Understanding the role of the microbiome in chronic obstructive pulmonary disease: principles, challenges, and future directions

      In the past several years, advances in sequencing platforms and bioinformatics have transformed our understanding of the relationship between microbial ecology and human health. Both the normal and diseased lung are host to hundreds of bacterial genera, blurring the lines between “colonization” and “infection”. However, whereas in health the respiratory microbiome is determined primarily by the dynamic balance of immigration and elimination, in chronic disease conditions become much more favorable for the reproduction of resident bacteria. Recent studies demonstrate that the microbiota of the chronic obstructive pulmonary disease (COPD) lung differ from the healthy lung although significant intrasubject and intersubject heterogeneity are still present with variation impacted by factors such as disease stage and inhaled medications. Changes in the relative abundance of specific bacterial taxa during COPD exacerbations have also been noted although further longitudinal analyses are needed to ascertain the malleability and resilience of this ecological system and its role in the occurrence and frequency of exacerbations. Whether patients with a “frequent exacerbator” phenotype possess specific or greater alterations in their airway microbiome that predispose them to recurrent exacerbations as compared with nonfrequent exacerbators needs to be determined. Although recent data suggest that the presence of bacteria has the potential to influence the host immune response, a key challenge in the next few years will be to continue to move beyond descriptive studies to define the clinical relevance of differences in lung microbiota associated with COPD.


      AECOPD (acute exacerbation of COPD), BAL (bronchoalveolar lavage), COPD (chronic obstructive pulmonary disease), DGGE (denaturing gradient gel electrophoresis), DNA (deoxyribonucleic acid), GI (gastrointestinal), NIH (National Institutes of Health), OTU (operational taxonomic unit), PCR (polymerase chain reaction), rRNA (ribosomal ribonucleic acid), TGGE (temperature gradient gel electrophoresis), T-RFLP (terminal restriction fragment length polymorphism), TRF (terminal restriction fragment)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hilty M.
        • Burke C.
        • Pedro H.
        • et al.
        Disordered microbial communities in asthmatic airways.
        PLoS One. 2010; 5: e8578
        • Sogin S.J.
        • Sogin M.L.
        • Woese C.R.
        Phylogenetic measurement in procaryotes by primary structural characterization.
        J Mol Evol. 1971; 1: 173-184
        • Woese C.R.
        • Fox G.E.
        Phylogentic structure of prokaryotic domain—primary kingdoms.
        Proc Natl Acad Sci U S A. 1977; 74: 5088-5090
        • Woese C.R.
        • Sogin M.L.
        • Sutton L.A.
        Procaryotic phylogeny .1. Concerning relatedness of aerobacter-aerogenes to Escherichia-coli.
        J Mol Evol. 1974; 3: 293-299
        • Pace N.R.
        • Stahl D.A.
        • Lane D.J.
        • Olsen G.J.
        Analyzing natural microbial populations by rRNA sequences.
        ASM News. 1985; 51: 4-12
        • Pace N.R.
        A molecular view of microbial diversity and the biosphere.
        Science. 1997; 276: 734-740
        • Ley R.E.
        • Peterson D.A.
        • Gordon J.I.
        Ecological and evolutionary forces shaping microbial diversity in the human intestine.
        Cell. 2006; 124: 837-848
        • Ashelford K.E.
        • Chuzhanova N.A.
        • Fry J.C.
        • Jones A.J.
        • Weightman A.J.
        At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies.
        Appl Environ Microbiol. 2005; 71: 7724-7736
        • Zoetendal E.G.
        • Collier C.T.
        • Koike S.
        • Mackie R.I.
        • Gaskins H.R.
        Molecular ecological analysis of the gastrointestinal microbiota: a review.
        J Nutr. 2004; 134: 465-472
        • Kitts C.L.
        Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics.
        Curr Issues Intest Microbiol. 2001; 2: 17-25
        • Schutte U.M.
        • Abdo Z.
        • Bent S.J.
        • et al.
        Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities.
        Appl Microbiol Biotechnol. 2008; 80: 365-380
        • Margulies M.
        • Egholm M.
        • Altman W.E.
        • et al.
