Advertisement

Gut microbiome in chronic kidney disease: challenges and opportunities

Published:April 29, 2016DOI:https://doi.org/10.1016/j.trsl.2016.04.007
      More than 100 trillion microbial cells that reside in the human gut heavily influence nutrition, metabolism, and immune function of the host. Gut dysbiosis, seen commonly in patients with chronic kidney disease (CKD), results from qualitative and quantitative changes in host microbiome profile and disruption of gut barrier function. Alterations in gut microbiota and a myriad of host responses have been implicated in progression of CKD, increased cardiovascular risk, uremic toxicity, and inflammation. We present a discussion of dysbiosis, various uremic toxins produced from dysbiotic gut microbiome, and their roles in CKD progression and complications. We also review the gut microbiome in renal transplant, highlighting the role of commensal microbes in alteration of immune responses to transplantation, and conclude with therapeutic interventions that aim to restore intestinal dysbiosis.

      Abbreviations:

      CKD (chronic kidney disease), ESRD (end-stage renal disease), PSA (polysaccharides), CVD (cardiovascular disease), IS (indoxyl sulfate), TMAO (trimethylamine-N-oxide), SCFA (short chain fatty acid), PCS (p-cresol sulfate), Tregs (regulatory T cells), IRI (ischemia and reperfusion injury), DMB (3-dimethyl-1-butanol)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sekirov I.
        • Russell S.L.
        • Antunes L.C.
        • et al.
        Gut microbiota in health and disease.
        Physiol Rev. 2010; 90: 859-904
        • Hooper L.V.
        • Midtvedt T.
        • Gordon J.I.
        How host-microbial interactions shape the nutrient environment of the mammalian intestine.
        Annu Rev Nutr. 2002; 22: 283-307
        • Hill M.J.
        Intestinal flora and endogenous vitamin synthesis.
        Eur J Cancer Prev. 1997; 6: S43-S45
        • Hylemon P.B.
        • Harder J.
        Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems.
        FEMS Microbiol Rev. 1998; 22: 475-488
        • Ramezani A.
        • Massy Z.A.
        • Meijers B.
        • et al.
        Role of the gut microbiome in uremia: a potential therapeutic target.
        Am J Kidney Dis. 2016; 67: 483-498
      1. A framework for human microbiome research.
        Nature. 2012; 486: 215-221
      2. Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Goodrich J.K.
        • Waters J.L.
        • Poole A.C.
        • et al.
        Human genetics shape the gut microbiome.
        Cell. 2014; 159: 789-799
        • Thaiss C.A.
        • Zeevi D.
        • Levy M.
        • et al.
        Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis.
        Cell. 2014; 159: 514-529
        • Muegge B.D.
        • Kuczynski J.
        • Knights D.
        • et al.
        Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.
        Science. 2011; 332: 970-974
        • De F.C.
        • Cavalieri D.
        • Di P.M.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696
        • Podolsky S.H.
        Metchnikoff and the microbiome.
        Lancet. 2012; 380: 1810-1811
        • Bach J.F.
        The effect of infections on susceptibility to autoimmune and allergic diseases.
        N Engl J Med. 2002; 347: 911-920
        • Penders J.
        • Thijs C.
        • van den Brandt P.A.
        • et al.
        Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study.
        Gut. 2007; 56: 661-667
        • Ley R.E.
        • Backhed F.
        • Turnbaugh P.
        • et al.
        Obesity alters gut microbial ecology.
        Proc Natl Acad Sci U S A. 2005; 102: 11070-11075
        • Bollyky P.L.
        • Bice J.B.
        • Sweet I.R.
        • et al.
        The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.
        PLoS One. 2009; 4: e5063
        • Moore W.E.
        • Moore L.H.
        Intestinal floras of populations that have a high risk of colon cancer.
        Appl Environ Microbiol. 1995; 61: 3202-3207
        • Chevalier C.
        • Stojanovic O.
        • Colin D.J.
        • et al.
        Gut microbiota orchestrates energy homeostasis during cold.
        Cell. 2015; 163: 1360-1374
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • et al.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Einheber A.
        • Carter D.
        The role of the microbial flora in uremia. I. Survival times of germfree, limited-flora, and conventionalized rats after bilateral nephrectomy and fasting.
        J Exp Med. 1966; 123: 239-250
        • Yokoyama M.T.
