Advertisement

Gut microbiome and liver disease

      Gut microbiota changes are important in determining the occurrence and progression of chronic liver disease related to alcohol, nonalcoholic fatty liver disease, and cirrhosis. Specifically, the systemic inflammation, endotoxemia, and the vasodilation that leads to complications such as spontaneous bacterial peritonitis and hepatic encephalopathy could be related to the gut milieu. Given the poor prognosis of these events, their prevention and early management are essential. Microbiota may be an essential component of the gut milieu that can impact these clinical events, and the study of their composition and function in a culture-independent manner could help understand the prognosis. Recent human and animal studies have shown that the relative abundance and the functional changes of microbiota in the stool, colonic mucosa, and saliva have varying consequences on the presence and prognosis of chronic liver disease and cirrhosis. The impact of therapies on the microbiota is slowly being understood and will likely lead to a more targeted approach to gut microbiota modification in chronic liver disease and cirrhosis.

      Abbreviations:

      NAFLD (nonalcoholic fatty liver disease), ALD (alcoholic liver disease), TLRs (Toll-like receptors), NLRs (Nod-like receptors), NASH (nonalcoholic steatohepatitis), BT (bacterial translocation), HE (hepatic encephalopathy), ACLF (acute on chronic liver failure), TNF-α (tumor necrosis factor alpha), RELMβ (resistin-like molecule β), MCD (methionine-choline deficient), NCD (normal chow diet), LPS (lipopolysaccharide), IM (intestinal microbiota), SCFA (short chain fatty acids), LCFA (long chain fatty acids), sAH (severe alcoholic hepatitis), noAH (no alcoholic hepatitis), SBP (spontaneous bacterial peritonitis), NO (nitric oxide), MELD (model for end stage liver disease), CDR (cirrhosis dysbiosis ratio), FXR (Farnesoid X receptor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Machado M.V.
        • Cortez-Pinto H.
        Diet, microbiota, obesity, and NAFLD: a dangerous quartet.
        Int J Mol Sci. 2016; 17: 481
        • Bays H.
        Adiposopathy, “sick fat,” Ockham's razor, and resolution of the obesity paradox.
        Curr Atheroscler Rep. 2014; 16: 409
        • Byrne C.D.
        • Targher G.
        NAFLD: a multisystem disease.
        J Hepatol. 2015; 62: S47-S64
        • Armstrong M.J.
        • Adams L.A.
        • Canbay A.
        • Syn W.-K.
        Extrahepatic complications of nonalcoholic fatty liver disease.
        Hepatology. 2014; 59: 1174-1197
        • Browning J.D.
        • Szczepaniak L.S.
        • Dobbins R.
        • et al.
        Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity.
        Hepatology. 2004; 40: 1387-1395
        • Vassallo G.
        • Mirijello A.
        • Ferrulli A.
        • et al.
        Review article: alcohol and gut microbiota–the possible role of gut microbiota modulation in the treatment of alcoholic liver disease.
        Aliment Pharmacol Ther. 2015; 41: 917-927
        • Chiang D.J.
        • McCullough A.J.
        The impact of obesity and metabolic syndrome on alcoholic liver disease.
        Clin Liver Dis. 2014; 18: 157-163
        • Naveau S.
        • Giraud V.
        • Borotto E.
        • Aubert A.
        • Capron F.
        • Chaput J.C.
        Excess weight risk factor for alcoholic liver disease.
        Hepatol Baltim Md. 1997; 25: 108-111
        • Iturriaga H.
        • Bunout D.
        • Hirsch S.
        • Ugarte G.
        Overweight as a risk factor or a predictive sign of histological liver damage in alcoholics.
        Am J Clin Nutr. 1988; 47: 235-238
        • Anthony P.P.
        • Ishak K.G.
        • Nayak N.C.
        • Poulsen H.E.
        • Scheuer P.J.
        • Sobin L.H.
        The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization.