        Genome sequencing in microfabricated high-density picolitre reactors.
        Nature. 2005; 437: 376-380
        • Ronaghi M.
        Pyrosequencing sheds light on DNA sequencing.
        Genome Res. 2001; 11: 3-11
        • Hamady M.
        • Knight R.
        Microbial community profiling for human microbiome projects: tools, techniques, and challenges.
        Genome Res. 2009; 19: 1141-1152
        • Kozich J.J.
        • Westcott S.L.
        • Baxter N.T.
        • Highlander S.K.
        • Schloss P.D.
        Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
        Appl Environ Microbiol. 2013; 79: 5112-5120
        • Bragg L.M.
        • Stone G.
        • Butler M.K.
        • Hugenholtz P.
        • Tyson G.W.
        Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data.
        PLoS Comput Biol. 2013; 9: e1003031
        • Loose M.
        • Malla S.
        • Stout M.
        Real time selective sequencing using nanopore technology.
        bioRxiv. 2016;
        • Keegan K.P.
        • Glass E.M.
        • Meyer F.
        MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.
        Methods Mol Biol. 2016; 1399: 207-233
        • Segata N.
        • Waldron L.
        • Ballarini A.
        • Narasimhan V.
        • Jousson O.
        • Huttenhower C.
        Metagenomic microbial community profiling using unique clade-specific marker genes.
        Nat Methods. 2012; 9: 811-814
        • Kim Y.
        • Koh I.
        • Rho M.
        Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches.
        Methods. 2015; 79–80: 52-59
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • et al.
        Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl Environ Microbiol. 2009; 75: 7537-7541
        • Sze M.A.
        • Dimitriu P.A.
        • Suzuki M.
        • et al.
        Host response to the lung microbiome in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2015; 192: 438-445
        • Dickson R.P.
        • Erb-Downward J.R.
        • Freeman C.M.
        • et al.
        Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations.
        PLoS One. 2014; 9: e97214
        • Salter S.J.
        • Cox M.J.
        • Turek E.M.
        • et al.
        Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.
        BMC Biol. 2014; 12: 87
        • Cotran R.S.
        • Kumar V.
        • Collins T.
        • Robbins S.L.
        Robbins Pathologic Basis of Disease.
        6th ed. Saunders, Philadelphia1999: 1425 (xv)
        • Dickson R.P.
        • Erb-Downward J.R.
        • Martinez F.J.
        • Huffnagle G.B.
        The microbiome and the respiratory tract.
        Annu Rev Physiol. 2016; 78: 481-504
        • Gleeson K.
        • Eggli D.F.
        • Maxwell S.L.
        Quantitative aspiration during sleep in normal subjects.
        Chest. 1997; 111: 1266-1272
        • Huxley E.J.
        • Viroslav J.
        • Gray W.R.
        • Pierce A.K.
        Pharyngeal aspiration in normal adults and patients with depressed consciousness.
        Am J Med. 1978; 64: 564-568
        • Dickson R.P.
        • Martinez F.J.
        • Huffnagle G.B.
        The role of the microbiome in exacerbations of chronic lung diseases.
        Lancet. 2014; 384: 691-702
        • Dickson R.P.
        • Erb-Downward J.R.
        • Huffnagle G.B.
        Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis.
        Lancet Respir Med. 2014; 2: 238-246
        • Bassis C.M.
        • Erb-Downward J.R.
        • Dickson R.P.
        • et al.
        Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals.
        MBio. 2015; 6: e00037
        • Dickson R.P.
        • Erb-Downward J.R.
        • Freeman C.M.
        • et al.
        Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography.
        Ann Am Thorac Soc. 2015; 12: 821-830
        • Segal L.N.
        • Alekseyenko A.V.
        • Clemente J.C.
        • et al.
        Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation.
        Microbiome. 2013; 1: 19
        • Venkataraman A.
        • Bassis C.M.
        • Beck J.M.
        • et al.
        Application of a neutral community model to assess structuring of the human lung microbiome.
        MBio. 2015; 6: e02284-e02314
        • Dickson R.P.
        • Erb-Downward J.R.
        • Prescott H.C.
        • et al.