        • Tabori C.
        • Miller E.R.
        • et al.
        The effects of antibiotics in the weanling pig diet on growth and the excretion of volatile phenolic and aromatic bacterial metabolites.
        Am J Clin Nutr. 1982; 35: 1417-1424
        • Walser M.
        • Bodenlos L.J.
        Urea metabolism in man.
        J Clin Invest. 1959; 38: 1617-1626
        • Vaziri N.D.
        • Dure-Smith B.
        • Miller R.
        • et al.
        Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases.
        Am J Gastroenterol. 1985; 80: 608-611
        • Stewart G.S.
        • Smith C.P.
        Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man.
        Nutr Res Rev. 2005; 18: 49-62
        • Jones J.D.
        • Burnett P.C.
        Creatinine metabolism in humans with decreased renal function: creatinine deficit.
        Clin Chem. 1974; 20: 1204-1212
        • Eyk H.G.
        • van
        • Vermaat R.J.
        • et al.
        The conversion of creatinine by creatininase of bacterial origin.
        Enzymologia. 1968; 34: 198-202
        • Yokozawa T.
        • Mo Z.L.
        • Oura H.
        Comparison of toxic effects of methylguanidine, guanidinosuccinic acid and creatinine in rats with adenine-induced chronic renal failure.
        Nephron. 1989; 51: 388-392
        • Olsen N.S.
        • Bassett J.W.
        Blood levels of urea nitrogen, phenol, guanidine and creatinine in uremia.
        Am J Med. 1951; 10: 52-59
        • Cummings J.H.
        Fermentation in the human large intestine: evidence and implications for health.
        Lancet. 1983; 1: 1206-1209
        • Wu I.W.
        • Hsu K.H.
        • Lee C.C.
        • et al.
        p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease.
        Nephrol Dial Transplant. 2011; 26: 938-947
        • Lin C.J.
        • Chen H.H.
        • Pan C.F.
        • et al.
        p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease.
        J Clin Lab Anal. 2011; 25: 191-197
        • Lysaght M.J.
        • Vonesh E.F.
        • Gotch F.
        • et al.
        The influence of dialysis treatment modality on the decline of remaining renal function.
        ASAIO Trans. 1991; 37: 598-604
        • Motojima M.
        • Hosokawa A.
        • Yamato H.
        • et al.
        Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake.
        Br J Pharmacol. 2002; 135: 555-563
        • Motojima M.
        • Hosokawa A.
        • Yamato H.
        • et al.
        Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells.
        Kidney Int. 2003; 63: 1671-1680
        • Miyazaki T.
        • Ise M.
        • Seo H.
        • et al.
        Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys.
        Kidney Int Suppl. 1997; 62: S15-S22
        • Adijiang A.
        • Higuchi Y.
        • Nishijima F.
        • et al.
        Indoxyl sulfate, a uremic toxin, promotes cell senescence in aorta of hypertensive rats.
        Biochem Biophys Res Commun. 2010; 399: 637-641
        • Barreto F.C.
        • Barreto D.V.
        • Liabeuf S.
        • et al.
        Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.
        Clin J Am Soc Nephrol. 2009; 4: 1551-1558
        • Yamamoto H.
        • Tsuruoka S.
        • Ioka T.
        • et al.
        Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells.
        Kidney Int. 2006; 69: 1780-1785
        • Amabile N.
        • Guerin A.P.
        • Leroyer A.
        • et al.
        Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure.
        J Am Soc Nephrol. 2005; 16: 3381-3388
        • Dou L.
        • Bertrand E.
        • Cerini C.
        • et al.
        The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair.
        Kidney Int. 2004; 65: 442-451
        • Chiang C.K.
        • Tanaka T.
        • Inagi R.
        • et al.
        Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner.
        Lab Invest. 2011; 91: 1564-1571
        • Nii-Kono T.
        • Iwasaki Y.
        • Uchida M.
        • et al.
        Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells.
        Kidney Int. 2007; 71: 738-743
        • Backhed F.
        Meat-metabolizing bacteria in atherosclerosis.
        Nat Med. 2013; 19: 533-534
        • Huang W.H.
        • Hung C.C.
        • Yang C.W.
        • et al.
