R.P.
        • Vieco P.T.
        • Gross C.E.
        CT angiography of cerebral vasospasm with conventional angiographic comparison.
        AJNR Am J Neuroradiol. 1997; 18: 265-269
        • Binaghi S.
        • Colleoni M.L.
        • Maeder P.
        • et al.
        CT angiography and perfusion CT in cerebral vasospasm after subarachnoid hemorrhage.
        AJNR Am J Neuroradiol. 2007; 28: 750-758
        • Wintermark M.
        • Dillon W.P.
        • Smith W.S.
        • et al.
        Visual grading system for vasospasm based on perfusion CT imaging: comparisons with conventional angiography and quantitative perfusion CT.
        Cerebrovasc Dis. 2008; 26: 163-170
        • Kamran M.
        • Downer J.
        • Corkill R.
        • Byrne J.V.
        Non-invasive assessment of vasospasm following aneurysmal SAH using C-arm FDCT parenchymal blood volume measurement in the neuro-interventional suite: technical feasibility.
        Interv Neuroradiol. 2015; 21: 479-489
        • Drayer B.P.
        • Wolfson S.K.
        • Boehnke M.
        • Dujovny M.
        • Rosenbaum A.E.
        • Cook E.E.
        Physiologic changes in regional cerebral blood flow defined by xenon-enhanced CT scanning.
        Neuroradiology. 1978; 16: 220-223
        • Drayer B.P.
        • Wolfson S.K.
        • Reinmuth O.M.
        • Dujovny M.
        • Boehnke M.
        • Cook E.E.
        Xenon enhanced CT for analysis of cerebral integrity, perfusion, and blood flow.
        Stroke. 1978; 9: 123-130
        • Wintermark M.
        • Sesay M.
        • Barbier E.
        • et al.
        Comparative overview of brain perfusion imaging techniques.
        Stroke. 2005; 36: e83-e99
        • Gupta R.
        • Jovin T.G.
        • Yonas H.
        Xenon CT cerebral blood flow in acute stroke.
        Neuroimaging Clin N Am. 2005; 15 (x): 531-542
        • Derdeyn C.P.
        • Grubb Jr., R.L.
        • Powers W.J.
        Cerebral hemodynamic impairment: methods of measurement and association with stroke risk.
        Neurology. 1999; 53: 251-259
        • Yonas H.
        • Wolfson Jr., S.K.
        • Gur D.
        • et al.
        Clinical experience with the use of xenon-enhanced CT blood flow mapping in cerebral vascular disease.
        Stroke. 1984; 15: 443-450
        • Yonas H.
        • Sekhar L.
        • Johnson D.W.
        • Gur D.
        Determination of irreversible ischemia by xenon-enhanced computed tomographic monitoring of cerebral blood flow in patients with symptomatic vasospasm.
        Neurosurgery. 1989; 24: 368-372
        • Brass L.M.
        • Walovitch R.C.
        • Joseph J.L.
        • et al.
        The role of single photon emission computed tomography brain imaging with 99mTc-bicisate in the localization and definition of mechanism of ischemic stroke.
        J Cereb Blood Flow Metab. 1994; 14: S91-S98
        • Karonen J.O.
        • Nuutinen J.
        • Kuikka J.T.
        • et al.
        Combined SPECT and diffusion-weighted MRI as a predictor of infarct growth in acute ischemic stroke.
        J Nucl Med. 2000; 41: 788-794
        • Grotta J.C.
        • Alexandrov A.V.
        tPA-associated reperfusion after acute stroke demonstrated by SPECT.
        Stroke. 1998; 29: 429-432
        • Davis S.M.
        • Andrews J.T.
        • Lichtenstein M.
        • Rossiter S.C.
        • Kaye A.H.
        • Hopper J.
        Correlations between cerebral arterial velocities, blood flow, and delayed ischemia after subarachnoid hemorrhage.
        Stroke. 1992; 23: 492-497
        • Ruggieri P.M.
        • Masaryk T.J.
        • Ross J.S.
