Advertisement

The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases

      Among the many areas being revolutionized by the recent introduction of culture-independent microbial identification techniques is investigation of the relationship between close contact with large animals, antibiotics, breast feeding, mode of birth, and other exposures during infancy as related to a reduced risk of asthma and allergic disease. These exposures were originally clustered under the “Hygiene Hypothesis” which has evolved into the “Microbiota Hypothesis”. This review begins by summarizing epidemiologic studies suggesting that the common feature of these allergy risk-related exposures is their influence on the founding and early development of a child's gut microbiota. Next, studies using culture-independent techniques are presented showing that children who have experienced the exposures of interest have altered gut microbiota. Finally, selected mouse and human studies are presented which begin to corroborate the protective exposures identified in epidemiologic studies by elucidating mechanisms through which microbes can alter immune development and function. These microbially driven immune alterations demonstrate that microbial exposures in many cases could alter the risk of subsequent allergic disease and asthma. Hopefully, a better understanding of how microbes influence allergic disease will lead to safe and effective methods for reducing the prevalence of all forms of allergic disease.

      Abbreviations:

      APC (antigen presenting cell), CD (cluster of differentiation marker), FOXp3 (forked headed box protein 3), IL-6, Il-10 (interleukin number 6 or number 10), IFNγ (interferon γ), LPS (lipopolysaccharide), OTU (operational taxonomic unit), PBMC (peripheral blood mononuclear cells), qPCR (quantitative polymerase chain reaction), TNFα (tumor necrosis factor α), EPA (United States Environmental Protection Agency), Th (T helper cell), Treg (T regulatory cell), TLR (toll-like receptor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Penders J.
        • Stobberingh E.E.
        • van den Brandt P.A.
        • Thijs C.
        The role of the intestinal microbiota in the development of atopic disorders.
        Allergy. 2007; 62: 1223-1236
        • Platts-Mills T.A.
        The allergy epidemics: 1870-2010.
        J Allergy Clin Immunol. 2015; 136: 3-13
        • Akinbami L.J.
        • Simon A.E.
        • Schoendorf K.C.
        Trends in allergy prevalence among children aged 0-17 years by asthma status, United States, 2001-2013.
        J Asthma. 2016; 53: 356-362
        • Epidemiology and Statistics Unit ALA
        Trends in Asthma Morbidity and Mortality.
        American Lung Association, Washington DC2011 (Available at: http://lung.org/search-results.html?)
        • Bryant-Stephens T.
        Asthma disparities in urban environments.
        J Allergy Clin Immunol. 2009; 123: 1199-1206
        • Moonie S.A.
        • Sterling D.A.
        • Figgs L.
        • Castro M.
        Asthma status and severity affects missed school days.
        J Sch Health. 2006; 76: 18-24
        • Clarke S.A.
        • Calam R.
        The effectiveness of psychosocial interventions designed to improve health-related quality of life (HRQOL) amongst asthmatic children and their families: a systematic review.
        Qual Life Res. 2012; 21: 747-764
        • Barnett S.B.
        • Nurmagambetov T.A.
        Costs of asthma in the United States: 2002-2007.
        J Allergy Clin Immunol. 2011; 127: 145-152
        • Strachan D.P.
        Hay fever, hygiene, and household size.
        BMJ. 1989; 299: 1259-1260
        • Holt P.G.
        Postnatal maturation of immune competence during infancy and childhood.
        Pediatr Allergy Immunol. 1995; 6: 59-70
        • Schaub B.
        • Lauener R.
        • von M.E.
        The many faces of the hygiene hypothesis.
        J Allergy Clin Immunol. 2006; 117: 969-977
        • Bloomfield S.F.
        • Stanwell-Smith R.
        • Crevel R.W.
        • Pickup J.
        Too clean, or not too clean: the hygiene hypothesis and home hygiene.
        Clin Exp Allergy. 2006; 36: 402-425
        • Romagnani S.
        Coming back to a missing immune deviation as the main explanatory mechanism for the hygiene hypothesis.
