Advertisement

The gut microbiota and inflammatory bowel diseases

      Inflammatory bowel diseases (IBDs) are chronic diseases of unclear etiology that affect over 1 million individuals in the United States and over 2.5 million people in Europe. However, they are also expanding globally, affecting populations in Asia, South America, and the Middle East as they become more industrialized. These diseases are believed to arise from the convergence of genetic, environmental, and microbial factors that trigger aberrant immune and tissue responses, resulting in intestinal inflammation. Advances in cultivation-independent investigations, experimental models, and bioinformatics approaches have improved our understanding of the role of gut microbiota in IBD. However, determining and understanding the functional consequences of gut dysbiosis and altered host-microbiota interactions in IBD remain a challenge due to the limits of current experimental models and difficulty in establishing causal links in human-based investigations. Continued development of new methodologies and improvements in clinical study design are needed to better understand the interplay of genetic, microbial, and immunological factors in IBD. This knowledge can then be applied clinically to improve therapeutic strategies and outcomes for IBD.

      Abbreviations:

      IBD (inflammatory bowel diseases), GI tract (gastrointestinal tract), UC (ulcerative colitis), CD (Crohn's disease), GWAS (genome-wide association study), SNP (single-nucleotide polymorphism), NADPH (nicotinamide adenine dinucleotide phosphate), MDP (muramyl dipeptide), DSS (dextran sodium sulfate), SCFA (short-chain fatty acids), VLP (virus-like particle), ASCA (anti-Saccharomyces cerevisiae antibody), PSA (polysaccharide A), GPR43 (G-protein-coupled receptor 43), Treg (regulatory T cell), IgA (immunoglobulin A), AIEC (adherent-invasive Escherichia coli), FMT (fecal microbiota transplantation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaplan G.G.
        The global burden of IBD: from 2015 to 2025.
        Nat Rev Gastroenterol Hepatol. 2015; 12: 720-727
        • Kirsner J.B.
        Historical aspects of inflammatory bowel disease.
        J Clin Gastroenterol. 1988; 10: 286-297
        • Seksik P.
        • Rigottier-Gois L.
        • Gramet G.
        • et al.
        Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon.
        Gut. 2003; 52: 237-242
        • Ott S.J.
        • Musfeldt M.
        • Wenderoth D.F.
        • et al.
        Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease.
        Gut. 2004; 53: 685-693
        • Manichanh C.
        • Rigottier-Gois L.
        • Bonnaud E.
        • et al.
        Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach.
        Gut. 2006; 55: 205-211
        • Gophna U.
        • Sommerfeld K.
        • Gophna S.
        • Doolittle W.F.
        • Veldhuyzen van Zanten S.J.
        Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis.
        J Clin Microbiol. 2006; 44: 4136-4141
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • Boedeker E.C.
        • Harpaz N.
        • Pace N.R.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci U S A. 2007; 104: 13780-13785
        • Liu J.Z.
        • van Sommeren S.
        • Huang H.
        • et al.
        Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.
        Nat Genet. 2015; 47: 979-986
        • Liu T.C.
        • Stappenbeck T.S.
        Genetics and pathogenesis of inflammatory bowel disease.
        Annu Rev Pathol. 2016; 11: 127-148
        • Van Limbergen J.
        • Radford-Smith G.
        • Satsangi J.
        Advances in IBD genetics.
        Nat Rev Gastroenterol Hepatol. 2014; 11: 372-385
        • Jostins L.
        • Ripke S.
        • Weersma R.K.
        • et al.
        Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
        Nature. 2012; 491: 119-124
        • Anderson C.A.
        • Boucher G.
        • Lees C.W.
        • et al.
        Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47.
        Nat Genet. 2011; 43: 246-252
        • Franke A.
        • McGovern D.P.
        • Barrett J.C.
        • et al.
        Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci.
        Nat Genet. 2010; 42: 1118-1125
        • Ogura Y.
        • Bonen D.K.
        • Inohara N.
        • et al.
        A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
        Nature. 2001; 411: 603-606
        • Hugot J.P.
        • Chamaillard M.
        • Zouali H.
        • et al.
        Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
        Nature. 2001; 411: 599-603
        • Cadwell K.
        • Liu J.Y.
