Microbiome, trimethylamine N-oxide, and cardiometabolic disease

  • W.H. Wilson Tang
    Reprint requests: W.H. Wilson Tang, MD, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH 44195
    Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

    Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio

    Center for Clinical Genomics, Cleveland Clinic, Cleveland, Ohio
    Search for articles by this author
  • Stanley L. Hazen
    Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

    Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
    Search for articles by this author
      There is increasing appreciation that changes in microbiome composition and function can promote long-term susceptibility for cardiometabolic risk. Gut microbe-derived metabolites that are biologically active, such as trimethylamine N-oxide (TMAO), are now recognized as contributors to atherogenesis. This review summarizes our current understanding of the role of TMAO in the pathogenesis of cardiometabolic diseases and will discuss current findings, controversies, and further perspectives in this new area of investigation. Better appreciation of the interactions between dietary nutrient intake with gut microbiota-mediated metabolism may provide clinical insights into defining individuals at risk for disease progression in cardiometabolic diseases, as well as additional potential therapeutic targets for reducing risks for cardiometabolic disease progression.


      TMAO (trimethylamine N-amino), TMA (trimethylamine), MACE (major adverse cardiac disease), FMO3 (flavin monooxygenase 3), HF (heart failure), AngII (angiotensin II), CKD (chronic kidney disease), TGFβ (transforming growth factor β)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Aron-Wisnewsky J.
        • Clement K.
        The gut microbiome, diet, and links to cardiometabolic and chronic disorders.
        Nat Rev Nephrol. 2016; 12: 169-181
        • Brown J.M.
        • Hazen S.L.
        The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases.
        Annu Rev Med. 2015; 66: 343-359
        • Tang W.H.
        • Hazen S.L.
        The contributory role of gut microbiota in cardiovascular disease.
        J Clin Invest. 2014; 124: 4204-4211
        • Tang W.H.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585
        • Koeth R.A.
        • Levison B.S.
        • Culley M.K.
        • et al.
        Gamma-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO.
        Cell Metab. 2014; 20: 799-812
        • Wang Z.
        • Tang W.H.
        • Buffa J.A.
        • et al.
        Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-n-oxide.
        Eur Heart J. 2014; 35: 904-910
        • Hartiala J.
        • Bennett B.J.
        • Tang W.H.
        • et al.
        Comparative genome-wide association studies in mice and humans for trimethylamine n-oxide, a proatherogenic metabolite of choline and l-carnitine.
        Arterioscler Thromb Vasc Biol. 2014; 34: 1307-1313
        • Gregory J.C.
        • Buffa J.A.
        • Org E.
        • et al.
        Transmission of atherosclerosis susceptibility with gut microbial transplantation.
        J Biol Chem. 2015; 290: 5647-5660
        • Zhu W.
        • Gregory J.C.
        • Org E.
        • et al.
        Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.
        Cell. 2016; 165: 111-124
        • Li D.
        • Kirsop J.
        • Tang W.H.
        Listening to our gut: contribution of gut microbiota and cardiovascular risk in diabetes pathogenesis.
        Curr Diab Rep. 2015; 15: 63
        • Backhed F.
        • Ding H.
        • Wang T.
        • et al.
        The gut microbiota as an environmental factor that regulates fat storage.
        Proc Natl Acad Sci U S A. 2004; 101: 15718-15723
        • Backhed F.
        • Manchester J.K.
        • Semenkovich C.F.
        • Gordon J.I.
        Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.
        Proc Natl Acad Sci U S A. 2007; 104: 979-984
        • Turnbaugh P.J.
        • Hamady M.
        • Yatsunenko T.
        • et al.
        A core gut microbiome in obese and lean twins.
        Nature. 2009; 457: 480-484
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Tang W.H.
        • Wang Z.
        • Fan Y.
        • et al.
        Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-n-oxide in patients with heart failure: refining the gut hypothesis.