        J Allergy Clin Immunol. 2007; 119: 1511-1513
        • Yazdanbakhsh M.
        • Kremsner P.G.
        • van Ree R.
        Allergy, parasites, and the hygiene hypothesis.
        Science. 2002; 296: 490-494
        • Bach J.F.
        The effect of infections on susceptibility to autoimmune and allergic diseases.
        N Engl J Med. 2002; 347: 911-920
        • Gale E.A.
        A missing link in the hygiene hypothesis?.
        Diabetologia. 2002; 45: 588-594
        • Romagnani S.
        The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both?.
        Immunology. 2004; 112: 352-363
        • Halonen M.
        • Lohman I.C.
        • Stern D.A.
        • et al.
        Th1/Th2 patterns and balance in cytokine production in the parents and infants of a large birth cohort.
        J Immunol. 2009; 182: 3285-3293
        • Walsh K.P.
        • Brady M.T.
        • Finlay C.M.
        • Boon L.
        • Mills K.H.
        Infection with a helminth parasite attenuates autoimmunity through TGF-beta-mediated suppression of Th17 and Th1 responses.
        J Immunol. 2009; 183: 1577-1586
        • Rook G.A.
        Clean living increases more than just atopic disease.
        Immunol Today. 2000; 21: 249-250
        • Bjorksten B.
        • Sepp E.
        • Julge K.
        • Voor T.
        • Mikelsaar M.
        Allergy development and the intestinal microflora during the first year of life.
        J Allergy Clin Immunol. 2001; 108: 516-520
        • Penders J.
        • Thijs C.
        • van den Brandt P.A.
        • et al.
        Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study.
        Gut. 2007; 56: 661-667
        • Kalliomaki M.
        • Kirjavainen P.
        • Eerola E.
        • Kero P.
        • Salminen S.
        • Isolauri E.
        Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing.
        J Allergy Clin Immunol. 2001; 107: 129-134
        • Sepp E.
        • Julge K.
        • Vasar M.
        • Naaber P.
        • Bjorksten B.
        • Mikelsaar M.
        Intestinal microflora of Estonian and Swedish infants.
        Acta Paediatr. 1997; 86: 956-961
        • Bureau UC
        U.S. Households by Size, 1790–2006.
        2007 (Available at: http://www.infoplease.com/ipa/A0884238.html)
        • Bureau UC
        Historical Census of Housing Tables.
        Plumbing Facilities, 2004 (Available at: https://www.census.gov/hhes/www/housing/census/historic/plumbing.html)
      1. Available at: https://www.epa.gov/sdwa/title-xiv-public-health-service-act-safety-public-water-systems-safe-drinking-water-act. Accessed May 11, 2016.

      2. Available at: https://louise.house.gov/media-center/press-releases/congresswoman-louise-slaughter-reacts-proposed-rule-fda-antibiotic-use. Accessed May 11, 2016.

        • Crane J.
        • O'Donnell T.V.
        • Prior I.A.
        • Waite D.A.
        The relationships between atopy, bronchial hyperresponsiveness, and a family history of asthma: a cross-sectional study of migrant Tokelauan children in New Zealand.
        J Allergy Clin Immunol. 1989; 84: 768-772
        • von Mutius E.
        • Fritzsch C.
        • Weiland S.K.
        • Rolla G.
        • Magnussen H.
        Prevalence of asthma and allergic disorders among children in United Germany.
        BMJ. 1992; 305: 1395-1399
        • Bjorksten B.
        Risk factors in early childhood for the development of atopic diseases.
        Allergy. 1994; 49: 400-407
        • Seiskari T.
        • Kondrashova A.
        • Viskari H.
        • et al.
        Allergic sensitization and microbial load–a comparison between Finland and Russian Karelia.
        Clin Exp Immunol. 2007; 148: 47-52
        • von Hertzen L.
        • Laatikainen T.
        • Pitkanen T.
        • et al.
        Microbial content of drinking water in Finnish and Russian Karelia–implications for atopy prevalence.