        • Brown S.L.
        • et al.
        A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.
        Nature. 2008; 456: 259-263
        • Kaser A.
        • Blumberg R.S.
        Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease.
        Gastroenterology. 2011; 140: 1738-1747
        • Petnicki-Ocwieja T.
        • Hrncir T.
        • Liu Y.J.
        • et al.
        Nod2 is required for the regulation of commensal microbiota in the intestine.
        Proc Natl Acad Sci U S A. 2009; 106: 15813-15818
        • Frank D.N.
        • Robertson C.E.
        • Hamm C.M.
        • et al.
        Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases.
        Inflamm Bowel Dis. 2011; 17: 179-184
        • Knights D.
        • Silverberg M.S.
        • Weersma R.K.
        • et al.
        Complex host genetics influence the microbiome in inflammatory bowel disease.
        Genome Med. 2014; 6: 107
        • Quince C.
        • Lundin E.E.
        • Andreasson A.N.
        • et al.
        The impact of Crohn's disease genes on healthy human gut microbiota: a pilot study.
        Gut. 2013; 62: 952-954
        • Uhlig H.H.
        • Schwerd T.
        • Koletzko S.
        • et al.
        The diagnostic approach to monogenic very early onset inflammatory bowel disease.
        Gastroenterology. 2014; 147: 990-1007.e3
        • Glocker E.O.
        • Kotlarz D.
        • Boztug K.
        • et al.
        Inflammatory bowel disease and mutations affecting the interleukin-10 receptor.
        N Engl J Med. 2009; 361: 2033-2045
        • Shah N.
        • Kammermeier J.
        • Elawad M.
        • Glocker E.O.
        Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease.
        Curr Allergy Asthma Rep. 2012; 12: 373-379
        • Kotlarz D.
        • Beier R.
        • Murugan D.
        • et al.
        Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy.
        Gastroenterology. 2012; 143: 347-355
        • Dhillon S.S.
        • Fattouh R.
        • Elkadri A.
        • et al.
        Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease.
        Gastroenterology. 2014; 147: 680-689.e2
        • Avitzur Y.
        • Guo C.
        • Mastropaolo L.A.
        • et al.
        Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease.
        Gastroenterology. 2014; 146: 1028-1039
        • Orholm M.
        • Binder V.
        • Sorensen T.I.
        • Rasmussen L.P.
        • Kyvik K.O.
        Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study.
        Scand J Gastroenterol. 2000; 35: 1075-1081
        • Halfvarson J.
        • Bodin L.
        • Tysk C.
        • Lindberg E.
        • Jarnerot G.
        Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics.
        Gastroenterology. 2003; 124: 1767-1773
        • Spehlmann M.E.
        • Begun A.Z.
        • Burghardt J.
        • Lepage P.
        • Raedler A.
        • Schreiber S.
        Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study.
        Inflamm Bowel Dis. 2008; 14: 968-976
        • Prescott N.J.
        • Fisher S.A.
        • Franke A.
        • et al.
        A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5.
        Gastroenterology. 2007; 132: 1665-1671
        • Cadwell K.
        • Patel K.K.
        • Maloney N.S.
        • et al.
        Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine.
        Cell. 2010; 141: 1135-1145
        • Molodecky N.A.
        • Soon I.S.
        • Rabi D.M.
        • et al.
        Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.
        Gastroenterology. 2012; 142 (quiz e30): 46-54.e42
        • Hviid A.
        • Svanstrom H.
        • Frisch M.
        Antibiotic use and inflammatory bowel diseases in childhood.
        Gut. 2011; 60: 49-54
        • Virta L.
        • Auvinen A.
        • Helenius H.
        • Huovinen P.
        • Kolho K.L.
        Association of repeated exposure to antibiotics with the development of pediatric Crohn's disease—a nationwide, register-based finnish case-control study.
        Am J Epidemiol. 2012; 175: 775-784
        • Kronman M.P.
        • Zaoutis T.E.
        • Haynes K.
        • Feng R.
        • Coffin S.E.
        Antibiotic exposure and IBD development among children: a population-based cohort study.
        Pediatrics. 2012; 130: e794-e803
        • Ungaro R.
        • Bernstein C.N.
        • Gearry R.
        • et al.