        Magnetic resonance angiography. Cerebrovascular applications.
        Stroke. 1992; 23: 774-780
        • Dumoulin C.L.
        • Hart Jr., H.R.
        Magnetic resonance angiography.
        Radiology. 1986; 161: 717-720
        • Huston 3rd, J.
        • Berstein M.
        Magnetic resonance angiography.
        in: 5th ed. Youman's Neurological Surgery. vol. 2. Elsevier, Philadelphia2004: 1575-1599
        • Ashley W.W.
        • Amin-Hanjani S.
        • Alaraj A.
        • Shin J.H.
        • Charbel F.T.
        Flow-assisted surgical cerebral revascularization.
        Neurosurg Focus. 2008; 24: E20
        • Amin-Hanjani S.
        • Du X.
        • Zhao M.
        • Walsh K.
        • Malisch T.W.
        • Charbel F.T.
        Use of quantitative magnetic resonance angiography to stratify stroke risk in symptomatic vertebrobasilar disease.
        Stroke. 2005; 36: 1140-1145
        • Guo G.
        • Wu R.H.
        • Zhang Y.P.
        • et al.
        Combination 3D TOP with 2D PC MRA Technique for cerebral blood flow volume measurement.
        Conf Proc IEEE Eng Med Biol Soc. 2006; 1: 489-492
        • Guzman R.
        • Lovblad K.O.
        • Altrichter S.
        • et al.
        Clinical validation of an automated vessel-segmentation software of the extracranial-carotid arteries based on 3D-MRA: a prospective study.
        J Neuroradiol. 2008; 35: 278-285
        • Guzman R.
        • Oswald H.
        • Barth A.
        • et al.
        Clinical validation of quantitative carotid MRA. Paper presented at: International Congress Series.
        Elsevier Science B.V, 2001
        • Zhao M.
        • Charbel F.T.
        • Alperin N.
        • Loth F.
        • Clark M.E.
        Improved phase-contrast flow quantification by three-dimensional vessel localization.
        Magn Reson Imaging. 2000; 18: 697-706
        • Amin-Hanjani S.
        • Pandey D.K.
        • Rose-Finnell L.
        • et al.
        Effect of hemodynamics on stroke risk in symptomatic atherosclerotic vertebrobasilar occlusive disease.
        JAMA Neurol. 2016; 73: 178-185
        • Esfahani D.R.
        • Stevenson M.
        • Moss H.E.
        • et al.
        Quantitative magnetic resonance venography is correlated with intravenous pressures before and after venous sinus stenting: implications for treatment and monitoring.
        Neurosurgery. 2015; 77: 254-260
        • Amin-Hanjani S.
        • Shin J.H.
        • Zhao M.
        • Du X.
        • Charbel F.T.
        Evaluation of extracranial-intracranial bypass using quantitative magnetic resonance angiography.
        J Neurosurg. 2007; 106: 291-298
        • Charbel F.T.
        • Zhao M.
        • Amin-Hanjani S.
        • Hoffman W.
        • Du X.
        • Clark M.E.
        A patient-specific computer model to predict outcomes of the balloon occlusion test.
        J Neurosurg. 2004; 101: 977-988
        • Garcia M.
        • Naraghi R.
        • Zumbrunn T.
        • Rosch J.
        • Hastreiter P.
        • Dorfler A.
        High-resolution 3D-constructive interference in steady-state MR imaging and 3D time-of-flight MR angiography in neurovascular compression: a comparison between 3T and 1.5T.
        AJNR Am J Neuroradiol. 2012; 33: 1251-1256
        • Debrey S.M.
        • Yu H.
        • Lynch J.K.
        • et al.
        Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis.
        Stroke. 2008; 39: 2237-2248
        • Cloft H.J.
        • Joseph G.J.
        • Dion J.E.
        Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis.
        Stroke. 1999; 30: 317-320
        • Wallace R.C.
        • Karis J.P.
        • Partovi S.
        • Fiorella D.
        Noninvasive imaging of treated cerebral aneurysms, part I: MR angiographic follow-up of coiled aneurysms.