        High correlation between clearance of renal protein-bound uremic toxins (indoxyl sulfate and p-cresyl sulfate) and renal water-soluble toxins in peritoneal dialysis patients.
        Ther Apher Dial. 2012; 16: 361-367
        • Tanaka H.
        • Iwasaki Y.
        • Yamato H.
        • et al.
        p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways.
        Bone. 2013; 56: 347-354
        • Niwa T.
        • Takeda N.
        • Tatematsu A.
        • et al.
        Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography.
        Clin Chem. 1988; 34: 2264-2267
        • Martinez A.W.
        • Recht N.S.
        • Hostetter T.H.
        • et al.
        Removal of P-cresol sulfate by hemodialysis.
        J Am Soc Nephrol. 2005; 16: 3430-3436
        • Satoh M.
        • Hayashi H.
        • Watanabe M.
        • et al.
        Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure.
        Nephron Exp Nephrol. 2003; 95: e111-e118
        • De S.R.
        • Dhondt A.
        • Eloot S.
        • et al.
        Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes.
        Nephrol Dial Transplant. 2007; 22: 2006-2012
        • Dou L.
        • Sallee M.
        • Cerini C.
        • et al.
        The cardiovascular effect of the uremic solute indole-3 acetic acid.
        J Am Soc Nephrol. 2015; 26: 876-887
        • Watanabe H.
        • Miyamoto Y.
        • Honda D.
        • et al.
        p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase.
        Kidney Int. 2013; 83: 582-592
        • Bammens B.
        • Evenepoel P.
        • Keuleers H.
        • et al.
        Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients.
        Kidney Int. 2006; 69: 1081-1087
        • Liabeuf S.
        • Barreto D.V.
        • Barreto F.C.
        • et al.
        Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease.
        Nephrol Dial Transplant. 2010; 25: 1183-1191
        • Cerini C.
        • Dou L.
        • Anfosso F.
        • et al.
        P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro.
        Thromb Haemost. 2004; 92: 140-150
        • Meijers B.K.
        • Evenepoel P.
        The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression.
        Nephrol Dial Transplant. 2011; 26: 759-761
        • Niwa T.
        Indoxyl sulfate is a nephro-vascular toxin.
        J Ren Nutr. 2010; 20: S2-S6
        • Mutsaers H.A.
        • Wilmer M.J.
        • van den Heuvel L.P.
        • et al.
        Basolateral transport of the uraemic toxin p-cresyl sulfate: role for organic anion transporters?.
        Nephrol Dial Transplant. 2011; 26: 4149
        • Poesen R.
        • Viaene L.
        • Verbeke K.
        • et al.
        Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD.
        Clin J Am Soc Nephrol. 2013; 8: 1508-1514
        • Zimmerman L.
        • Egestad B.
        • Jornvall H.
        • et al.
        Identification and determination of phenylacetylglutamine, a major nitrogenous metabolite in plasma of uremic patients.
        Clin Nephrol. 1989; 32: 124-128
        • Smith E.A.
        • MacFarlane G.T.
        Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine.
        Microb Ecol. 1997; 33: 180-188
        • Seakins J.W.
        The determination of urinary phenylacetylglutamine as phenylacetic acid. Studies on its origin in normal subjects and children with cystic fibrosis.
        Clin Chim Acta. 1971; 35: 121-131
        • Yang D.
        • Beylot M.
        • Agarwal K.C.
        • et al.
        Assay of the human liver citric acid cycle probe phenylacetylglutamine and of phenylacetate in plasma by gas chromatography-mass spectrometry.
        Anal Biochem. 1993; 212: 277-282
        • Schmidt S.
        • Westhoff T.H.
        • Krauser P.
        • et al.
        The uraemic toxin phenylacetic acid impairs macrophage function.
        Nephrol Dial Transplant. 2008; 23: 3485-3493
        • Schmidt S.
        • Westhoff T.H.
        • Krauser P.
        • et al.
        The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells.
        Nephrol Dial Transplant. 2008; 23: 65-71
        • Yano S.
        • Yamaguchi T.
        • Kanazawa I.
        • et al.
        The uraemic toxin phenylacetic acid inhibits osteoblastic proliferation and differentiation: an implication for the pathogenesis of low turnover bone in chronic renal failure.
        Nephrol Dial Transplant. 2007; 22: 3160-3165
        • Remer T.
        • Manz F.