        J Clin Pathol. 1978; 31: 395-414
        • Garcia-Tsao G.
        • Wiest R.
        Gut microflora in the pathogenesis of the complications of cirrhosis.
        Best Pract Res Clin Gastroenterol. 2004; 18: 353-372
        • Neish A.S.
        Microbes in gastrointestinal health and disease.
        Gastroenterology. 2009; 136: 65-80
        • McFall-Ngai M.
        Adaptive immunity: care for the community.
        Nature. 2007; 445: 153
        • Dethlefsen L.
        • McFall-Ngai M.
        • Relman D.A.
        An ecological and evolutionary perspective on human–microbe mutualism and disease.
        Nature. 2007; 449: 811-818
        • Flint H.J.
        • Duncan S.H.
        • Scott K.P.
        • Louis P.
        Interactions and competition within the microbial community of the human colon: links between diet and health.
        Environ Microbiol. 2007; 9: 1101-1111
        • Hooper L.V.
        • Gordon J.I.
        Commensal host-bacterial relationships in the gut.
        Science. 2001; 292: 1115-1118
        • Hooper L.V.
        • Wong M.H.
        • Thelin A.
        • Hansson L.
        • Falk P.G.
        • Gordon J.I.
        Molecular analysis of commensal host-microbial relationships in the intestine.
        Science. 2001; 291: 881-884
        • Akira S.
        • Uematsu S.
        • Takeuchi O.
        Pathogen recognition and innate immunity.
        Cell. 2006; 124: 783-801
        • Meylan E.
        • Tschopp J.
        • Karin M.
        Intracellular pattern recognition receptors in the host response.
        Nature. 2006; 442: 39-44
        • Frank D.N.
        • Zhu W.
        • Sartor R.B.
        • Li E.
        Investigating the biological and clinical significance of human dysbiosis.
        Trends Microbiol. 2011; 19: 427-434
        • Corr S.C.
        • Li Y.
        • Riedel C.U.
        • O'Toole P.W.
        • Hill C.
        • Gahan C.G.M.
        Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118.
        Proc Natl Acad Sci. 2007; 104: 7617-7621
        • Kaper J.B.
        • Sperandio V.
        Bacterial cell-to-cell signaling in the gastrointestinal tract.
        Infect Immun. 2005; 73: 3197-3209
        • Stecher B.
        • Hardt W.-D.
        The role of microbiota in infectious disease.
        Trends Microbiol. 2008; 16: 107-114
        • Vollaard E.J.
        • Clasener H.A.
        Colonization resistance.
        Antimicrob Agents Chemother. 1994; 38: 409-414
        • Turnbaugh P.J.
        • Hamady M.
        • Yatsunenko T.
        • et al.
        A core gut microbiome in obese and lean twins.
        Nature. 2009; 457: 480-484
        • Murphy E.F.
        • Cotter P.D.
        • Hogan A.
        • et al.
        Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity.
        Gut. 2013; 62: 220-226
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012; 143: 913-916.e7
        • Larsen N.
        • Vogensen F.K.
        • van den Berg F.W.
        • et al.
        Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.
        PLoS One. 2010; 5: e9085
        • Qin J.
        • Li Y.
        • Cai Z.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Boursier J.
        • Diehl A.M.
        Implication of gut microbiota in nonalcoholic fatty liver disease.
        PLoS Pathog. 2015; 11: e1004559
        • Zhu L.
        • Baker S.S.
        • Gill C.
        • et al.
        Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH.
        Hepatology. 2013; 57: 601-609
        • Llopis M.
        • Cassard A.M.
        • Wrzosek L.
        • et al.
        Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease.
        Gut. 2016; 65: 830-839
        • Wiest R.
        • Garcia-Tsao G.
        Bacterial translocation (BT) in cirrhosis.
        Hepatology. 2005; 41: 422-433
        • Nicholson J.K.
        • Holmes E.
        • Kinross J.
