Advertisement

High-resolution characterization of the human microbiome

      The human microbiome plays an important and increasingly recognized role in human health. Studies of the microbiome typically use targeted sequencing of the 16S rRNA gene, whole metagenome shotgun sequencing, or other meta-omic technologies to characterize the microbiome's composition, activity, and dynamics. Processing, analyzing, and interpreting these data involve numerous computational tools that aim to filter, cluster, annotate, and quantify the obtained data and ultimately provide an accurate and interpretable profile of the microbiome's taxonomy, functional capacity, and behavior. These tools, however, are often limited in resolution and accuracy and may fail to capture many biologically and clinically relevant microbiome features, such as strain-level variation or nuanced functional response to perturbation. Over the past few years, extensive efforts have been invested toward addressing these challenges and developing novel computational methods for accurate and high-resolution characterization of microbiome data. These methods aim to quantify strain-level composition and variation, detect and characterize rare microbiome species, link specific genes to individual taxa, and more accurately characterize the functional capacity and dynamics of the microbiome. These methods and the ability to produce detailed and precise microbiome information are clearly essential for informing microbiome-based personalized therapies. In this review, we survey these methods, highlighting the challenges each method sets out to address and briefly describing methodological approaches.

      Abbreviations:

      CNV (copy number variation), FISH (fluorescent in situ hybridization), HMM (hidden Markov model), KEGG (Kyoto Encyclopedia of Genes and Genomes), LCA (lowest common ancestor), OTU (operational taxonomic unit), rRNA (ribosomal RNA), SNP (single-nucleotide polymorphism)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huttenhower C.
        • Gevers D.
        • Knight R.
        • et al.
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Qin J.
        • Li Y.
        • Cai Z.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Cox L.M.
        • Yamanishi S.
        • Sohn J.
        • et al.
        Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
        Cell. 2014; 158: 705-721
        • Smith M.I.
        • Yatsunenko T.
        • Manary M.J.
        • et al.
        Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.
        Science. 2013; 339: 548-554
        • Yarza P.
        • Yilmaz P.
        • Pruesse E.
        • et al.
        Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.
        Nat Rev Microbiol. 2014; 12: 635-645
        • Shakya M.
        • Quince C.
        • Campbell J.H.
        • Yang Z.K.
        • Schadt C.W.
        • Podar M.
        Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities.
        Environ Microbiol. 2013; 15: 1882-1899
        • Mande S.S.
        • Mohammed M.H.
        • Ghosh T.S.
        Classification of metagenomic sequences: methods and challenges.
        Brief Bioinform. 2012; 13: 669-681
        • Manor O.
        • Borenstein E.
        MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome.
        Genome Biol. 2015; 16: 53
        • Manor O.
        • Levy R.
        • Borenstein E.
        Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and of metabolic interactions in the human gut microbiome.
        Cell Metab. 2014; 20: 742-745
        • Eren A.M.
        • Zozaya M.
        • Taylor C.M.
        • Dowd S.E.
        • Martin D.H.
        • Ferris M.J.
        Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of monogamous couples through subtle nucleotide variation.
        PLoS One. 2011; 6 (Ravel J, ed): e26732
        • Fitz-Gibbon S.
        • Tomida S.
        • Chiu B.H.
        • et al.
        Propionibacterium acnes strain populations in the human skin microbiome associated with acne.
        J Invest Dermatol. 2013; 133: 2152-2160
        • Busby B.
        • Kristensen D.M.
        • Koonin E.V.
        Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens.
        Environ Microbiol. 2012; 15: 307-312
        • Haiser H.J.
        • Gootenberg D.B.
        • Chatman K.
        • Sirasani G.
        • Balskus E.P.
        • Turnbaugh P.J.
        Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta.
        Science. 2013; 341: 295-298
        • Hajishengallis G.
        • Liang S.
        • Payne M.
        • et al.
        Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement.
        Cell Host Microbe. 2011; 10: 497-506
        • Charbonneau M.
        • O’Donnell D.
        • Blanton L.
        • et al.
        Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition.
        Cell. 2016; 164: 859-871
        • Wang X.
        • Yao J.
        • Sun Y.
        • Mai V.
        M-pick a modularity-based method for OTU picking of 16S rRNA sequences.
        BMC Bioinformatics. 2013; 14: 43
        • Mahé F.
        • Rognes T.
        • Quince C.
        • de Vargas C.
        • Dunthorn M.
        Swarm v2: highly-scalable and high-resolution amplicon clustering.