        Paleolithic diet, sweet potato eaters, and potential renal acid load.
        Am J Clin Nutr. 2003; 78: 802-803
        • Li M.
        • Wang B.
        • Zhang M.
        • et al.
        Symbiotic gut microbes modulate human metabolic phenotypes.
        Proc Natl Acad Sci U S A. 2008; 105: 2117-2122
        • Cathcart-Rake W.
        • Porter R.
        • Whittier F.
        • et al.
        Effect of diet on serum accumulation and renal excretion of aryl acids and secretory activity in normal and uremic man.
        Am J Clin Nutr. 1975; 28: 1110-1115
        • Mitch W.E.
        • Brusilow S.
        Benzoate-induced changes in glycine and urea metabolism in patients with chronic renal failure.
        J Pharmacol Exp Ther. 1982; 222: 572-575
      3. Uremic toxins. Proceedings of the Ghent Symposium. October 3-4, 1986, Ghent, Belgium.
        Adv Exp Med Biol. 1987; 223: 1-296
        • Igarashi K.
        • Ueda S.
        • Yoshida K.
        • et al.
        Polyamines in renal failure.
        Amino Acids. 2006; 31: 477-483
        • Campbell R.A.
        • Grettie D.P.
        • Bartos F.
        • et al.
        Uremic polyamine dysmetabolism.
        Proc Clin Dial Transplant Forum. 1978; 8: 194-198
        • Kushner D.
        • Beckman B.
        • Nguyen L.
        • et al.
        Polyamines in the anemia of end-stage renal disease.
        Kidney Int. 1991; 39: 725-732
        • Oh M.S.
        • Phelps K.R.
        • Traube M.
        • et al.
        D-lactic acidosis in a man with the short-bowel syndrome.
        N Engl J Med. 1979; 301: 249-252
        • Bruckner H.
        • Hausch M.
        Gas chromatographic characterization of free D-amino acids in the blood serum of patients with renal disorders and of healthy volunteers.
        J Chromatogr. 1993; 614: 7-17
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585
        • Tang W.H.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Tang W.H.
        • Wang Z.
        • Kennedy D.J.
        • et al.
        Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.
        Circ Res. 2015; 116: 448-455
        • Reiffenstein R.J.
        • Hulbert W.C.
        • Roth S.H.
        Toxicology of hydrogen sulfide.
        Annu Rev Pharmacol Toxicol. 1992; 32: 109-134
        • Aminzadeh M.A.
        • Vaziri N.D.
        Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease.
        Nephrol Dial Transplant. 2012; 27: 498-504
        • Song K.
        • Wang F.
        • Li Q.
        • et al.
        Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy.
        Kidney Int. 2014; 85: 1318-1329
        • Perna A.F.
        • Lanza D.
        • Sepe I.
        • et al.
        Hydrogen sulfide, a toxic gas with cardiovascular properties in uremia: how harmful is it?.
        Blood Purif. 2011; 31: 102-106
        • Rhee E.P.
        • Clish C.B.
        • Ghorbani A.
        • et al.
        A combined epidemiologic and metabolomic approach improves CKD prediction.
        J Am Soc Nephrol. 2013; 24: 1330-1338
        • Freudenberg M.A.
        • Tchaptchet S.
        • Keck S.
        • et al.
        Lipopolysaccharide sensing an important factor in the innate immune response to gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity.
        Immunobiology. 2008; 213: 193-203
        • Eggesbo J.B.
        • Hjermann I.
        • Ovstebo R.
        • et al.
        LPS induced procoagulant activity and plasminogen activator activity in mononuclear cells from persons with high or low levels of HDL lipoprotein.
        Thromb Res. 1995; 77: 441-452
        • Reidy M.A.
        • Bowyer D.E.
        Distortion of endothelial repair. The effect of hypercholesterolaemia on regeneration of aortic endothelium following injury by endotoxin. A scanning electron microscope study.
        Atherosclerosis. 1978; 29: 459-466
        • Raj D.S.
        • Shah V.O.
        • Rambod M.
        • et al.
        Association of soluble endotoxin receptor CD14 and mortality among patients undergoing hemodialysis.
        Am J Kidney Dis. 2009; 54: 1062-1071
        • Poesen R.
        • Ramezani A.
        • Claes K.
        • et al.