        • et al.
        Host-gut microbiota metabolic interactions.
        Science. 2012; 336: 1262-1267
        • Clements W.D.
        • Parks R.
        • Erwin P.
        • Halliday M.I.
        • Barr J.
        • Rowlands B.J.
        Role of the gut in the pathophysiology of extrahepatic biliary obstruction.
        Gut. 1996; 39: 587-593
        • Mm S.
        • Km S.
        • Rd S.
        • Ea D.
        Absence of intestinal bile promotes bacterial translocation.
        Am Surg. 1992; 58: 305-310
        • Garcia-Tsao G.
        • Lee F.-Y.
        • Barden G.E.
        • Cartun R.
        • Brian West A.
        Bacterial translocation to mesenteric lymph nodes is increased in cirrhotic rats with ascites.
        Gastroenterology. 1995; 108: 1835-1841
        • Marteau P.
        • Pochart P.
        • Doré J.
        • Béra-Maillet C.
        • Bernalier A.
        • Corthier G.
        Comparative study of bacterial groups within the human cecal and fecal microbiota.
        Appl Environ Microbiol. 2001; 67: 4939-4942
        • Rimola A.
        • Bory F.
        • Teres J.
        • Perez-Ayuso R.M.
        • Arroyo V.
        • Rodes J.
        Oral, nonabsorbable antibiotics prevent infection in cirrhotics with gastrointestinal hemorrhage.
        Hepatology. 1985; 5: 463-467
        • Grangie J.-D.
        • Roulot D.
        • Pelletier G.
        • et al.
        Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites: a double-blind randomized trial.
        J Hepatol. 1998; 29: 430-436
        • Ginés P.
        • Rimola A.
        • Planas R.
        • et al.
        Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial.
        Hepatology. 1990; 12: 716-724
        • Gans J.
        • Wolinsky M.
        • Dunbar J.
        Computational improvements reveal great bacterial diversity and high metal toxicity in soil.
        Science. 2005; 309: 1387-1390
        • Nelson T.A.
        • Holmes S.
        • Alekseyenko A.V.
        • et al.
        PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity.
        Neurogastroenterol Motil. 2011; 23: 169-177
        • Bent S.J.
        • Pierson J.D.
        • Forney L.J.
        Measuring species richness based on microbial community fingerprints: the emperor has no clothes.
        Appl Environ Microbiol. 2007; 73: 2399-2401
        • Haas B.J.
        • Gevers D.
        • Earl A.M.
        • et al.
        Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.
        Genome Res. 2011; 21: 494-504
        • Lozupone C.
        • Lladser M.E.
        • Knights D.
        • Stombaugh J.
        • Knight R.
        UniFrac: an effective distance metric for microbial community comparison.
        ISME J Multidiscip J Microb Ecol. 2011; 5: 169-172
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • et al.
        Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl Environ Microbiol. 2009; 75: 7537-7541
        • Dumas M.-E.
        • Barton R.H.
        • Toye A.
        • et al.
        Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice.
        Proc Natl Acad Sci. 2006; 103: 12511-12516
        • Langille M.G.I.
        • Zaneveld J.
        • Caporaso J.G.
        • et al.
        Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
        Nat Biotechnol. 2013; 31: 814-821
        • Bajaj J.S.
        • Cox I.J.
        • Betrapally N.S.
        • et al.
        Systems biology analysis of omeprazole therapy in cirrhosis demonstrates significant shifts in gut microbiota composition and function.
        Am J Physiol Gastrointest Liver Physiol. 2014; 307: G951-G957
        • Bajaj J.S.
        • Betrapally N.S.
        • Hylemon P.B.
        • et al.
        Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy.
        Hepatology. 2015; 62: 1260-1271
        • Marchesini G.
        • Brizi M.
        • Bianchi G.
        • et al.
        Nonalcoholic fatty liver disease a feature of the metabolic syndrome.