        PeerJ. 2015; 3: e1420
        • Eren A.M.
        • Morrison H.G.
        • Lescault P.J.
        • Reveillaud J.
        • Vineis J.H.
        • Sogin M.L.
        Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences.
        ISME J. 2014; 9: 968-979
        • Eren A.M.
        • Maignien L.
        • Sul W.J.
        • et al.
        Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data.
        Methods Ecol Evol. 2013; 4: 1111-1119
        • Franzén O.
        • Hu J.
        • Bao X.
        • Itzkowitz S.H.
        • Peter I.
        • Bashir A.
        Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering.
        Microbiome. 2015; 3: 43
        • Angly F.E.
        • Dennis P.G.
        • Skarshewski A.
        • Vanwonterghem I.
        • Hugenholtz P.
        • Tyson G.W.
        CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction.
        Microbiome. 2014; 2: 11
        • Paulson J.N.
        • Stine O.C.
        • Bravo H.C.
        • Pop M.
        Differential abundance analysis for microbial marker-gene surveys.
        Nat Methods. 2013; 10: 1200-1202
        • McMurdie P.J.
        • Holmes S.
        Waste not, want not: why rarefying microbiome data is inadmissible.
        PLoS Comput Biol. 2014; 10: e1003531
        • Sohn M.B.
        • Du R.
        • An L.
        A robust approach for identifying differentially abundant features in metagenomic samples.
        Bioinformatics. 2015; 31: 2269-2275
        • Sahl J.W.
        • Schupp J.M.
        • Rasko D.A.
        • Colman R.E.
        • Foster J.T.
        • Keim P.
        Phylogenetically typing bacterial strains from partial SNP genotypes observed from direct sequencing of clinical specimen metagenomic data.
        Genome Med. 2015; 7: 52
        • Ahn T.H.
        • Chai J.
        • Pan C.
        Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance.
        Bioinformatics. 2014; 31: 170-177
        • Luo C.
        • Knight R.
        • Siljander H.
        • Knip M.
        • Xavier R.J.
        • Gevers D.
        ConStrains identifies microbial strains in metagenomic datasets.
        Nat Biotechnol. 2015; 33: 1045-1052
        • Hong C.
        • Manimaran S.
        • Shen Y.
        • et al.
        PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples.
        Microbiome. 2014; 2: 33
        • Greenblum S.
        • Carr R.
        • Borenstein E.
        Extensive strain-level copy-number variation across human gut microbiome species.
        Cell. 2015; 160: 583-594
        • Nayfach S.
        • Pollard K.S.
        Population genetic analyses of metagenomes reveal extensive strain-level variation in prevalent human-associated bacteria.
        bioRxiv. 2015; : 031757
        • Li D.
        • Liu C.M.
        • Luo R.
        • Sadakane K.
        • Lam T.W.
        MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
        Bioinformatics. 2015; 31: 1674-1676
        • Afiahayati
        • Sato K.
        • Sakakibara Y.
        MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning.
        DNA Res. 2014; 22: 69-77
        • Alneberg J.
        • Bjarnason B.S.
        • de Bruijn I.
        • et al.
        Binning metagenomic contigs by coverage and composition.
        Nat Methods. 2014; 11: 1144-1146
        • Imelfort M.
        • Parks D.
        • Woodcroft B.J.
        • Dennis P.
        • Hugenholtz P.
        • Tyson G.W.
        GroopM: an automated tool for the recovery of population genomes from related metagenomes.
        PeerJ. 2014; 2: e603
        • Kang D.D.
        • Froula J.
        • Egan R.
        • Wang Z.
        MetaBAT an efficient tool for accurately reconstructing single genomes from complex microbial communities.
        PeerJ. 2015; 3: e1165
        • Wu Y.W.
        • Simmons B.A.
        • Singer S.W.
        MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets.
        Bioinformatics. 2015; 32: 605-607
        • Brown C.T.
        • Hug L.A.
        • Thomas B.C.
        • et al.
        Unusual biology across a group comprising more than 15% of domain bacteria.
        Nature. 2015; 523: 208-211
        • Parks D.H.
        • Imelfort M.
        • Skennerton C.T.
        • Hugenholtz P.
        • Tyson G.W.
        CheckM: assessing the quality of microbial genomes recovered from isolates single cells, and metagenomes.
        Genome Res. 2015; 25: 1043-1055
        • Carr R.
        • Shen-Orr S.S.
        • Borenstein E.
        Reconstructing the genomic content of microbiome taxa through shotgun metagenomic deconvolution.