        Associations of soluble CD14 and endotoxin with mortality, cardiovascular disease, and progression of kidney disease among patients with CKD.
        Clin J Am Soc Nephrol. 2015; 10: 1525-1533
        • Raj D.S.
        • Carrero J.J.
        • Shah V.O.
        • et al.
        Soluble CD14 levels, interleukin 6, and mortality among prevalent hemodialysis patients.
        Am J Kidney Dis. 2009; 54: 1072-1080
        • Wikoff W.R.
        • Anfora A.T.
        • Liu J.
        • et al.
        Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites.
        Proc Natl Acad Sci U S A. 2009; 106: 3698-3703
        • Aronov P.A.
        • Luo F.J.
        • Plummer N.S.
        • et al.
        Colonic contribution to uremic solutes.
        J Am Soc Nephrol. 2011; 22: 1769-1776
        • Sorensen L.B.
        Role of the intestinal tract in the elimination of uric acid.
        Arthritis Rheum. 1965; 8: 694-706
        • Gibson S.A.
        • McFarlan C.
        • Hay S.
        • et al.
        Significance of microflora in proteolysis in the colon.
        Appl Environ Microbiol. 1989; 55: 679-683
        • Poesen R.
        • Windey K.
        • Neven E.
        • et al.
        The influence of CKD on colonic microbial metabolism.
        J Am Soc Nephrol. 2016; 27: 1389-1399
        • Vaziri N.D.
        • Wong J.
        • Pahl M.
        • et al.
        Chronic kidney disease alters intestinal microbial flora.
        Kidney Int. 2013; 83: 308-315
        • Wong J.
        • Piceno Y.M.
        • Desantis T.Z.
        • et al.
        Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD.
        Am J Nephrol. 2014; 39: 230-237
        • Magnusson M.
        • Magnusson K.E.
        • Sundqvist T.
        • et al.
        Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets.
        Nephron. 1990; 56: 306-311
        • Magnusson M.
        • Magnusson K.E.
        • Sundqvist T.
        • et al.
        Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure.
        Gut. 1991; 32: 754-759
        • Vaziri N.D.
        • Goshtasbi N.
        • Yuan J.
        • et al.
        Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium.
        Am J Nephrol. 2012; 36: 438-443
        • Vaziri N.D.
        • Yuan J.
        • Norris K.
        Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease.
        Am J Nephrol. 2013; 37: 1-6
        • Farhadi A.
        • Banan A.
        • Fields J.
        • et al.
        Intestinal barrier: an interface between health and disease.
        J Gastroenterol Hepatol. 2003; 18: 479-497
        • Vaziri N.D.
        • Yuan J.
        • Rahimi A.
        • et al.
        Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation.
        Nephrol Dial Transplant. 2012; 27: 2686-2693
        • de Almeida Duarte J.B.
        • de Aguilar-Nascimento J.E.
        • Nascimento M.
        • et al.
        Bacterial translocation in experimental uremia.
        Urol Res. 2004; 32: 266-270
        • Szeto C.C.
        • Kwan B.C.
        • Chow K.M.
        • et al.
        Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients.
        Clin J Am Soc Nephrol. 2008; 3: 431-436
        • Lathrop S.K.
        • Bloom S.M.
        • Rao S.M.
        • et al.
        Peripheral education of the immune system by colonic commensal microbiota.
        Nature. 2011; 478: 250-254
        • Cebula A.
        • Seweryn M.
        • Rempala G.A.
        • et al.
        Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota.
        Nature. 2013; 497: 258-262
        • Geuking M.B.
        • Cahenzli J.
        • Lawson M.A.
        • et al.
        Intestinal bacterial colonization induces mutualistic regulatory T cell responses.
        Immunity. 2011; 34: 794-806
        • Zeissig S.
        • Blumberg R.S.
        Commensal microbial regulation of natural killer T cells at the frontiers of the mucosal immune system.
        FEBS Lett. 2014; 588: 4188-4194
        • Maynard C.L.
        • Elson C.O.
        • Hatton R.D.
        • et al.
        Reciprocal interactions of the intestinal microbiota and immune system.
        Nature. 2012; 489: 231-241
        • Clarke T.B.
        • Davis K.M.
        • Lysenko E.S.
        • et al.
        Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity.
        Nat Med. 2010; 16: 228-231
        • Mazmanian S.K.