        Diabetes. 2001; 50: 1844-1850
        • Younossi Z.M.
        • Stepanova M.
        • Afendy M.
        • et al.
        Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008.
        Clin Gastroenterol Hepatol. 2011; 9: 524-530.e1
        • Ong J.P.
        • Younossi Z.M.
        Epidemiology and natural history of NAFLD and NASH.
        Clin Liver Dis. 2007; 11: 1-16
        • Zeng H.
        • Liu J.
        • Jackson M.I.
        • Zhao F.-Q.
        • Yan L.
        • Combs G.F.
        Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.
        J Nutr. 2013; 143: 627-631
        • Roy T.L.
        • Llopis M.
        • Lepage P.
        • et al.
        Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice.
        Gut. 2013; 62: 1787-1794
        • Henao-Mejia J.
        • Elinav E.
        • Jin C.
        • et al.
        Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.
        Nature. 2012; 482: 179-185
        • Okubo H.
        • Kushiyama A.
        • Sakoda H.
        • et al.
        Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice.
        Sci Rep. 2016; 6: 20157
        • Okubo H.
        • Sakoda H.
        • Kushiyama A.
        • et al.
        Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model.
        Am J Physiol Gastrointest Liver Physiol. 2013; 305: G911-G918
        • Matsushita N.
        • Osaka T.
        • Haruta I.
        • et al.
        Effect of lipopolysaccharide on the progression of non-alcoholic fatty liver disease in high caloric diet-fed mice.
        Scand J Immunol. 2016; 83: 109-118
        • Spencer M.D.
        • Hamp T.J.
        • Reid R.W.
        • Fischer L.M.
        • Zeisel S.H.
        • Fodor A.A.
        Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency.
        Gastroenterology. 2011; 140: 976-986
        • Michail S.
        • Lin M.
        • Frey M.R.
        • et al.
        Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease.
        FEMS Microbiol Ecol. 2015; 91: 1-9
        • Boursier J.
        • Mueller O.
        • Barret M.
        • et al.
        The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota.
        Hepatology. 2016; 63: 764-775
        • Wong V.W.-S.
        • Tse C.-H.
        • Lam T.T.-Y.
        • et al.
        Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study.
        PLoS One. 2013; 8: e62885
        • Mouzaki M.
        • Comelli E.M.
        • Arendt B.M.
        • et al.
        Intestinal microbiota in patients with nonalcoholic fatty liver disease.
        Hepatology. 2013; 58: 120-127
        • Raman M.
        • Ahmed I.
        • Gillevet P.M.
        • et al.
        Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease.
        Clin Gastroenterol Hepatol. 2013; 11: 868-875.e3
        • Del Chierico F.
        • Nobili V.
        • Vernocchi P.
        • et al.
        Gut microbiota profiling of pediatric NAFLD and obese patients unveiled by an integrated meta-omics based approach.
        Hepatology. 2016; (http://dx.doi.org/10.1002/hep.28572 [Epub ahead of print])
        • Schnabl B.
        • Brenner D.A.
        Interactions between the intestinal microbiome and liver diseases.
        Gastroenterology. 2014; 146: 1513-1524
        • Szabo G.
        • Bala S.
        Alcoholic liver disease and the gut-liver axis.
        World J Gastroenterol. 2010; 16: 1321-1329
        • Parlesak A.
        • Schäfer C.
        • Schütz T.
        • Bode J.C.
        • Bode C.
        Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease.
        J Hepatol. 2000; 32: 742-747
        • Bajaj J.S.
        • Heuman D.M.
        • Hylemon P.B.
        • et al.
        Altered profile of human gut microbiome is associated with cirrhosis and its complications.
        J Hepatol. 2014; 60: 940-947
        • Chen P.
        • Torralba M.
        • Tan J.
        • et al.
        Supplementation of saturated long-chain fatty acids maintains entestinal Eubiosis and reduces ethanol-induced liver injury in mice.