        AJNR Am J Neuroradiol. 2007; 28: 1001-1008
        • Korja M.
        • Kaprio J.
        Controversies in epidemiology of intracranial aneurysms and SAH.
        Nat Rev Neurol. 2016; 12: 50-55
        • Okahara M.
        • Kiyosue H.
        • Yamashita M.
        • et al.
        Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms.
        Stroke. 2002; 33: 1803-1808
        • Hassan A.E.
        • Rostambeigi N.
        • Chaudhry S.A.
        • et al.
        Combination of noninvasive neurovascular imaging modalities in stroke patients: patterns of use and impact on need for digital subtraction angiography.
        J Stroke Cerebrovasc Dis. 2013; 22: e53-e58
        • Qahwash O.
        • Alaraj A.
        • Aletich V.
        • et al.
        Endovascular intervention for delayed stenosis of extracranial-intracranial bypass saphenous vein grafts.
        J Neurointerv Surg. 2013; 5: 231-236
        • Schwab K.E.
        • Gailloud P.
        • Wyse G.
        • Tamargo R.J.
        Limitations of magnetic resonance imaging and magnetic resonance angiography in the diagnosis of intracranial aneurysms.
        Neurosurgery. 2008; 63 (discussion 34–25): 29-34
        • Johnston S.C.
        • Dowd C.F.
        • Higashida R.T.
        • et al.
        Predictors of rehemorrhage after treatment of ruptured intracranial aneurysms: the Cerebral Aneurysm Rerupture After Treatment (CARAT) study.
        Stroke. 2008; 39: 120-125
        • Dehkharghani S.
        • Kang J.
        • Saindane A.M.
        Improved quality and diagnostic confidence achieved by use of dose-reduced gadolinium blood-pool agents for time-resolved intracranial MR angiography.
        AJNR Am J Neuroradiol. 2014; 35: 450-456
        • Gauvrit J.Y.
        • Oppenheim C.
        • Nataf F.
        • et al.
        Three-dimensional dynamic magnetic resonance angiography for the evaluation of radiosurgically treated cerebral arteriovenous malformations.
        Eur Radiol. 2006; 16: 583-591
        • Ansari S.A.
        • Schnell S.
        • Carroll T.
        • et al.
        Intracranial 4D flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes.
        AJNR Am J Neuroradiol. 2013; 34: 1922-1928
        • Harloff A.
        • Zech T.
        • Wegent F.
        • Strecker C.
        • Weiller C.
        • Markl M.
        Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation.
        AJNR Am J Neuroradiol. 2013; 34: 1407-1413
        • Meckel S.
        • Glucker T.M.
        • Kretzschmar M.
        • Scheffler K.
        • Radu E.W.
        • Wetzel S.G.
        Display of dural sinuses with time-resolved, contrast-enhanced three-dimensional MR venography.
        Cerebrovasc Dis. 2008; 25: 217-224
        • Meckel S.
        • Maier M.
        • Ruiz D.S.
        • et al.
        MR angiography of dural arteriovenous fistulas: diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique.
        AJNR Am J Neuroradiol. 2007; 28: 877-884
        • Nishimura S.
        • Hirai T.
        • Sasao A.
        • et al.
        Evaluation of dural arteriovenous fistulas with 4D contrast-enhanced MR angiography at 3T.
        AJNR Am J Neuroradiol. 2010; 31: 80-85
        • Jang J.
        • Schmitt P.
        • Kim B.Y.
        • et al.
        Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of dural arteriovenous fistula.
        Neuroradiology. 2014; 56: 305-314
        • Cosottini M.
        • Pingitore A.
        • Puglioli M.
        • et al.
        Contrast-enhanced three-dimensional magnetic resonance angiography of atherosclerotic internal carotid stenosis as the noninvasive imaging modality in revascularization decision making.
        Stroke. 2003; 34: 660-664
        • Barth A.
        • Arnold M.
        • Mattle H.P.
        • Schroth G.
        • Remonda L.