        • Liu C.H.
        • Tzianabos A.O.
        • et al.
        An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.
        Cell. 2005; 122: 107-118
        • Park J.
        • Kim M.
        • Kang S.G.
        • et al.
        Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway.
        Mucosal Immunol. 2015; 8: 80-93
        • Lee J.R.
        • Muthukumar T.
        • Dadhania D.
        • et al.
        Gut microbial community structure and complications after kidney transplantation: a pilot study.
        Transplantation. 2014; 98: 697-705
        • Lee J.R.
        • Muthukumar T.
        • Dadhania D.
        • et al.
        Gut microbiota and tacrolimus dosing in kidney transplantation.
        PLoS One. 2015; 10: e0122399
        • Ichii O.
        • Otsuka-Kanazawa S.
        • Nakamura T.
        • et al.
        Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand.
        PLoS One. 2014; 9: e108448
        • Sun C.Y.
        • Chang S.C.
        • Wu M.S.
        Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition.
        PLoS One. 2012; 7: e34026
        • Wu X.
        • Ma C.
        • Han L.
        • et al.
        Molecular characterisation of the faecal microbiota in patients with type II diabetes.
        Curr Microbiol. 2010; 61: 69-78
        • Larsen N.
        • Vogensen F.K.
        • van den Berg F.W.
        • et al.
        Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.
        PLoS One. 2010; 5: e9085
        • Qin J.
        • Li Y.
        • Cai Z.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60
        • McArdle M.A.
        • Finucane O.M.
        • Connaughton R.M.
        • et al.
        Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies.
        Front Endocrinol (Lausanne). 2013; 4: 52
        • Lee J.
        Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 diabetes.
        Arch Pharm Res. 2013; 36: 208-222
        • Diamant M.
        • Blaak E.E.
        • de Vos W.M.
        Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?.
        Obes Rev. 2011; 12: 272-281
        • Everard A.
        • Cani P.D.
        Diabetes, obesity and gut microbiota.
        Best Pract Res Clin Gastroenterol. 2013; 27: 73-83
        • Koren O.
        • Spor A.
        • Felin J.
        • et al.
        Human oral, gut, and plaque microbiota in patients with atherosclerosis.
        Proc Natl Acad Sci U S A. 2011; 108: 4592-4598
        • Wiedermann C.J.
        • Kiechl S.
        • Dunzendorfer S.
        • et al.
        Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study.
        J Am Coll Cardiol. 1999; 34: 1975-1981
        • Lin C.J.
        • Wu V.
        • Wu P.C.
        • et al.
        Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure.
        PLoS One. 2015; 10: e0132589
        • Wu I.W.
        • Hsu K.H.
        • Hsu H.J.
        • et al.
        Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study.
        Nephrol Dial Transplant. 2012; 27: 1169-1175
        • Organ C.L.
        • Otsuka H.
        • Bhushan S.
        • et al.
        Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure.
        Circ Heart Fail. 2016; 9: e002314
        • Miller P.E.
        • Haberlen S.A.
        • Brown T.T.
        • et al.
        Intestinal microbiota-produced trimethylamine-N-oxide and its association with coronary stenosis and HIV serostatus.
        J Acquir Immune Defic Syndr. 2016; 72: 114-118
        • Stubbs J.R.
        • House J.A.
        • Ocque A.J.
        • et al.
        Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden.
        J Am Soc Nephrol. 2016; 27: 305-313
        • Kim Y.H.
        • Kwak K.A.
        • Gil H.W.
        • et al.
        Indoxyl sulfate promotes apoptosis in cultured osteoblast cells.
        BMC Pharmacol Toxicol. 2013; 14: 60
        • Grenham S.
        • Clarke G.
        • Cryan J.F.
        • et al.
        Brain-gut-microbe communication in health and disease.
        Front Physiol. 2011; 2: 94
        • Ohland C.L.
        • Macnaughton W.K.
        Probiotic bacteria and intestinal epithelial barrier function.
        Am J Physiol Gastrointest Liver Physiol. 2010; 298: G807-G819
        • Swanson P.A.
        • Kumar A.
        • Samarin S.
        • et al.
        Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
        Proc Natl Acad Sci U S A. 2011; 108: 8803-8808
        • Shifrin Jr., D.A.
        • McConnell R.E.
        • Nambiar R.
        • et al.
        Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions.
        Curr Biol. 2012; 22: 627-631
        • Borre Y.E.
        • O'Keeffe G.W.
        • Clarke G.
        • et al.
        Microbiota and neurodevelopmental windows: implications for brain disorders.
        Trends Mol Med. 2014; 20: 509-518
        • Moloney R.D.
        • Desbonnet L.
        • Clarke G.
        • et al.
        The microbiome: stress, health and disease.
        Mamm Genome. 2014; 25: 49-74
        • Strachan D.P.
        Hay fever, hygiene, and household size.
        BMJ. 1989; 299: 1259-1260
        • Rook G.A.
        • Martinelli R.
        • Brunet L.R.
        Innate immune responses to mycobacteria and the downregulation of atopic responses.
        Curr Opin Allergy Clin Immunol. 2003; 3: 337-342
        • Rook G.A.
        • Lowry C.A.
        • Raison C.L.
        Microbial ‘Old Friends’, immunoregulation and stress resilience.
        Evol Med Public Health. 2013; 2013: 46-64
        • Rook G.A.
        • Raison C.L.
        • Lowry C.A.
        Microbiota, immunoregulatory old friends and psychiatric disorders.
        Adv Exp Med Biol. 2014; 817: 319-356
        • Smith M.I.
        • Yatsunenko T.
        • Manary M.J.
        • et al.
        Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.
        Science. 2013; 339: 548-554
        • Suau A.
        • Bonnet R.
        • Sutren M.
        • et al.
        Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut.
        Appl Environ Microbiol. 1999; 65: 4799-4807
        • Tannock G.W.
        Molecular assessment of intestinal microflora.
        Am J Clin Nutr. 2001; 73: 410S-414S
        • Ding T.
        • Schloss P.D.
        Dynamics and associations of microbial community types across the human body.
        Nature. 2014; 509: 357-360
        • Shendure J.
        • Ji H.
        Next-generation DNA sequencing.
        Nat Biotechnol. 2008; 26: 1135-1145
        • Tringe S.G.
        • Rubin E.M.
        Metagenomics: DNA sequencing of environmental samples.
        Nat Rev Genet. 2005; 6: 805-814
        • Tringe S.G.
        • von M.C.
        • Kobayashi A.
        • et al.
        Comparative metagenomics of microbial communities.
        Science. 2005; 308: 554-557
        • Cole J.R.
        • Chai B.
        • Farris R.J.
        • et al.
        The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data.
        Nucleic Acids Res. 2007; 35: D169-D172
        • Lepage P.
        • Leclerc M.C.
        • Joossens M.
        • et al.
        A metagenomic insight into our gut's microbiome.
        Gut. 2013; 62: 146-158
        • Rossi M.
        • Johnson D.W.
        • Morrison M.
        • et al.
        Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial.
        Clin J Am Soc Nephrol. 2016; 11: 223-231
        • Verberkmoes N.C.
        • Russell A.L.
        • Shah M.
        • et al.
        Shotgun metaproteomics of the human distal gut microbiota.
        ISME J. 2009; 3: 179-189
        • Nicholson J.K.
        • Holmes E.
        • Wilson I.D.
        Gut microorganisms, mammalian metabolism and personalized health care.
        Nat Rev Microbiol. 2005; 3: 431-438
        • Jansson J.
        • Willing B.
        • Lucio M.
        • et al.
        Metabolomics reveals metabolic biomarkers of Crohn's disease.
        PLoS One. 2009; 4: e6386
        • Le G.G.
        • Noor S.O.
        • Ridgway K.
        • et al.
        Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome.
        J Proteome Res. 2011; 10: 4208-4218
        • Marchesi J.R.
        • Holmes E.
        • Khan F.
        • et al.
        Rapid and noninvasive metabonomic characterization of inflammatory bowel disease.
        J Proteome Res. 2007; 6: 546-551
        • Phua L.C.
        • Chue X.P.
        • Koh P.K.
        • et al.
        Non-invasive fecal metabonomic detection of colorectal cancer.
        Cancer Biol Ther. 2014; 15: 389-397
        • Mutsaers H.A.
        • Engelke U.F.
        • Wilmer M.J.
        • et al.
        Optimized metabolomic approach to identify uremic solutes in plasma of stage 3-4 chronic kidney disease patients.