        Gastroenterology. 2015; 148: 203-214.e16
        • Hartmann P.
        • Chen P.
        • Wang H.J.
        • et al.
        Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice.
        Hepatology. 2013; 58: 108-119
        • Devkota S.
        • Wang Y.
        • Musch M.W.
        • et al.
        Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice.
        Nature. 2012; 487: 104-108
        • Tuovinen E.
        • Keto J.
        • Nikkilä J.
        • Mättö J.
        • Lähteenmäki K.
        Cytokine response of human mononuclear cells induced by intestinal clostridium species.
        Anaerobe. 2013; 19: 70-76
        • Kirpich I.A.
        • Petrosino J.
        • Ajami N.
        • et al.
        Saturated and unsaturated dietary fats differentially modulate ethanol-induced changes in gut microbiome and metabolome in a mouse model of alcoholic liver disease.
        Am J Pathol. 2016; 186: 765-776
        • Leclercq S.
        • Matamoros S.
        • Cani P.D.
        • et al.
        Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity.
        Proc Natl Acad Sci. 2014; 111: E4485-E4493
        • Mutlu E.A.
        • Gillevet P.M.
        • Rangwala H.
        • et al.
        Colonic microbiome is altered in alcoholism.
        Am J Physiol Gastrointest Liver Physiol. 2012; 302: G966-G978
        • de Timary P.
        • Leclercq S.
        • Stärkel P.
        • Delzenne N.
        A dysbiotic subpopulation of alcohol-dependent subjects.
        Gut Microbes. 2015; 6: 388-391
        • Merli M.
        • Lucidi C.
        • Giannelli V.
        • et al.
        Cirrhotic patients are at risk for health care–associated bacterial infections.
        Clin Gastroenterol Hepatol. 2010; 8: 979-985.e1
        • Quigley E.M.M.
        • Stanton C.
        • Murphy E.F.
        The gut microbiota and the liver. Pathophysiological and clinical implications.
        J Hepatol. 2013; 58: 1020-1027
        • Wiest R.
        • Krag A.
        • Gerbes A.
        Spontaneous bacterial peritonitis: recent guidelines and beyond.
        Gut. 2012; 61: 297-310
        • Arvaniti V.
        • D'Amico G.
        • Fede G.
        • et al.
        Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis.
        Gastroenterology. 2010; 139: 1246-1256.e5
        • Bajaj J.S.
        • O'Leary J.G.
        • Reddy K.R.
        • et al.
        Second infections independently increase mortality in hospitalized patients with cirrhosis: the North American consortium for the study of end-stage liver disease (NACSELD) experience.
        Hepatology. 2012; 56: 2328-2335
        • Moreau R.
        • Jalan R.
        • Gines P.
        • et al.
        Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis.
        Gastroenterology. 2013; 144: 1426-1437.e9
        • Christou L.
        • Pappas G.
        • Falagas M.E.
        Bacterial infection-related morbidity and mortality in cirrhosis.
        Am J Gastroenterol. 2007; 102: 1510-1517
        • Fierer J.
        • Finley F.
        Deficient serum bactericidal activity against Escherichia coli in patients with cirrhosis of the liver.
        J Clin Invest. 1979; 63: 912-921
        • Hassner A.
        • Kletter Y.
        • Shlag D.
        • Yedvab M.
        • Aronson M.
        • Shibolet S.
        Impaired monocyte function in liver cirrhosis.
        Br Med J Clin Res Ed. 1981; 282: 1262-1263
        • Akalin H.E.
        • Laleli Y.
        • Telatar H.
        Serum bactericidal and opsonic activities in patients with non-alcoholic cirrhosis.
        QJM. 1985; 56: 431-437
        • Garcia-Tsao G.
        Bacterial infections in cirrhosis: treatment and prophylaxis.
        J Hepatol. 2005; 42: S85-S92
        • Battista S.
        • Bar F.
        • Mengozzi G.
        • Zanon E.
        • Grosso M.