        Contrast-enhanced 3-D MRA in decision making for carotid endarterectomy: a 6-year experience.
        Cerebrovasc Dis. 2006; 21: 393-400
        • Fellner C.
        • Lang W.
        • Janka R.
        • Wutke R.
        • Bautz W.
        • Fellner F.A.
        Magnetic resonance angiography of the carotid arteries using three different techniques: accuracy compared with intraarterial x-ray angiography and endarterectomy specimens.
        J Magn Reson Imaging. 2005; 21: 424-431
        • Amin-Hanjani S.
        • Rose-Finnell L.
        • Richardson D.
        • et al.
        Vertebrobasilar Flow Evaluation and Risk of Transient Ischaemic Attack and Stroke study (VERiTAS): rationale and design.
        Int J Stroke. 2010; 5: 499-505
        • Douglas A.F.
        • Christopher S.
        • Amankulor N.
        • et al.
        Extracranial carotid plaque length and parent vessel diameter significantly affect baseline ipsilateral intracranial blood flow.
        Neurosurgery. 2011; 69 (discussion 773): 767-773
        • Calderon-Arnulphi M.
        • Amin-Hanjani S.
        • Alaraj A.
        • et al.
        In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model.
        AJNR Am J Neuroradiol. 2011; 32: 1552-1559
        • Moody A.R.
        • Murphy R.E.
        • Morgan P.S.
        • et al.
        Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia.
        Circulation. 2003; 107: 3047-3052
        • Stary H.C.
        • Chandler A.B.
        • Dinsmore R.E.
        • et al.
        A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Arterioscler Thromb Vasc Biol. 1995; 15: 1512-1531
        • Nighoghossian N.
        • Derex L.
        • Douek P.
        The vulnerable carotid artery plaque: current imaging methods and new perspectives.
        Stroke. 2005; 36: 2764-2772
        • Altaf N.
        • MacSweeney S.T.
        • Gladman J.
        • Auer D.P.
        Carotid intraplaque hemorrhage predicts recurrent symptoms in patients with high-grade carotid stenosis.
        Stroke. 2007; 38: 1633-1635
        • Chu B.
        • Kampschulte A.
        • Ferguson M.S.
        • et al.
        Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study.
        Stroke. 2004; 35: 1079-1084
        • Feldmann E.
        • Wilterdink J.L.
        • Kosinski A.
        • et al.
        The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial.
        Neurology. 2007; 68: 2099-2106
        • Ashley Jr., W.W.
        • Zipfel G.J.
        • Moran C.J.
        • Zheng J.
        • Derdeyn C.P.
        Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging.
        J Neuroimaging. 2009; 19: 381-384
        • Amin-Hanjani S.
        • Alaraj A.
        • Calderon-Arnulphi M.
        • Aletich V.A.
        • Thulborn K.R.
        • Charbel F.T.
        Detection of intracranial in-stent restenosis using quantitative magnetic resonance angiography.
        Stroke. 2010; 41: 2534-2538
        • Amin-Hanjani S.
        • Pandey D.
        • Rose-Finnell L.
        • et al.
        Impact of hemodynamics on stroke risk in symptomatic vertebrobasilar disease: results of the VERiTAS study. International Stroke Conference 2015.
        2015 (Nashville, TN)
        • Amin-Hanjani S.
        • Du X.
        • Rose-Finnell L.
        • et al.
        Hemodynamic features of symptomatic vertebrobasilar disease.
        Stroke. 2015; 46: 1850-1856
        • Dormont D.
        • Sag K.
        • Biondi A.
        • Wechsler B.
        • Marsault C.
        Gadolinium-enhanced MR of chronic dural sinus thrombosis.
        AJNR Am J Neuroradiol. 1995; 16: 1347-1352
        • Endo H.
        • Inoue T.
        • Ogasawara K.
        • Fukuda T.
        • Kanbara Y.
        • Ogawa A.
        Quantitative assessment of cerebral hemodynamics using perfusion-weighted MRI in patients with major cerebral artery occlusive disease: comparison with positron emission tomography.