        Allergy. 2007; 62: 288-292
        • Braun-Fahrlander C.
        • von Mutius E.
        Can farm milk consumption prevent allergic diseases?.
        Clin Exp Allergy. 2011; 41: 29-35
        • Lisciandro J.G.
        • Prescott S.L.
        • Nadal-Sims M.G.
        • et al.
        Neonatal antigen-presenting cells are functionally more quiescent in children born under traditional compared with modern environmental conditions.
        J Allergy Clin Immunol. 2012; 130: 1167-1174.e10
        • Adlerberth I.
        Factors influencing the establishment of the intestinal microbiota in infancy.
        Nestle Nutr Workshop Ser Pediatr Program. 2008; 62 (discussion 29–33): 13-29
        • Oddy W.H.
        • Holt P.G.
        • Sly P.D.
        • et al.
        Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study.
        BMJ. 1999; 319: 815-819
        • Kalliomaki M.
        • Salminen S.
        • Poussa T.
        • Arvilommi H.
        • Isolauri E.
        Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial.
        Lancet. 2003; 361: 1869-1871
        • Bisgaard H.
        • Li N.
        • Bonnelykke K.
        • et al.
        Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age.
        J Allergy Clin Immunol. 2011; 128: 646-652.e1–5
        • Arrieta M.C.
        • Stiemsma L.T.
        • Dimitriu P.A.
        • et al.
        Early infancy microbial and metabolic alterations affect risk of childhood asthma.
        Sci Transl Med. 2015; 7: 307ra152
        • Korpela K.
        • Salonen A.
        • Virta L.J.
        • et al.
        Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children.
        Nat Commun. 2016; 7: 10410
        • McLoughlin R.M.
        • Mills K.H.
        Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma.
        J Allergy Clin Immunol. 2011; 127: 1097-1107
        • Bridgman S.L.
        • Kozyrskyj A.L.
        • Scott J.A.
        • Becker A.B.
        • Azad M.B.
        Gut microbiota and allergic disease in children.
        Ann Allergy Asthma Immunol. 2016; 116: 99-105
        • Prince B.T.
        • Mandel M.J.
        • Nadeau K.
        • Singh A.M.
        Gut microbiome and the development of food allergy and allergic disease.
        Pediatr Clin North Am. 2015; 62: 1479-1492
        • Simonyte Sjödin K.
        • Vidman L.
        • Rydén P.
        • West C.E.
        Emerging evidence of the role of gut microbiota in the development of allergic diseases.
        Curr Opin Allergy Clin Immunol. 2016; 16: 390-395
        • Karimi K.
        • Inman M.D.
        • Bienenstock J.
        • Forsythe P.
        Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice.
        Am J Respir Crit Care Med. 2009; 179: 186-193
        • West C.E.
        • Rydén P.
        • Lundin D.
        • Engstrand L.
        • Tulic M.K.
        • Prescott S.L.
        Gut microbiome and innate immune response patterns in IgE-associated eczema.
        Clin Exp Allergy. 2015; 45: 1419-1429
        • Hevia A.
        • Milani C.
        • López P.
        • et al.
        Allergic patients with long-term sthma display low levels of Bifidobacterium adolescentis.
        PLoS One. 2016; 11: e0147809
        • Hua X.
        • Goedert J.J.
        • Pu A.
        • Yu G.
        • Shi J.
        Allergy associations with the adult fecal microbiota: analysis of the American Gut Project.
        EBioMedicine. 2016; 3: 172-179
        • Palmer C.
        • Bik E.M.
        • DiGiulio D.B.
        • Relman D.A.
        • Brown P.O.
        Development of the human infant intestinal microbiota.
        PLoS Biol. 2007; 5: e177
        • Penders J.
        • Thijs C.
        • Vink C.
        • et al.
        Factors influencing the composition of the intestinal microbiota in early infancy.
        Pediatrics. 2006; 118: 511-521
        • Fall T.
        • Lundholm C.
        • Örtqvist A.K.
        • et al.
        Early exposure to dogs and farm animals and the risk of childhood asthma.