        Intraalveolar catecholamines and the human lung microbiome.
        Am J Respir Crit Care Med. 2015; 192: 257-259
        • Schmidt A.
        • Belaaouaj A.
        • Bissinger R.
        • et al.
        Neutrophil elastase-mediated increase in airway temperature during inflammation.
        J Cyst Fibros. 2014; 13: 623-631
        • Rabe K.
        • Hurd S.
        • Anzueto Z.
        • et al.
        Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary.
        Am J Respir Crit Care Med. 2007; 176: 432-455
        • Han M.
        • Agusti A.
        • Calverley P.
        • et al.
        Chronic obstructive pulmonary disease phenotypes: the future of COPD.
        Am J Respir Crit Care Med. 2010; 182: 598-604
        • Stuart-Harris C.H.
        • Pownall M.
        • Scothorne C.M.
        • Franks Z.
        The factor of infection in chronic bronchitis.
        QJM. 1953; 22: 121-132
        • Fletcher C.M.
        Chronic bronchitis. Its prevalence, nature, and pathogenesis.
        Am Rev Respir Dis. 1959; 80: 483-494
        • Tager I.
        • Speizer F.E.
        Role of infection in chronic bronchitis.
        N Engl J Med. 1975; 292: 563-571
        • Rosell A.
        • Monso E.
        • Soler N.
        • et al.
        Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease.
        Arch Intern Med. 2005; 165: 891-897
        • Erb-Downward J.R.
        • Thompson D.L.
        • Han M.K.
        • et al.
        Analysis of the lung microbiome in the “healthy” smoker and in COPD.
        PLoS One. 2011; 6: e16384
        • Sze M.A.
        • Dimitriu P.A.
        • Hayashi S.
        • et al.
        The lung tissue microbiome in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2012; 185: 1073-1080
        • Pragman A.A.
        • Kim H.B.
        • Reilly C.S.
        • Wendt C.
        • Isaacson R.E.
        The lung microbiome in moderate and severe chronic obstructive pulmonary disease.
        PLoS One. 2012; 7: e47305
        • Huang Y.J.
        • Kim E.
        • Cox M.J.
        • et al.
        A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations.
        OMICS. 2010; 14: 9-59
        • Cabrera-Rubio R.
        • Garcia-Nunez M.
        • Seto L.
        • et al.
        Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease.
        J Clin Microbiol. 2012; 50: 3562-3568
        • Molyneaux P.L.
        • Mallia P.
        • Cox M.J.
        • et al.
        Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2013; 188: 1224-1231
        • Huang Y.J.
        • Sethi S.
        • Murphy T.
        • Nariya S.
        • Boushey H.A.
        • Lynch S.V.
        Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease.
        J Clin Microbiol. 2014; 52: 2813-2823
        • Millares L.
        • Ferrari R.
        • Gallego M.
        • et al.
        Bronchial microbiome of severe COPD patients colonised by Pseudomonas aeruginosa.
        Eur J Clin Microbiol Infect Dis. 2014; 33: 1101-1111
        • Galiana A.
        • Aguirre E.
        • Rodriguez J.C.
        • et al.
        Sputum microbiota in moderate versus severe patients with COPD.
        Eur Respir J. 2014; 43: 1787-1790
        • Garcia-Nunez M.
        • Millares L.
        • Pomares X.
        • et al.
        Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease.
        J Clin Microbiol. 2014; 52: 4217-4223
        • Millares L.
        • Perez-Brocal V.
        • Ferrari R.
        • et al.
        Functional metagenomics of the bronchial microbiome in COPD.
        PLoS One. 2015; 10: e0144448
        • Aguirre E.
        • Galiana A.
        • Mira A.
        • et al.
        Analysis of microbiota in stable patients with chronic obstructive pulmonary disease.
        APMIS. 2015; 123: 427-432
        • Su J.
        • Liu H.Y.
        • Tan X.L.
        • et al.
        Sputum Bacterial and Fungal Dynamics during Exacerbations of Severe COPD.
        PLoS One. 2015; 10: e0130736
        • Wang Z.
        • Bafadhel M.
        • Haldar K.
        • et al.