        Stroke. 2006; 37: 388-392
        • Carroll T.J.
        • Teneggi V.
        • Jobin M.
        • et al.
        Absolute quantification of cerebral blood flow with magnetic resonance, reproducibility of the method, and comparison with H2(15)O positron emission tomography.
        J Cereb Blood Flow Metab. 2002; 22: 1149-1156
        • Petersen E.T.
        • Zimine I.
        • Ho Y.C.
        • Golay X.
        Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques.
        Br J Radiol. 2006; 79: 688-701
        • Sugino T.
        • Mikami T.
        • Miyata K.
        • Suzuki K.
        • Houkin K.
        • Mikuni N.
        Arterial spin-labeling magnetic resonance imaging after revascularization of moyamoya disease.
        J Stroke Cerebrovasc Dis. 2013; 22: 811-816
        • Cao Y.
        • D'Olhaberriague L.
        • Vikingstad E.M.
        • Levine S.R.
        • Welch K.M.
        Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis.
        Stroke. 1998; 29: 112-122
        • Haller S.
        • Bonati L.H.
        • Rick J.
        • et al.
        Reduced cerebrovascular reserve at CO2 BOLD MR imaging is associated with increased risk of periinterventional ischemic lesions during carotid endarterectomy or stent placement: preliminary results.
        Radiology. 2008; 249: 251-258
        • Gupta A.
        • Marshall R.S.
        Moving beyond luminal stenosis: imaging strategies for stroke prevention in asymptomatic carotid stenosis.
        Cerebrovasc Dis. 2015; 39: 253-261
        • Bizzi A.
        • Blasi V.
        • Falini A.
        • et al.
        Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping.
        Radiology. 2008; 248: 579-589
        • Wang L.
        • Lin F.
        • Zhao B.
        • Wu J.
        • Cao Y.
        • Wang S.
        Testing the reliability of BOLD-fMRI motor mapping in patients with cerebral arteriovenous malformations by electric cortical stimulation and surgery outcomes.
        World Neurosurg. 2016; ([Epub ahead of print])https://doi.org/10.1016/j.wneu.2015.12.053
        • Thornton J.
        • Bashir Q.
        • Aletich V.A.
        • Debrun G.M.
        • Ausman J.I.
        • Charbel F.T.
        What percentage of surgically clipped intracranial aneurysms have residual necks?.
        Neurosurgery. 2000; 46 (discussion 1298–1300): 1294-1298
        • Meyer B.
        • Urbach H.
        • Schaller C.
        • Baslam M.
        • Nordblom J.
        • Schramm J.
        Immediate postoperative angiography after aneurysm clipping—implications for quality control and guidance of further management.
        Zentralbl Neurochir. 2004; 65: 49-56
        • Macdonald R.L.
        • Wallace M.C.
        • Kestle J.R.
        Role of angiography following aneurysm surgery.
        J Neurosurg. 1993; 79: 826-832
        • Friedman W.A.
        • Kaplan B.L.
        • Day A.L.
        • Sypert G.W.
        • Curran M.T.
        Evoked potential monitoring during aneurysm operation: observations after fifty cases.
        Neurosurgery. 1987; 20: 678-687
        • Vitaz T.W.
        • Gaskill-Shipley M.
        • Tomsick T.
        • Tew Jr., J.M.
        Utility, safety, and accuracy of intraoperative angiography in the surgical treatment of aneurysms and arteriovenous malformations.
        AJNR Am J Neuroradiol. 1999; 20: 1457-1461
        • Origitano T.C.
        • Schwartz K.
        • Anderson D.
        • Azar-Kia B.
        • Reichman O.H.
        Optimal clip application and intraoperative angiography for intracranial aneurysms.
        Surg Neurol. 1999; 51 (discussion 124–118): 117-124
        • Popadic A.
        • Witzmann A.
        • Amann T.
        • et al.
        The value of intraoperative angiography in surgery of intracranial aneurysms: a prospective study in 126 patients.
        Neuroradiology. 2001; 43: 466-471
        • Yanaka K.
        • Asakawa H.