        Antibiotics associated with increased risk of new-onset Crohn's disease but not ulcerative colitis: a meta-analysis.
        Am J Gastroenterol. 2014; 109: 1728-1738
        • Benchimol E.I.
        • Mack D.R.
        • Guttmann A.
        • et al.
        Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study.
        Am J Gastroenterol. 2015; 110: 553-563
        • Bager P.
        • Simonsen J.
        • Nielsen N.M.
        • Frisch M.
        Cesarean section and offspring's risk of inflammatory bowel disease: a national cohort study.
        Inflamm Bowel Dis. 2012; 18: 857-862
        • Cho I.
        • Yamanishi S.
        • Cox L.
        • et al.
        Antibiotics in early life alter the murine colonic microbiome and adiposity.
        Nature. 2012; 488: 621-626
        • Cox L.M.
        • Yamanishi S.
        • Sohn J.
        • et al.
        Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
        Cell. 2014; 158: 705-721
        • Deshmukh H.S.
        • Liu Y.
        • Menkiti O.R.
        • et al.
        The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice.
        Nat Med. 2014; 20: 524-530
        • Maurice C.F.
        • Haiser H.J.
        • Turnbaugh P.J.
        Xenobiotics shape the physiology and gene expression of the active human gut microbiome.
        Cell. 2013; 152: 39-50
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • De Filippo C.
        • Cavalieri D.
        • Di Paola M.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696
        • Devkota S.
        • Wang Y.
        • Musch M.W.
        • et al.
        Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice.
        Nature. 2012; 487: 104-108
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Wills-Karp M.
        • Santeliz J.
        • Karp C.L.
        The germless theory of allergic disease: revisiting the hygiene hypothesis.
        Nat Rev Immunol. 2001; 1: 69-75
        • Pugazhendhi S.
        • Sahu M.K.
        • Subramanian V.
        • Pulimood A.
        • Ramakrishna B.S.
        Environmental factors associated with Crohn's disease in India.
        Indian J Gastroenterol. 2011; 30: 264-269
        • Chung H.
        • Pamp S.J.
        • Hill J.A.
        • et al.
        Gut immune maturation depends on colonization with a host-specific microbiota.
        Cell. 2012; 149: 1578-1593
        • Gomez de Aguero M.
        • Ganal-Vonarburg S.C.
        • Fuhrer T.
        • et al.
        The maternal microbiota drives early postnatal innate immune development.
        Science. 2016; 351: 1296-1302
        • Sokol H.
        • Pigneur B.
        • Watterlot L.
        • et al.
        Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.
        Proc Natl Acad Sci U S A. 2008; 105: 16731-16736
        • Sokol H.
        • Seksik P.
        • Furet J.P.
        • et al.
        Low counts of Faecalibacterium prausnitzii in colitis microbiota.
        Inflamm Bowel Dis. 2009; 15: 1183-1189
        • Machiels K.
        • Joossens M.
        • Sabino J.
        • et al.
        A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis.
        Gut. 2014; 63: 1275-1283
        • Gevers D.
        • Kugathasan S.
        • Denson L.A.
        • et al.
        The treatment-naive microbiome in new-onset Crohn's disease.
        Cell Host Microbe. 2014; 15: 382-392
        • Gu S.
        • Chen D.
        • Zhang J.N.
        • et al.
        Bacterial community mapping of the mouse gastrointestinal tract.
        PLoS One. 2013; 8: e74957
        • Peterson D.A.
        • Frank D.N.
        • Pace N.R.
        • Gordon J.I.
        Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases.
        Cell Host Microbe. 2008; 3: 417-427
        • Schloss P.D.
        • Westcott S.L.
        Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis.
        Appl Environ Microbiol. 2011; 77: 3219-3226
        • Eren A.M.
        • Maignien L.
        • Sul W.J.
        • et al.
        Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data.
        Methods Ecol Evol. 2013; 4
        • Eren A.M.
        • Morrison H.G.
        • Lescault P.J.
        • Reveillaud J.
        • Vineis J.H.
        • Sogin M.L.
        Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences.
        ISME J. 2015; 9: 968-979
        • Eren A.M.
        • Esen O.C.
        • Quince C.
        • et al.
        Anvi'o: an advanced analysis and visualization platform for 'omics data.