        • Molino G.
        Hyperdynamic circulation in patients with cirrhosis: direct measurement of nitric oxide levels in hepatic and portal veins.
        J Hepatol. 1997; 26: 75-80
        • Lumsden A.B.
        • Henderson J.M.
        • Kutner M.H.
        Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis.
        Hepatology. 1988; 8: 232-236
        • Such J.
        • Runyon B.A.
        Spontaneous bacterial peritonitis.
        Clin Infect Dis Off Publ Infect Dis Soc Am. 1998; 27 (quiz 675–6): 669-674
        • Caly W.R.
        • Strauss E.
        A prospective study of bacterial infections in patients with cirrhosis.
        J Hepatol. 1993; 18: 353-358
        • Yoshida H.
        • Hamada T.
        • Inuzuka S.
        • Ueno T.
        • Sata M.
        • Tanikawa K.
        Bacterial infection in cirrhosis, with and without hepatocellular carcinoma.
        Am J Gastroenterol. 1993; 88: 2067-2071
        • Guarner C.
        • Soriano G.
        • Tomas A.
        • et al.
        Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia.
        Hepatology. 1993; 18: 1139-1143
        • Francés R.
        • Chiva M.
        • Sánchez E.
        • et al.
        Bacterial translocation is downregulated by anti-TNF-α monoclonal antibody administration in rats with cirrhosis and ascites.
        J Hepatol. 2007; 46: 797-803
        • Navasa M.
        • Follo A.
        • Filella X.
        • et al.
        Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality.
        Hepatology. 1998; 27: 1227-1232
        • Such J.
        • Hillebrand D.J.
        • Guarner C.
        • et al.
        Tumor necrosis factor-α, interleukin-6, and nitric oxide in sterile ascitic fluid and serum from patients with cirrhosis who subsequently develop ascitic fluid infection.
        Dig Dis Sci. 2001; 46: 2360-2366
        • Bajaj J.S.
        • Wade J.B.
        • Sanyal A.J.
        Spectrum of neurocognitive impairment in cirrhosis: implications for the assessment of hepatic encephalopathy.
        Hepatology. 2009; 50: 2014-2021
        • Bajaj J.S.
        • Ridlon J.M.
        • Hylemon P.B.
        • et al.
        Linkage of gut microbiome with cognition in hepatic encephalopathy.
        Am J Physiol Gastrointest Liver Physiol. 2012; 302: G168-G175
        • Bajaj J.S.
        • Hylemon P.B.
        • Ridlon J.M.
        • et al.
        Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation.
        Am J Physiol Gastrointest Liver Physiol. 2012; 303: G675-G685
        • Liu Q.
        • Duan Z.P.
        • Ha D.K.
        • Bengmark S.
        • Kurtovic J.
        • Riordan S.M.
        Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis.
        Hepatology. 2004; 39: 1441-1449
        • Zhang Z.
        • Zhai H.
        • Geng J.
        • et al.
        Large-scale survey of gut microbiota associated with MHE via 16S rRNA-based pyrosequencing.
        Am J Gastroenterol. 2013; 108: 1601-1611
        • Obata T.
        • Goto Y.
        • Kunisawa J.
        • et al.
        Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis.
        Proc Natl Acad Sci. 2010; 107: 7419-7424
        • Bajaj J.S.
        • Betrapally N.S.
        • Hylemon P.B.
        • et al.
        Gut microbiota alterations can predict hospitalizations in cirrhosis independent of diabetes mellitus.
        Sci Rep. 2015; 5: 18559
        • Cano P.G.
        • Santacruz A.
        • Trejo F.M.
        • Sanz Y.
        Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice.
        Obesity. 2013; 21: 2310-2321
        • Guarner C.
        • Runyon B.A.
        • Young S.
        • Heck M.
        • Sheikh M.Y.
        Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites.
        J Hepatol. 1997; 26: 1372-1378
        • Bauer T.M.