        • Noguchi S.
        • et al.
        Intraoperative angiography evaluation of the microsurgical clipping of unruptured cerebral aneurysms.
        Neurol Med Chir (Tokyo). 2002; 42 (discussion 201): 193-200
        • Tang G.
        • Cawley C.M.
        • Dion J.E.
        • Barrow D.L.
        Intraoperative angiography during aneurysm surgery: a prospective evaluation of efficacy.
        J Neurosurg. 2002; 96: 993-999
        • Klopfenstein J.D.
        • Spetzler R.F.
        • Kim L.J.
        • et al.
        Comparison of routine and selective use of intraoperative angiography during aneurysm surgery: a prospective assessment.
        J Neurosurg. 2004; 100: 230-235
        • Shah M.N.
        • Leonard J.R.
        • Inder G.
        • et al.
        Intraoperative magnetic resonance imaging to reduce the rate of early reoperation for lesion resection in pediatric neurosurgery.
        J Neurosurg Pediatr. 2012; 9: 259-264
        • Raabe A.
        • Beck J.
        • Gerlach R.
        • Zimmermann M.
        • Seifert V.
        Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow.
        Neurosurgery. 2003; 52 (discussion 139): 132-139
        • Raabe A.
        • Nakaji P.
        • Beck J.
        • et al.
        Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery.
        J Neurosurg. 2005; 103: 982-989
        • Washington C.W.
        • Zipfel G.J.
        • Chicoine M.R.
        • et al.
        Comparing indocyanine green videoangiography to the gold standard of intraoperative digital subtraction angiography used in aneurysm surgery.
        J Neurosurg. 2013; 118: 420-427
        • Li J.
        • Lan Z.
        • He M.
        • You C.
        Assessment of microscope-integrated indocyanine green angiography during intracranial aneurysm surgery: a retrospective study of 120 patients.
        Neurol India. 2009; 57: 453-459
        • Gruber A.
        • Dorfer C.
        • Standhardt H.
        • Bavinzski G.
        • Knosp E.
        Prospective comparison of intraoperative vascular monitoring technologies during cerebral aneurysm surgery.
        Neurosurgery. 2011; 68 (discussion 673): 657-673
        • Dashti R.
        • Laakso A.
        • Niemela M.
        • Porras M.
        • Hernesniemi J.
        Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience.
        Surg Neurol. 2009; 71 (discussion 550): 543-550
        • Killory B.D.
        • Nakaji P.
        • Gonzales L.F.
        • Ponce F.A.
        • Wait S.D.
        • Spetzler R.F.
        Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery.
        Neurosurgery. 2009; 65 (discussion 462): 456-462
        • Killory B.D.
        • Nakaji P.
        • Maughan P.H.
        • Wait S.D.
        • Spetzler R.F.
        Evaluation of angiographically occult spinal dural arteriovenous fistulae with surgical microscope-integrated intraoperative near-infrared indocyanine green angiography: report of 3 cases.
        Neurosurgery. 2011; 68 (discussion 787): 781-787
        • Lane B.C.
        • Cohen-Gadol A.A.
        A prospective study of microscope-integrated intraoperative fluorescein videoangiography during arteriovenous malformation surgery: preliminary results.
        Neurosurg Focus. 2014; 36: E15
        • Martirosyan N.L.
        • Skoch J.
        • Watson J.R.
        • Lemole Jr., G.M.
        • Romanowski M.
        • Anton R.
        Integration of indocyanine green videoangiography with operative microscope: augmented reality for interactive assessment of vascular structures and blood flow.
        Neurosurgery. 2015; 11 (discussion 257–258): 252-257
        • Chalouhi N.
        • Theofanis T.
        • Jabbour P.
        • et al.
        Safety and efficacy of intraoperative angiography in craniotomies for cerebral aneurysms and arteriovenous malformations: a review of 1093 consecutive cases.
        Neurosurgery. 2012; 71: 1162-1169
        • Katz J.M.
        • Gologorsky Y.
        • Tsiouris A.J.
        • et al.