        Peer J. 2015; 3: e1319
        • Wang W.
        • Jovel J.
        • Halloran B.
        • et al.
        Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria.
        Inflamm Bowel Dis. 2015; 21: 1419-1427
        • Lepage P.
        • Colombet J.
        • Marteau P.
        • Sime-Ngando T.
        • Dore J.
        • Leclerc M.
        Dysbiosis in inflammatory bowel disease: a role for bacteriophages?.
        Gut. 2008; 57: 424-425
        • Perez-Brocal V.
        • Garcia-Lopez R.
        • Vazquez-Castellanos J.F.
        • et al.
        Study of the viral and microbial communities associated with Crohn's disease: a metagenomic approach.
        Clin Transl Gastroenterol. 2013; 4: e36
        • Iliev I.D.
        • Funari V.A.
        • Taylor K.D.
        • et al.
        Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis.
        Science. 2012; 336: 1314-1317
        • Ott S.J.
        • Kuhbacher T.
        • Musfeldt M.
        • et al.
        Fungi and inflammatory bowel diseases: alterations of composition and diversity.
        Scand J Gastroenterol. 2008; 43: 831-841
        • Li Q.
        • Wang C.
        • Tang C.
        • He Q.
        • Li N.
        • Li J.
        Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease.
        J Clin Gastroenterol. 2014; 48: 513-523
        • Chehoud C.
        • Albenberg L.G.
        • Judge C.
        • et al.
        Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2015; 21: 1948-1956
        • Lewis J.D.
        • Chen E.Z.
        • Baldassano R.N.
        • et al.
        Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease.
        Cell Host Microbe. 2015; 18: 489-500
        • Standaert-Vitse A.
        • Jouault T.
        • Vandewalle P.
        • et al.
        Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn's disease.
        Gastroenterology. 2006; 130: 1764-1775
        • Standaert-Vitse A.
        • Sendid B.
        • Joossens M.
        • et al.
        Candida albicans colonization and ASCA in familial Crohn's disease.
        Am J Gastroenterol. 2009; 104: 1745-1753
        • Scanlan P.D.
        • Shanahan F.
        • Marchesi J.R.
        Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis.
        BMC Microbiol. 2008; 8: 79
        • Mazmanian S.K.
        • Round J.L.
        • Kasper D.L.
        A microbial symbiosis factor prevents intestinal inflammatory disease.
        Nature. 2008; 453: 620-625
        • Fujiya M.
        • Musch M.W.
        • Nakagawa Y.
        • et al.
        The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter.
        Cell Host Microbe. 2007; 1: 299-308
        • Petrof E.O.
        • Kojima K.
        • Ropeleski M.J.
        • et al.
        Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition.
        Gastroenterology. 2004; 127: 1474-1487
        • Yan F.
        • Cao H.
        • Cover T.L.
        • et al.
        Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism.
        J Clin Invest. 2011; 121: 2242-2253
        • Vital M.
        • Penton C.R.
        • Wang Q.
        • et al.
        A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community.
        Microbiome. 2013; 1: 8
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Atarashi K.
        • Tanoue T.
        • Shima T.
        • et al.
        Induction of colonic regulatory T cells by indigenous Clostridium species.
        Science. 2011; 331: 337-341
        • Atarashi K.
        • Tanoue T.
        • Oshima K.
        • et al.
        Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.
        Nature. 2013; 500: 232-236
        • Smith P.M.
        • Howitt M.R.
        • Panikov N.
        • et al.
        The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.
        Science. 2013; 341: 569-573
        • Roediger W.E.
        • Moore J.
        • Babidge W.
        Colonic sulfide in pathogenesis and treatment of ulcerative colitis.
        Dig Dis Sci. 1997; 42: 1571-1579
        • Levine J.
        • Ellis C.J.
        • Furne J.K.
        • Springfield J.
        • Levitt M.D.
        Fecal hydrogen sulfide production in ulcerative colitis.
        Am J Gastroenterol. 1998; 93: 83-87
        • Attene-Ramos M.S.
        • Nava G.M.
        • Muellner M.G.
        • Wagner E.D.
        • Plewa M.J.
        • Gaskins H.R.
        DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells.
        Environ Mol Mutagen. 2010; 51: 304-314
        • Babidge W.