        JAMA Pediatr. 2015; 169: e153219
        • Fujimura K.E.
        • Johnson C.C.
        • Ownby D.R.
        • et al.
        Man's best friend? The effect of pet ownership on house dust microbial communities.
        J Allergy Clin Immunol. 2010; 126: 410-412
        • Kettleson E.M.
        • Adhikari A.
        • Vesper S.
        • Coombs K.
        • Indugula R.
        • Reponen T.
        Key determinants of the fungal and bacterial microbiomes in homes.
        Environ Res. 2015; 138: 130-135
        • Maier R.M.
        • Palmer M.W.
        • Andersen G.L.
        • et al.
        Environmental determinants of and impact on childhood asthma by the bacterial community in household dust.
        Appl Environ Microbiol. 2010; 76: 2663-2667
        • Dunn R.R.
        • Fierer N.
        • Henley J.B.
        • Leff J.W.
        • Menninger H.L.
        Home life: factors structuring the bacterial diversity found within and between homes.
        PLoS One. 2013; 8: e64133
        • Konya T.
        • Koster B.
        • Maughan H.
        • et al.
        Associations between bacterial communities of house dust and infant gut.
        Environ Res. 2014; 131: 25-30
        • Azad M.B.
        • Konya T.
        • Maughan H.
        • et al.
        Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity.
        Allergy Asthma Clin Immunol. 2013; 9: 15
        • Nermes M.
        • Niinivirta K.
        • Nylund L.
        • et al.
        Perinatal pet exposure, faecal microbiota, and wheezy bronchitis: is there a connection?.
        ISRN Allergy. 2013; 2013: 827934
        • Nermes M.
        • Endo A.
        • Aarnio J.
        • Salminen S.
        • Isolauri E.
        Furry pets modulate gut microbiota composition in infants at risk for allergic disease.
        J Allergy Clin Immunol. 2015; 136: 1688-1690.e1
        • Fujimura K.E.
        • Demoor T.
        • Rauch M.
        • et al.
        House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.
        Proc Natl Acad Sci U S A. 2014; 111: 805-810
        • von Hertzen L.
        • Haahtela T.
        Disconnection of man and the soil: reason for the asthma and atopy epidemic?.
        J Allergy Clin Immunol. 2006; 117: 334-344
        • Ege M.J.
        • Mayer M.
        • Normand A.C.
        • et al.
        Exposure to environmental microorganisms and childhood asthma.
        N Engl J Med. 2011; 364: 701-709
        • Dominguez-Bello M.G.
        • Costello E.K.
        • Contreras M.
        • et al.
        Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.
        Proc Natl Acad Sci U S A. 2010; 107: 11971-11975
        • Xue J.
        • Zartarian V.
        • Moya J.
        • et al.
        A meta-analysis of children's hand-to-mouth frequency data for estimating nondietary ingestion exposure.
        Risk Anal. 2007; 27: 411-420
        • Agency UEP
        Child-Specific Exposure Factors Handbook (Final Report) 2008.
        2008 (Available at: https://ofmpub.epa.gov/eims/eimscomm.getfile?pdownloadid=458972)
        • Lanphear B.P.
        • Matte T.D.
        • Rogers J.
        • et al.
        The contribution of lead-contaminated house dust and residential soil to children's blood lead levels. A pooled analysis of 12 epidemiologic studies.
        Environ Res. 1998; 79: 51-68
        • Ko S.
        • Schaefer P.D.
        • Vicario C.M.
        • Binns H.J.
        Relationships of video assessments of touching and mouthing behaviors during outdoor play in urban residential yards to parental perceptions of child behaviors and blood lead levels.
        J Expo Sci Environ Epidemiol. 2007; 17: 47-57
        • Fujimura K.E.
        • Slusher N.A.
        • Cabana M.D.
        • Lynch S.V.
        Role of the gut microbiota in defining human health.
        Expert Rev Anti Infect Ther. 2010; 8: 435-454
        • Cash H.L.
        • Whitham C.V.
        • Behrendt C.L.