        PLoS Comput Biol. 2013; 9: e1003292
        • Prestat E.
        • David M.M.
        • Hultman J.
        • et al.
        FOAM (functional ontology assignments for metagenomes): a Hidden Markov Model (HMM) database with environmental focus.
        Nucleic Acids Res. 2014; 42: e145
        • Gibson M.K.
        • Forsberg K.J.
        • Dantas G.
        Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology.
        ISME J. 2015; 9: 207-216
        • Yin Y.
        • Mao X.
        • Yang J.
        • Chen X.
        • Mao F.
        • Xu Y.
        dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
        Nucleic Acids Res. 2012; 40: W445-W451
        • Kaminski J.
        • Gibson M.K.
        • Franzosa E.A.
        • Segata N.
        • Dantas G.
        • Huttenhower C.
        High-specificity targeted functional profiling in microbial communities with ShortBRED.
        PLoS Comput Biol. 2015; 11 (Noble WS, ed): e1004557
        • Nayfach S.
        • Pollard K.S.
        Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome.
        Genome Biol. 2015; 16: 51
        • Ames S.K.
        • Hysom D.A.
        • Gardner S.N.
        • Lloyd G.S.
        • Gokhale M.B.
        • Allen J.E.
        Scalable metagenomic taxonomy classification using a reference genome database.
        Bioinformatics. 2013; 29: 2253-2260
        • Wood D.E.
        • Salzberg S.L.
        Kraken: ultrafast metagenomic sequence classification using exact alignments.
        Genome Biol. 2014; 15: R46
        • Rasheed Z.
        • Rangwala H.
        Metagenomic taxonomic classification using extreme learning machines.
        J Bioinform Comput Biol. 2012; 10: 1-19
        • Petrenko P.
        • Lobb B.
        • Kurtz D.A.
        • Neufeld J.D.
        • Doxey A.C.
        MetAnnotate: function-specific taxonomic profiling and comparison of metagenomes.
        BMC Biol. 2015; 13: 92
        • Le V.V.
        • Tran L.V.
        • Tran H.V.
        A novel semi-supervised algorithm for the taxonomic assignment of metagenomic reads.
        BMC Bioinformatics. 2016; 17: 22
        • Wang Y.
        • Leung H.
        • Yiu S.
        • Chin F.
        MetaCluster-TA: taxonomic annotation for metagenomic data based on assembly-assisted binning.
        BMC Genomics. 2014; 15: S12
        • Ye Y.
        • Tang H.
        Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis.
        Bioinformatics. 2016; 32: 1001-1008
        • Eren A.M.
        • Esen Ö.C.
        • Quince C.
        • et al.
        Anvi’o: an advanced analysis and visualization platform for 'omics data.
        PeerJ. 2015; 3: e1319
        • Penzlin A.
        • Lindner M.S.
        • Doellinger J.
        • Dabrowski P.W.
        • Nitsche A.
        • Renard B.Y.
        Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics.
        Bioinformatics. 2014; 30: i149-i156
        • Earle K.
        • Billings G.
        • Sigal M.
        • et al.
        Quantitative imaging of gut microbiota spatial organization.
        Cell Host Microbe. 2015; 18: 478-488
        • Noecker C.
        • Eng A.
        • Srinivasan S.
        • et al.
        Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation.
        mSystems. 2016; 1: e00013-e00015
        • Goodrich J.K.
        • Di Rienzi S.C.
        • Poole A.C.
        • et al.
        Conducting a microbiome study.
        Cell. 2014; 158: 250-262
        • Kostic A.D.
        • Gevers D.
        • Pedamallu C.S.
        • et al.
        Genomic analysis identifies association of Fusobacterium with colorectal carcinoma.
        Genome Res. 2012; 22: 292-298
        • Llopis M.
        • Cassard A.M.
        • Wrzosek L.
        • et al.
        Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease.
        Gut. 2016; 65: 830-839
        • Woese C.R.
        • Fox G.E.
        Phylogenetic structure of the prokaryotic domain: The primary kingdoms.
        Proc Natl Acad Sci. 1977; 74: 5088-5090
        • Ju F.
        • Zhang T.
        16S rRNA gene high-throughput sequencing data mining of microbial diversity and interactions.
        Appl Microbiol Biotechnol. 2015; 99: 4119-4129
        • Kopylova E.
        • Navas-Molina J.A.
        • Mercier C.
        • et al.
        Open-source sequence clustering methods improve the state of the art.
        mSystems. 2016; 1: e00003-e00015
        • Tikhonov M.