        • Steinbrückner B.
        • Brinkmann F.E.
        • et al.
        Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis.
        Am J Gastroenterol. 2001; 96: 2962-2967
        • Pande C.
        • Kumar A.
        • Sarin S.K.
        Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease.
        Aliment Pharmacol Ther. 2009; 29: 1273-1281
        • Bass N.M.
        • Mullen K.D.
        • Sanyal A.
        • et al.
        Rifaximin treatment in hepatic encephalopathy.
        N Engl J Med. 2010; 362: 1071-1081
        • Koo H.L.
        • DuPont H.L.
        Rifaximin: a unique gastrointestinal-selective antibiotic for enteric diseases.
        Curr Opin Gastroenterol. 2010; 26: 17-25
        • Bajaj J.S.
        • Heuman D.M.
        • Sanyal A.J.
        • et al.
        Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy.
        PLoS One. 2013; 8: e60042
        • DuPont H.L.
        Biologic properties and clinical uses of rifaximin.
        Expert Opin Pharmacother. 2011; 12: 293-302
        • Mullen K.D.
        • Sanyal A.J.
        • Bass N.M.
        • et al.
        Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy.
        Clin Gastroenterol Hepatol. 2014; 12: 1390-1397.e2
        • Vlachogiannakos J.
        • Viazis N.
        • Vasianopoulou P.
        • Vafiadis I.
        • Karamanolis D.G.
        • Ladas S.D.
        Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis.
        J Gastroenterol Hepatol. 2013; 28: 450-455
        • Bajaj J.S.
        • Gillevet P.M.
        • Patel N.R.
        • et al.
        A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy.
        Metab Brain Dis. 2012; 27: 205-215
        • Rayes N.
        • Seehofer D.
        • Hansen S.
        • et al.
        Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients.
        Transplantation. 2002; 74: 123-127
        • Bajaj J.S.
        • Heuman D.M.
        • Hylemon P.B.
        • et al.
        Randomized clinical trial: lactobacillus gg modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis.
        Aliment Pharmacol Ther. 2014; 39: 1113-1125
        • Adawi D.
        • Ahrné S.
        • Molin G.
        Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model.
        Int J Food Microbiol. 2001; 70: 213-220
        • Chiva M.
        • Soriano G.
        • Rochat I.
        • et al.
        Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora and bacterial translocation in rats with experimental cirrhosis.
        J Hepatol. 2002; 37: 456-462
        • Sánchez E.
        • Nieto J.C.
        • Boullosa A.
        • et al.
        VSL#3 probiotic treatment decreases bacterial translocation in rats with carbon tetrachloride-induced cirrhosis.
        Liver Int. 2015; 35: 735-745
        • Freestone P.P.E.
        • Haigh R.D.
        • Williams P.H.
        • Lyte M.
        Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers.
        FEMS Microbiol Lett. 1999; 172: 53-60
        • Lyte M.
        • Ernst S.
        Catecholamine induced growth of gram negative bacteria.
        Life Sci. 1992; 50: 203-212
        • Pérez-Paramo M.
        • Muñoz J.
        • Albillos A.
        • et al.
        Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites.
        Hepatology. 2000; 31: 43-48
        • Reiberger T.
        • Ferlitsch A.
        • Payer B.A.
        • et al.
        Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis.
        J Hepatol. 2013; 58: 911-921
        • Verbeke L.
        • Farre R.
        • Verbinnen B.
        • et al.
        The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats.
        Am J Pathol. 2015; 185: 409-419
        • Neuschwander-Tetri B.A.
        • Loomba R.
        • Sanyal A.J.
        • et al.
        Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial.
        The Lancet. 2015; 385: 956-965
        • Gao W.
        • Li H.-Y.
        • Wang L.-X.
        • et al.
        Protective effect of omeprazole on gastric mucosal of cirrhotic portal hypertension rats.
        Asian Pac J Trop Med. 2014; 7: 402-406