        • Hooper L.V.
        Symbiotic bacteria direct expression of an intestinal bactericidal lectin.
        Science. 2006; 313: 1126-1130
        • Rakoff-Nahoum S.
        • Medzhitov R.
        Innate immune recognition of the indigenous microbial flora.
        Mucosal Immunol. 2008; 1: S10-S14
        • Chung H.
        • Kasper D.L.
        Microbiota-stimulated immune mechanisms to maintain gut homeostasis.
        Curr Opin Immunol. 2010; 22: 455-460
        • Salzman N.H.
        Microbiota-immune system interaction: an uneasy alliance.
        Curr Opin Microbiol. 2011; 14: 99-105
        • Kaplan J.L.
        • Shi H.N.
        • Walker W.A.
        The role of microbes in developmental immunologic programming.
        Pediatr Res. 2011; 69: 465-472
        • Copperstock M.
        Human-intestinal Microflora in Health and Disease.
        Academic Press, New York City1983
        • Ley R.E.
        • Turnbaugh P.J.
        • Klein S.
        • Gordon J.I.
        Microbial ecology: human gut microbes associated with obesity.
        Nature. 2006; 444: 1022-1023
        • Ley R.E.
        • Backhed F.
        • Turnbaugh P.
        • Lozupone C.A.
        • Knight R.D.
        • Gordon J.I.
        Obesity alters gut microbial ecology.
        Proc Natl Acad Sci U S A. 2005; 102: 11070-11075
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Backhed F.
        • Roswall J.
        • Peng Y.
        • et al.
        Dynamics and stabilization of the human gut microbiome during the first year of life.
        Cell Host Microbe. 2015; 17: 690-703
        • Bisgaard H.
        • Hermansen M.N.
        • Buchvald F.
        • et al.
        Childhood asthma after bacterial colonization of the airway in neonates.
        N Engl J Med. 2007; 357: 1487-1495
        • Teo S.M.
        • Mok D.
        • Pham K.
        • et al.
        The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development.
        Cell Host Microbe. 2015; 17: 704-715
        • Martin C.
        • Burgel P.R.
        • Lepage P.
        • et al.
        Host-microbe interactions in distal airways: relevance to chronic airway diseases.
        Eur Respir Rev. 2015; 24: 78-91
        • Zhang Q.
        • Cox M.
        • Liang Z.
        • et al.
        Airway microbiota in severe asthma and relationship to asthma severity and phenotypes.
        PLoS One. 2016; 11: e0152724
        • Denner D.R.
        • Sangwan N.
        • Becker J.B.
        • et al.
        Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways.
        J Allergy Clin Immunol. 2016; 137: 1398-1405.e3
        • Huang Y.J.
        • Nariya S.
        • Harris J.M.
        • et al.
        The airway microbiome in patients with severe asthma: associations with disease features and severity.
        J Allergy Clin Immunol. 2015; 136: 874-884
        • Stokholm J.
        • Thorsen J.
        • Chawes B.L.
        • et al.
        Cesarean section changes neonatal gut colonization.
        J Allergy Clin Immunol. 2016; ([Epub ahead of print])
        • Bush R.K.
        • Portnoy J.M.
        • Saxon A.
        • Terr A.I.
        • Wood R.A.
        The medical effects of mold exposure.
        J Allergy Clin Immunol. 2006; 117: 326-333
        • Portnoy J.M.
        • Barnes C.S.
        • Kennedy K.
        Importance of mold allergy in asthma.
        Curr Allergy Asthma Rep. 2008; 8: 71-78
        • Kauffman H.F.
        • van der Heide S.
        Exposure, sensitization, and mechanisms of fungus-induced asthma.
        Curr Allergy Asthma Rep. 2003; 3: 430-437
        • Jackson D.J.
        • Gern J.E.
        • Lemanske R.F.
        The contributions of allergic sensitization and respiratory pathogens to asthma inception.
        J Allergy Clin Immunol. 2016; 137: 659-665
        • Mshvildadze M.
        • Neu J.