        PLoS One. 2013; 8: e71199
        • Rastall R.A.
        • Gibson G.R.
        • Gill H.S.
        • et al.
        Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications.
        FEMS Microbiol Ecol. 2005; 52: 145-152
        • Konstantinov S.R.
        • Smidt H.
        • de Vos W.M.
        • et al.
        S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.
        Proc Natl Acad Sci U S A. 2008; 105: 19474-19479
        • van B.P.
        • Troost F.J.
        • van H.S.
        • et al.
        Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance.
        Proc Natl Acad Sci U S A. 2009; 106: 2371-2376
        • Ranganathan N.
        • Patel B.
        • Ranganathan P.
        • et al.
        Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats.
        ScientificWorldJournal. 2005; 5: 652-660
        • Chen L.
        • Liu W.
        • Li Y.
        • et al.
        Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.
        Int Immunopharmacol. 2013; 17: 108-115
        • Prakash S.
        • Chang T.M.
        Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats.
        Nat Med. 1996; 2: 883-887
        • Pinero-Lambea C.
        • Ruano-Gallego D.
        • Fernandez L.A.
        Engineered bacteria as therapeutic agents.
        Curr Opin Biotechnol. 2015; 35: 94-102
        • Mandell D.J.
        • Lajoie M.J.
        • Mee M.T.
        • et al.
        Corrigendum: biocontainment of genetically modified organisms by synthetic protein design.
        Nature. 2015; 527: 264
        • Doi K.
        • Rabb H.
        Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets.
        Kidney Int. 2016; 89: 555-564
        • Ramezani A.
        • Raj D.S.
        The gut microbiome, kidney disease, and targeted interventions.
        J Am Soc Nephrol. 2014; 25: 657-670
        • Andrade-Oliveira V.
        • Amano M.T.
        • Correa-Costa M.
        • et al.
        Gut bacteria products prevent AKI induced by ischemia-reperfusion.
        J Am Soc Nephrol. 2015; 26: 1877-1888
        • Pluznick J.L.
        • Protzko R.J.
        • Gevorgyan H.
        • et al.
        Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.
        Proc Natl Acad Sci U S A. 2013; 110: 4410-4415
        • Gibson G.R.
        • Roberfroid M.B.
        Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.
        J Nutr. 1995; 125: 1401-1412
        • Gibson G.R.
        • Probert H.M.
        • Loo J.V.
        • et al.
        Dietary modulation of the human colonic microbiota: updating the concept of prebiotics.
        Nutr Res Rev. 2004; 17: 259-275
        • Silk D.B.
        • Davis A.
        • Vulevic J.
        • et al.
        Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome.
        Aliment Pharmacol Ther. 2009; 29: 508-518
        • Cani P.D.
        • Neyrinck A.M.
        • Fava F.
        • et al.
        Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.
        Diabetologia. 2007; 50: 2374-2383
        • Gibson G.R.
        • Beatty E.R.
        • Wang X.
        • et al.
        Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin.
        Gastroenterology. 1995; 108: 975-982
        • Pylkas A.M.
        • Juneja L.R.
        • Slavin J.L.
        Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora.
        J Med Food. 2005; 8: 113-116
        • Krishnamurthy V.M.
        • Wei G.
        • Baird B.C.
        • et al.
        High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease.
        Kidney Int. 2012; 81: 300-306
        • Meijers B.K.
        • De Preter V.
        • Verbeke K.
        • et al.
        p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin.
        Nephrol Dial Transplant. 2010; 25: 219-224
        • Evenepoel P.
        • Bammens B.
        • Verbeke K.
        • et al.
        Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study.
        Kidney Int. 2006; 70: 192-198
        • Kieffer D.A.
        • Piccolo B.D.
        • Vaziri N.D.
        • et al.
        Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats.
        Am J Physiol Renal Physiol. 2016; 310: F857-F871
        • Vaziri N.D.
        • Liu S.M.
        • Lau W.L.
        • et al.
        High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.
        PLoS One. 2014; 9: e114881
        • Mishima E.
        • Fukuda S.
        • Shima H.
        • et al.
        Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD.
        J Am Soc Nephrol. 2015; 26: 1787-1794
        • Wang Z.
        • Roberts A.B.
        • Buffa J.A.
        • et al.
        Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis.
        Cell. 2015; 163: 1585-1595