        J Am Coll Cardiol. 2014; 64: 1908-1914
        • Lever M.
        • George P.M.
        • Slow S.
        • et al.
        Betaine and trimethylamine-n-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study.
        PLoS One. 2014; 9: e114969
        • Dambrova M.
        • Latkovskis G.
        • Kuka J.
        • et al.
        Diabetes is associated with higher trimethylamine n-oxide plasma levels.
        Exp Clin Endocrinol Diabetes. 2016; 124: 251-256
        • Miao J.
        • Ling A.V.
        • Manthena P.V.
        • et al.
        Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis.
        Nat Commun. 2015; 6: 6498
        • Gao X.
        • Liu X.
        • Xu J.
        • Xue C.
        • Xue Y.
        • Wang Y.
        Dietary trimethylamine n-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.
        J Biosci Bioeng. 2014; 118: 476-481
        • Gao X.
        • Xu J.
        • Jiang C.
        • et al.
        Fish oil ameliorates trimethylamine n-oxide-exacerbated glucose intolerance in high-fat diet-fed mice.
        Food Funct. 2015; 6: 1117-1125
        • Warrier M.
        • Shih D.M.
        • Burrows A.C.
        • et al.
        The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance.
        Cell Rep. 2016; ( 326-338
        • Bennett B.J.
        • de Aguiar Vallim T.Q.
        • Wang Z.
        • et al.
        Trimethylamine-n-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.
        Cell Metab. 2013; 17: 49-60
        • Verbrugge F.H.
        • Dupont M.
        • Steels P.
        • et al.
        Abdominal contributions to cardiorenal dysfunction in congestive heart failure.
        J Am Coll Cardiol. 2013; 62: 485-495
        • Nagatomo Y.
        • Tang W.H.
        Intersections between microbiome and heart failure: revisiting the gut hypothesis.
        J Card Fail. 2015; 21: 973-980
        • Tang W.H.
        • Wang Z.
        • Shrestha K.
        • et al.
        Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure.
        J Card Fail. 2015; 21: 91-96
        • Troseid M.
        • Ueland T.
        • Hov J.R.
        • et al.
        Microbiota-dependent metabolite trimethylamine-n-oxide is associated with disease severity and survival of patients with chronic heart failure.
        J Intern Med. 2015; 277: 717-726
        • Tang W.H.
        • Wang Z.
        • Kennedy D.J.
        • et al.
        Gut microbiota-dependent trimethylamine n-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.
        Circ Res. 2015; 116: 448-455
        • Suzuki T.
        • Heaney L.M.
        • Bhandari S.S.
        • Jones D.J.
        • Ng L.L.
        Trimethylamine n-oxide and prognosis in acute heart failure.
        Heart. 2016; 102: 841-848
        • Organ C.L.
        • Otsuka H.
        • Bhushan S.
        • et al.
        Choline diet and its gut microbe-derived metabolite, trimethylamine n-oxide, exacerbate pressure overload-induced heart failure.
        Circ Heart Fail. 2016; 9: e002314
        • Pluznick J.
        A novel SCFA receptor, the microbiota, and blood pressure regulation.
        Gut Microbes. 2014; 5: 202-207
        • Ufnal M.
        • Jazwiec R.
        • Dadlez M.
        • Drapala A.
        • Sikora M.
        • Skrzypecki J.
        Trimethylamine-n-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin ii in rats.
        Can J Cardiol. 2014; 30: 1700-1705
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227
        • Acara M.
        • Camiolo S.
        • Rennick B.
        Renal n-oxidation of trimethylamine in the chicken during tubular excretion.
        Drug Metab Dispos. 1977; 5: 82-90
        • Foxall P.J.
        • Mellotte G.J.
        • Bending M.R.
        • Lindon J.C.
        • Nicholson J.K.
        NMR spectroscopy as a novel approach to the monitoring of renal transplant function.
        Kidney Int. 1993; 43: 234-245
        • Le Moyec L.
        • Pruna A.
        • Eugene M.
        • et al.
        Proton nuclear magnetic resonance spectroscopy of urine and plasma in renal transplantation follow-up.
        Nephron. 1993; 65: 433-439
        • Hai X.
        • Landeras V.
        • Dobre M.A.
        • DeOreo P.
        • Meyer T.W.
        • Hostetter T.H.
        Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients.