        • Shuster J.
        • Theriaque D.
        • Li N.
        • Mai V.
        Intestinal microbial ecology in premature infants assessed with non-culture-based techniques.
        J Pediatr. 2010; 156: 20-25
        • Collado M.C.
        • Rautava S.
        • Aakko J.
        • Isolauri E.
        • Salminen S.
        Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid.
        Sci Rep. 2016; 6: 23129
        • Mor G.
        • Kwon J.Y.
        Trophoblast-microbiome interaction: a new paradigm on immune regulation.
        Am J Obstet Gynecol. 2015; 213: S131-S137
        • Gomez de Aguero M.
        • Ganal-Vonarburg S.C.
        • Fuhrer T.
        • et al.
        The maternal microbiota drives early postnatal innate immune development.
        Science. 2016; 351: 1296-1302
        • Aagaard K.
        • Ma J.
        • Antony K.M.
        • Ganu R.
        • Petrosino J.
        • Versalovic J.
        The placenta harbors a unique microbiome.
        Sci Transl Med. 2014; 6: 237ra65
        • Antony K.M.
        • Ma J.
        • Mitchell K.B.
        • Racusin D.A.
        • Versalovic J.
        • Aagaard K.
        The preterm placental microbiome varies in association with excess maternal gestational weight gain.
        Am J Obstet Gynecol. 2015; 212: 653.e1-653.e16
        • Ma J.
        • Prince A.L.
        • Bader D.
        • et al.
        High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model.
        Nat Commun. 2014; 5: 3889
        • Jakobsson H.E.
        • Abrahamsson T.R.
        • Jenmalm M.C.
        • et al.
        Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section.
        Gut. 2014; 63: 559-566
        • Kristensen K.
        • Henriksen L.
        Cesarean section and disease associated with immune function.
        J Allergy Clin Immunol. 2016; 137: 587-590
        • Madan J.C.
        • Hoen A.G.
        • Lundgren S.N.
        • et al.
        Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants.
        JAMA Pediatr. 2016; 170: 212-219
        • Sevelsted A.
        • Stokholm J.
        • Bisgaard H.
        Risk of asthma from cesarean delivery depends on membrane rupture.
        J Pediatr. 2016; 171: 38-42.e4
        • Black M.
        • Bhattacharya S.
        • Philip S.
        • Norman J.E.
        • McLernon D.J.
        Planned repeat cesarean section at term and adverse childhood health outcomes: a record-linkage study.
        PLoS Med. 2016; 13: e1001973
        • Almqvist C.
        • Cnattingius S.
        • Lichtenstein P.
        • Lundholm C.
        The impact of birth mode of delivery on childhood asthma and allergic diseases–a sibling study.
        Clin Exp Allergy. 2012; 42: 1369-1376
        • Mueller N.T.
        • Shin H.
        • Pizoni A.
        • et al.
        Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome.
        Sci Rep. 2016; 6: 23133
        • Scharschmidt T.C.
        • Vasquez K.S.
        • Truong H.A.
        • et al.
        A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes.
        Immunity. 2015; 43: 1011-1021
        • Barfod K.K.
        • Roggenbuck M.
        • Hansen L.H.
        • et al.
        The murine lung microbiome in relation to the intestinal and vaginal bacterial communities.
        BMC Microbiol. 2013; 13: 303
        • Bentley J.P.
        • Simpson J.M.
        • Bowen J.R.
        • Morris J.M.
        • Roberts C.L.
        • Nassar N.
        Gestational age, mode of birth and breastmilk feeding all influence acute early childhood gastroenteritis: a record-linkage cohort study.
        BMC Pediatr. 2016; 16: 55
        • Cardwell C.R.
        • Stene L.C.
        • Joner G.
        • et al.
        Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies.
        Diabetologia. 2008; 51: 726-735
        • Paun A.
        • Yau C.
        • Danska J.S.
        Immune recognition and response to the intestinal microbiome in type 1 diabetes.
        J Autoimmun. 2016; 71: 10-18
        • Jeurink P.V.