        • Leach R.W.
        • Wingreen N.S.
        Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution.
        ISME J. 2014; 9: 68-80
        • Forster D.
        • Bittner L.
        • Karkar S.
        • et al.
        Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms.
        BMC Biol. 2015; 13: 16
        • Mahé F.
        • Rognes T.
        • Quince C.
        • de Vargas C.
        • Dunthorn M.
        Swarm: robust and fast clustering method for amplicon-based studies.
        PeerJ. 2014; 2: e593
        • De Vargas C.
        • Audic S.
        • Henry N.
        • et al.
        Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.
        Science. 2015; 348: 1261605
        • Lima-Mendez G.
        • Faust K.
        • Henry N.
        • et al.
        Determinants of community structure in the global plankton interactome.
        Science. 2015; 348: 1262073
        • Newton R.J.
        • McLellan S.L.
        • Dila D.K.
        • et al.
        Sewage reflects the microbiomes of human populations.
        MBio. 2015; 6: e02574-e02614
        • Singer E.
        • Bushnell B.
        • Coleman-Derr D.
        • et al.
        High-resolution phylogenetic microbial community profiling.
        ISME J. 2016; 10: 2020-2032
        • Westcott S.L.
        • Schloss P.D.
        De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units.
        PeerJ. 2015; 3: e1487
        • Forster D.
        • Dunthorn M.
        • Stoeck T.
        • Mahé F.
        Comparison of three clustering approaches for detecting novel environmental microbial diversity.
        PeerJ. 2016; 4: e1692
        • Schmidt T.S.B.
        • Rodrigues J.F.M.
        • von Mering C.
        Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale.
        PLoS Comput Biol. 2014; 10: e1003594
        • Kembel S.W.
        • Wu M.
        • Eisen J.A.
        • Green J.L.
        Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance.
        PLoS Comput Biol. 2012; 8: e1002743
        • Langille M.G.I.
        • Zaneveld J.
        • Caporaso J.G.
        • et al.
        Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
        Nat Biotechnol. 2013; 31: 814-821
        • Walker A.W.
        • Martin J.C.
        • Scott P.
        • Parkhill J.
        • Flint H.J.
        • Scott K.P.
        16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice.
        Microbiome. 2015; 3: 26
        • Friedman J.
        • Alm E.J.
        Inferring correlation networks from genomic survey data.
        PLoS Comput Biol. 2012; 8 (Mering C, ed): e1002687
        • Weiss S.
        • Van Treuren W.
        • Lozupone C.
        • et al.
        Correlation detection strategies in microbial data sets vary widely in sensitivity and precision.
        ISME J. 2016; 10: 1669-1681
        • Brooks J.P.
        • Edwards D.J.
        • Harwich M.D.
        • et al.
        The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies.
        BMC Microbiol. 2015; 15: 66
        • Konstantinidis K.T.
        • Ramette A.
        • Tiedje J.M.
        The bacterial species definition in the genomic era.
        Philos Trans R Soc B Biol Sci. 2006; 361: 1929-1940
        • Lukjancenko O.
        • Wassenaar T.M.
        • Ussery D.W.
        Comparison of 61 sequenced Escherichia coli genomes.
        Microb Ecol. 2010; 60: 708-720
        • Clermont O.
        • Bonacorsi S.
        • Bingen E.
        Rapid and simple determination of the Escherichia coli phylogenetic group.
        Appl Environ Microbiol. 2000; 66: 4555-4558
        • LeBlanc J.
        Implication of virulence factors in Escherichia coli O157:H7 pathogenesis.
        Crit Rev Microbiol. 2003; 29: 277-296
        • Holt K.E.
        • Parkhill J.
        • Mazzoni C.J.
        • et al.
        High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi.
        Nat Genet. 2008; 40: 987-993
        • Gutacker M.M.
        • Smoot J.C.
        • Migliaccio C.A.L.
        • et al.
        Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains.
        Genetics. 2002; 162: 1533-1543
        • Manning S.D.
        • Motiwala A.S.
        • Springman A.C.
        • et al.
        Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks.
        Proc Natl Acad Sci. 2008; 105: 4868-4873
        • Gill S.R.
        • Fouts D.E.
        • Archer G.L.
        • et al.
        Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain.
        J Bacteriol. 2005; 187: 2426-2438
        • Hansen E.E.
        • Lozupone C.A.
        • Rey F.E.
        • et al.
        Pan-genome of the dominant human gut-associated archaeon Methanobrevibacter smithii, studied in twins.