        Lung microbiome dynamics in chronic obstructive pulmonary disease exacerbations.
        Eur Respir J. 2016; 47: 1082-1092
        • Vestbo J.
        • Hurd S.S.
        • Agusti A.G.
        • et al.
        Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary.
        Am J Respir Crit Care Med. 2013; 187: 347-365
        • Wedzicha J.A.
        • Brill S.E.
        • Allinson J.P.
        • Donaldson G.C.
        Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease.
        BMC Med. 2013; 11: 181
        • Casadevall A.
        • Pirofski L.A.
        Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity.
        Infect Immun. 1999; 67: 3703-3713
        • Casadevall A.
        • Pirofski L.A.
        What is a host? Incorporating the microbiota into the damage-response framework.
        Infect Immun. 2015; 83: 2-7
        • McKenney P.T.
        • Pamer E.G.
        From hype to hope: the gut microbiota in enteric infectious disease.
        Cell. 2015; 163: 1326-1332
        • Byrd A.L.
        • Segre J.A.
        Infectious disease. Adapting Koch's postulates.
        Science. 2016; 351: 224-226
        • Carmody L.A.
        • Zhao J.
        • Kalikin L.M.
        • et al.
        The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation.
        Microbiome. 2015; 3: 12
        • Sethi S.
        • Evans N.
        • Grant B.J.
        • Murphy T.F.
        New strains of bacteria and exacerbations of chronic obstructive pulmonary disease.
        N Engl J Med. 2002; 347: 465-471
        • Stecher B.
        • Chaffron S.
        • Kappeli R.
        • et al.
        Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria.
        PLoS Pathog. 2010; 6: e1000711
        • Albert R.K.
        • Connett J.
        • Bailey W.C.
        • et al.
        Azithromycin for prevention of exacerbations of COPD.
        N Engl J Med. 2011; 365: 689-698
        • Slater M.
        • Rivett D.W.
        • Williams L.
        • et al.
        The impact of azithromycin therapy on the airway microbiota in asthma.
        Thorax. 2014; 69: 673-674
        • Noverr M.C.
        • Noggle R.M.
        • Toews G.B.
        • Huffnagle G.B.
        Role of antibiotics and fungal microbiota in driving pulmonary allergic responses.
        Infect Immun. 2004; 72: 4996-5003
        • Noverr M.C.
        • Huffnagle G.B.
        Does the microbiota regulate immune responses outside the gut?.
        Trends Microbiol. 2004; 12: 562-568
        • Herbst T.
        • Sichelstiel A.
        • Schar C.
        • et al.
        Dysregulation of allergic airway inflammation in the absence of microbial colonization.
        Am J Respir Crit Care Med. 2011; 184: 198-205
        • Armbruster C.E.
        • Hong W.
        • Pang B.
        • et al.
        Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling.
        MBio. 2010; 1: e00102-e00110
        • Perez-Losada M.
        • Castro-Nallar E.
        • Bendall M.L.
        • Freishtat R.J.
        • Crandall K.A.
        Dual transcriptomic profiling of host and microbiota during health and disease in pediatric asthma.
        PLoS One. 2015; 10: e0131819
        • Lim Y.W.
        • Schmieder R.
        • Haynes M.
        • et al.
        Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities.
        J Cyst Fibros. 2013; 12: 154-164
        • Zakharkina T.
        • Heinzel E.
        • Koczulla R.A.
        • et al.
        Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing.
        PLoS One. 2013; 8: e68302
        • Cui L.
        • Morris A.
        • Ghedin E.
        The human mycobiome in health and disease.
        Genome Med. 2013; 5: 63
        • Kramer R.
        • Sauer-Heilborn A.
        • Welte T.
        • Guzman C.A.
        • Abraham W.R.
        • Hofle M.G.
        Cohort study of airway mycobiome in adult cystic fibrosis patients: differences in community structure between fungi and bacteria reveal predominance of transient fungal elements.
        J Clin Microbiol. 2015; 53: 2900-2907
        • O'Toole P.W.
        • Jeffery I.B.
        Gut microbiota and aging.
        Science. 2015; 350: 1214-1215