        • van Bergenhenegouwen J.
        • Jimenez E.
        • et al.
        Human milk: a source of more life than we imagine.
        Benef Microbes. 2013; 4: 17-30
        • Urbaniak C.
        • Angelini M.
        • Gloor G.B.
        • Reid G.
        Human milk microbiota profiles in relation to birthing method, gestation and infant gender.
        Microbiome. 2016; 4: 1
        • Charbonneau M.R.
        • O'Donnell D.
        • Blanton L.V.
        • et al.
        Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition.
        Cell. 2016; 164: 859-871
        • Gomez-Gallego C.
        • Garcia-Mantrana I.
        • Salminen S.
        • Collado M.C.
        The human milk microbiome and factors influencing its composition and activity.
        Semin Fetal Neonatal Med. 2016; ([Epub ahead of print])
        • Vangay P.
        • Ward T.
        • Gerber J.S.
        • Knights D.
        Antibiotics, pediatric dysbiosis, and disease.
        Cell Host Microbe. 2015; 17: 553-564
        • Jeurink P.V.
        • van Esch B.C.
        • Rijnierse A.
        • Garssen J.
        • Knippels L.M.
        Mechanisms underlying immune effects of dietary oligosaccharides.
        Am J Clin Nutr. 2013; 98: 572S-577S
        • Cabrera-Rubio R.
        • Mira-Pascual L.
        • Mira A.
        • Collado M.C.
        Impact of mode of delivery on the milk microbiota composition of healthy women.
        J Dev Orig Health Dis. 2016; 7: 54-60
        • Corvaglia L.
        • Tonti G.
        • Martini S.
        • et al.
        Influence of intrapartum antibiotic prophylaxis for group B streptococcus on gut microbiota in the first month of life.
        J Pediatr Gastroenterol Nutr. 2016; 62: 304-308
        • Azad M.B.
        • Konya T.
        • Persaud R.R.
        • et al.
        Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study.
        BJOG. 2016; 123: 983-993
        • Cassidy-Bushrow A.E.
        • Sitarik A.
        • Levin A.M.
        • et al.
        Maternal group B Streptococcus and the infant gut microbiota.
        J Dev Orig Health Dis. 2016; 7: 45-53
        • Vuillermin P.J.
        • Ponsonby A.L.
        • Saffery R.
        • et al.
        Microbial exposure, interferon gamma gene demethylation in naive T-cells, and the risk of allergic disease.
        Allergy. 2009; 64: 348-353
        • Horner A.A.
        Toll-like receptor ligands and atopy: a coin with at least two sides.
        J Allergy Clin Immunol. 2006; 117: 1133-1140
        • Krumbiegel D.
        • Zepp F.
        • Meyer C.U.
        Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells.
        Hum Immunol. 2007; 68: 813-822
        • Strickland D.H.
        • Judd S.
        • Thomas J.A.
        • Larcombe A.N.
        • Sly P.D.
        • Holt P.G.
        Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.
        Mucosal Immunol. 2011; 4: 43-52
        • Liu A.H.
        Innate microbial sensors and their relevance to allergy.
        J Allergy Clin Immunol. 2008; 122: 846-858
        • Molloy J.
        • Allen K.
        • Collier F.
        • Tang M.L.
        • Ward A.C.
        • Vuillermin P.
        The potential link between gut microbiota and IgE-mediated food allergy in early life.
        Int J Environ Res Public Health. 2013; 10: 7235-7256
        • Morrison D.J.
        • Preston T.
        Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.
        Gut Microbes. 2016; 7: 189-200
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Mathewson N.D.
        • Jenq R.
        • Mathew A.V.
        • et al.
        Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease.
        Nat Immunol. 2016; 17: 505-513
        • Round J.L.
        • Mazmanian S.K.
        Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.
        Proc Natl Acad Sci U S A. 2010; 107: 12204-12209
        • Sjogren Y.M.
        • Tomicic S.
        • Lundberg A.
        • et al.
        Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses.
        Clin Exp Allergy. 2009; 39: 1842-1851