        Is routine intraoperative angiography in the surgical treatment of cerebral aneurysms justified? A consecutive series of 147 aneurysms.
        Neurosurgery. 2006; 58 (discussion 719–727): 719-727
        • Hardesty D.A.
        • Thind H.
        • Zabramski J.M.
        • Spetzler R.F.
        • Nakaji P.
        Safety, efficacy, and cost of intraoperative indocyanine green angiography compared to intraoperative catheter angiography in cerebral aneurysm surgery.
        J Clin Neurosci. 2014; 21: 1377-1382
        • Schichor C.
        • Rachinger W.
        • Morhard D.
        • et al.
        Intraoperative computed tomography angiography with computed tomography perfusion imaging in vascular neurosurgery: feasibility of a new concept.
        J Neurosurg. 2010; 112: 722-728
        • Uhl E.
        • Zausinger S.
        • Morhard D.
        • et al.
        Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite.
        Neurosurgery. 2009; 64 (discussion 239–240): 231-239
        • Smith E.R.
        Moyamoya arteriopathy.
        Curr Treat Options Neurol. 2012; 14: 549-556
        • Gross B.A.
        • Du R.
        Diagnosis and treatment of vascular malformations of the brain.
        Curr Treat Options Neurol. 2014; 16: 279
        • Hadani M.
        Development and design of low field compact intraoperative MRI for standard operating room.
        Acta Neurochir Suppl. 2011; 109: 29-33
        • Ntoukas V.
        • Krishnan R.
        • Seifert V.
        The new generation polestar n20 for conventional neurosurgical operating rooms: a preliminary report.
        Neurosurgery. 2008; 62 (discussion 89–90): 82-89
        • Henrichs B.
        • Walsh R.P.
        Intraoperative MRI for neurosurgical and general surgical interventions.
        Curr Opin Anaesthesiol. 2014; 27: 448-452
        • Kuhnt D.
        • Bauer M.H.
        • Nimsky C.
        Brain shift compensation and neurosurgical image fusion using intraoperative MRI: current status and future challenges.
        Crit Rev Biomed Eng. 2012; 40: 175-185
        • Health Quality O.
        Nanotechnology: an evidence-based analysis.
        Ont Health Technol Assess Ser. 2006; 6: 1-43
        • Hashimoto T.
        • Meng H.
        • Young W.L.
        Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling.
        Neurol Res. 2006; 28: 372-380
        • Kanematsu Y.
        • Kanematsu M.
        • Kurihara C.
        • et al.
        Critical roles of macrophages in the formation of intracranial aneurysm.
        Stroke. 2011; 42: 173-178
        • Hasan D.
        • Chalouhi N.
        • Jabbour P.
        • et al.
        Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study.
        Stroke. 2012; 43: 3258-3265
        • Hasan D.M.
        • Mahaney K.B.
        • Magnotta V.A.
        • et al.
        Macrophage imaging within human cerebral aneurysms wall using ferumoxytol-enhanced MRI: a pilot study.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1032-1038
        • Kim J.Y.
        • Ryu J.H.
        • Schellingerhout D.
        • et al.
        Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles.
        Theranostics. 2015; 5: 1098-1114
        • Mossa-Basha M.
        • Alexander M.
        • Gaddikeri S.
        • Yuan C.
        • Gandhi D.
        Vessel wall imaging for intracranial vascular disease evaluation.
        J Neurointerv Surg. 2016; ([Epub ahead of print])https://doi.org/10.1136/neurintsurg-2015-012127
        • Matouk C.C.
        • Mandell D.M.
        • Gunel M.
        • et al.
        Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle.
        Neurosurgery. 2013; 72 (discussion 496): 492-496
        • Tenjin H.
        • Tanigawa S.
        • Takadou M.
        • et al.
        Relationship between preoperative magnetic resonance imaging and surgical findings: aneurysm wall thickness on high-resolution T1-weighted imaging and contact with surrounding tissue on steady-state free precession imaging.
        Neurol Med Chir (Tokyo). 2013; 53: 336-342