        PLoS One. 2015; 10: e0143731
        • Kaysen G.A.
        • Johansen K.L.
        • Chertow G.M.
        • et al.
        Associations of trimethylamine n-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis.
        J Ren Nutr. 2015; 25: 351-356
        • Missailidis C.
        • Hallqvist J.
        • Qureshi A.R.
        • et al.
        Serum trimethylamine-n-oxide is strongly related to renal function and predicts outcome in chronic kidney disease.
        PLoS One. 2016; 11: e0141738
        • Stubbs J.R.
        • House J.A.
        • Ocque A.J.
        • et al.
        Serum trimethylamine-n-oxide is elevated in CKD and correlates with coronary atherosclerosis burden.
        J Am Soc Nephrol. 2016; 27: 305-313
        • Bell J.D.
        • Lee J.A.
        • Lee H.A.
        • Sadler P.J.
        • Wilkie D.R.
        • Woodham R.H.
        Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-n-oxide.
        Biochim Biophys Acta. 1991; 1096: 101-107
        • Bain M.A.
        • Faull R.
        • Fornasini G.
        • Milne R.W.
        • Evans A.M.
        Accumulation of trimethylamine and trimethylamine-n-oxide in end-stage renal disease patients undergoing haemodialysis.
        Nephrol Dial Transplant. 2006; 21: 1300-1304
        • Lekawanvijit S.
        • Kompa A.R.
        • Wang B.H.
        • Kelly D.J.
        • Krum H.
        Cardiorenal syndrome: the emerging role of protein-bound uremic toxins.
        Circ Res. 2012; 111: 1470-1483
        • Rhee E.P.
        • Clish C.B.
        • Ghorbani A.
        • et al.
        A combined epidemiologic and metabolomic approach improves CKD prediction.
        J Am Soc Nephrol. 2013; 24: 1330-1338
        • Shih D.M.
        • Wang Z.
        • Lee R.
        • et al.
        Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis.
        J Lipid Res. 2015; 56: 22-37
        • Seldin M.M.
        • Meng Y.
        • Qi H.
        • et al.
        Trimethylamine n-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κb.
        J Am Heart Assoc. 2016; 5
        • McEntyre C.J.
        • Lever M.
        • Chambers S.T.
        • et al.
        Variation of betaine, n,n-dimethylglycine, choline, glycerophosphorylcholine, taurine and trimethylamine-N-oxide in the plasma and urine of overweight people with type 2 diabetes over a two-year period.
        Ann Clin Biochem. 2015; 52: 352-360
        • Mi Park E.
        • Lee E.
        • Jin Joo H.
        • Oh E.
        • Lee J.
        • Lee J.S.
        Inter- and intra-individual variations of urinary endogenous metabolites in healthy male college students using (1)h NMR spectroscopy.
        Clin Chem Lab Med. 2009; 47: 188-194
        • Albenberg L.G.
        • Wu G.D.
        Diet and the intestinal microbiome: associations, functions, and implications for health and disease.
        Gastroenterology. 2014; 146: 1564-1572
        • Bain M.A.
        • Faull R.
        • Milne R.W.
        • Evans A.M.
        Oral l-carnitine: metabolite formation and hemodialysis.
        Curr Drug Metab. 2006; 7: 811-816
        • Miller M.J.
        • Bostwick B.L.
        • Kennedy A.D.
        • et al.
        Chronic oral l-carnitine supplementation drives marked plasma TMAO elevations in patients with organic acidemias despite dietary meat restrictions.
        JIMD Rep. 2016; ( [Epub ahead of print])
        • Craciun S.
        • Balskus E.P.
        Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.
        Proc Natl Acad Sci U S A. 2012; 109: 21307-21312
        • Craciun S.
        • Marks J.A.
        • Balskus E.P.
        Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes.
        ACS Chem Biol. 2014; 9: 1408-1413
        • Zhu Y.
        • Jameson E.
        • Crosatti M.
        • et al.
        Carnitine metabolism to trimethylamine by an unusual rieske-type oxygenase from human microbiota.
        Proc Natl Acad Sci U S A. 2014; 111: 4268-4273
        • Romano K.A.
        • Vivas E.I.
        • Amador-Noguez D.
        • Rey F.E.
        Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-n-oxide.
        MBio. 2015; 6: e02481
        • Wang Z.
        • Roberts A.B.
        • Buffa J.A.
        • et al.
        Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis.
        Cell. 2015; 163: 1585-1595