        • Millard S.
        • Roediger W.
        Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis.
        Mol Cell Biochem. 1998; 181: 117-124
        • De Preter V.
        • Arijs I.
        • Windey K.
        • et al.
        Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis.
        Inflamm Bowel Dis. 2012; 18: 2371-2380
        • Giaffer M.H.
        • Holdsworth C.D.
        • Duerden B.I.
        The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique.
        J Med Microbiol. 1991; 35: 238-243
        • Garrett W.S.
        • Lord G.M.
        • Punit S.
        • et al.
        Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system.
        Cell. 2007; 131: 33-45
        • Garrett W.S.
        • Gallini C.A.
        • Yatsunenko T.
        • et al.
        Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis.
        Cell Host Microbe. 2010; 8: 292-300
        • Winter S.E.
        • Winter M.G.
        • Xavier M.N.
        • et al.
        Host-derived nitrate boosts growth of E. coli in the inflamed gut.
        Science. 2013; 339: 708-711
        • Palm N.W.
        • de Zoete M.R.
        • Cullen T.W.
        • et al.
        Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease.
        Cell. 2014; 158: 1000-1010
        • Kau A.L.
        • Planer J.D.
        • Liu J.
        • et al.
        Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy.
        Sci Transl Med. 2015; 7: 276ra24
        • Moon C.
        • Baldridge M.T.
        • Wallace M.A.
        • Burnham C.A.
        • Virgin H.W.
        • Stappenbeck T.S.
        Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation.
        Nature. 2015; 521: 90-93
        • Patwa L.G.
        • Fan T.J.
        • Tchaptchet S.
        • et al.
        Chronic intestinal inflammation induces stress-response genes in commensal Escherichia coli.
        Gastroenterology. 2011; 141: 1842-1851.e1–10
        • Iebba V.
        • Conte M.P.
        • Lepanto M.S.
        • et al.
        Microevolution in fimH gene of mucosa-associated Escherichia coli strains isolated from pediatric patients with inflammatory bowel disease.
        Infect Immun. 2012; 80: 1408-1417
        • Dreux N.
        • Denizot J.
        • Martinez-Medina M.
        • et al.
        Point mutations in FimH adhesin of Crohn's disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response.
        PLoS Pathog. 2013; 9: e1003141
        • Morgan X.C.
        • Tickle T.L.
        • Sokol H.
        • et al.
        Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.
        Genome Biol. 2012; 13: R79
        • Greenblum S.
        • Turnbaugh P.J.
        • Borenstein E.
        Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.
        Proc Natl Acad Sci U S A. 2012; 109: 594-599
        • Smirnov K.S.
        • Maier T.V.
        • Walker A.
        • et al.
        Challenges of metabolomics in human gut microbiota research.
        Int J Med Microbiol. 2016; (http://dx.doi.org/10.1016/j.ijmm.2016.03.006 [Epub ahead of print])
        • Sands B.E.
        Biomarkers of inflammation in inflammatory bowel disease.
        Gastroenterology. 2015; 149: 1275-1285.e2
        • Shen J.
        • Zuo Z.X.
        • Mao A.P.
        Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn's disease, and pouchitis: meta-analysis of randomized controlled trials.
        Inflamm Bowel Dis. 2014; 20: 21-35
        • Bourreille A.
        • Cadiot G.
        • Le Dreau G.
        • et al.
        Saccharomyces boulardii does not prevent relapse of Crohn's disease.
        Clin Gastroenterol Hepatol. 2013; 11: 982-987
        • Rossen N.G.
        • MacDonald J.K.
        • de Vries E.M.
        • et al.
        Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review.
        World J Gastroenterol. 2015; 21: 5359-5371
        • Angelberger S.
        • Reinisch W.
        • Makristathis A.
        • et al.
        Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation.
        Am J Gastroenterol. 2013; 108: 1620-1630
        • Rossen N.G.
        • Fuentes S.
        • van der Spek M.J.
        • et al.
        Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis.
        Gastroenterology. 2015; 149: 110-118.e4
        • Chehoud C.
        • Dryga A.
        • Hwang Y.
        • et al.
        Transfer of viral communities between human individuals during fecal microbiota transplantation.
        MBio. 2016; 7