        Proc Natl Acad Sci. 2011; 108: 4599-4606
        • Salama N.
        • Guillemin K.
        • McDaniel T.K.
        • Sherlock G.
        • Tompkins L.
        • Falkow S.
        A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains.
        Proc Natl Acad Sci. 2000; 97: 14668-14673
        • Siezen R.J.
        • Tzeneva V.A.
        • Castioni A.
        • et al.
        Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches.
        Environ Microbiol. 2010; 12: 758-773
        • Rappé M.S.
        • Giovannoni S.J.
        The uncultured microbial majority.
        Annu Rev Microbiol. 2003; 57: 369-394
        • Hugenholtz P.
        Exploring prokaryotic diversity in the genomic era.
        Genome Biol. 2002; 3: 1-8
        • Atarashi K.
        • Tanoue T.
        • Oshima K.
        • et al.
        Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.
        Nature. 2013; 500: 232-236
        • Schloissnig S.
        • Arumugam M.
        • Sunagawa S.
        • et al.
        Genomic variation landscape of the human gut microbiome.
        Nature. 2013; 493: 45-50
        • Vatanen T.
        • Kostic A.D.
        • d’Hennezel E.
        • et al.
        Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans.
        Cell. 2016; 165: 842-853
        • Yassour M.
        • Vatanen T.
        • Siljander H.
        • et al.
        Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.
        Sci Transl Med. 2016; 8: 343ra81
        • Morowitz M.J.
        • Denef V.J.
        • Costello E.K.
        • et al.
        Strain-resolved community genomic analysis of gut microbial colonization in a premature infant.
        Proc Natl Acad Sci. 2010; 108: 1128-1133
        • Sharon I.
        • Morowitz M.J.
        • Thomas B.C.
        • Costello E.K.
        • Relman D.A.
        • Banfield J.F.
        Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization.
        Genome Res. 2012; 23: 111-120
        • Zhu A.
        • Sunagawa S.
        • Mende D.R.
        • Bork P.
        Inter-individual differences in the gene content of human gut bacterial species.
        Genome Biol. 2015; 16: 82
        • Scholz M.
        • Ward D.V.
        • Pasolli E.
        • et al.
        Strain-level microbial epidemiology and population genomics from shotgun metagenomics.
        Nat Methods. 2016; 13: 435-438
        • Hug L.A.
        • Baker B.J.
        • Anantharaman K.
        • et al.
        A new view of the tree of life.
        Nat Microbiol. 2016; 1: 16048
        • Zhang C.
        • Yin A.
        • Li H.
        • et al.
        Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children.
        EBioMedicine. 2015; 2: 968-984
        • Sangwan N.
        • Xia F.
        • Gilbert J.A.
        Recovering complete and draft population genomes from metagenome datasets.
        Microbiome. 2016; 4: 8
        • Boisvert S.
        • Raymond F.
        • Godzaridis É.
        • Laviolette F.
        • Corbeil J.
        Ray Meta: scalable de novo metagenome assembly and profiling.
        Genome Biol. 2012; 13: R122
        • Peng Y.
        • Leung H.C.M.
        • Yiu S.M.
        • Chin F.Y.L.
        Meta-IDBA: a de Novo assembler for metagenomic data.
        Bioinformatics. 2011; 27: i94-i101
        • Pride D.T.
        Evolutionary implications of microbial genome tetranucleotide frequency biases.
        Genome Res. 2003; 13: 145-158
        • Strous M.
        • Kraft B.
        • Bisdorf R.
        • Tegetmeyer H.E.
        The binning of metagenomic contigs for microbial physiology of mixed cultures.
        Front Microbiol. 2012; 3: 410
        • Saeed I.
        • Tang S.L.
        • Halgamuge S.K.
        Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition.
        Nucleic Acids Res. 2011; 40: e34
        • Albertsen M.
        • Hugenholtz P.
        • Skarshewski A.
        • Nielsen K.L.
        • Tyson G.W.
        • Nielsen P.H.
        Genome sequences of rare uncultured bacteria obtained by differential coverage binning of multiple metagenomes.
        Nat Biotechnol. 2013; 31: 533-538
        • Nielsen H.B.
        • Almeida M.
        • Juncker A.S.
        • et al.
        Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
        Nat Biotechnol. 2014; 32: 822-828
        • Cleary B.
        • Brito I.L.
        • Huang K.
        • et al.
        Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.
        Nat Biotechnol. 2015; 33: 1053-1060
        • Mikheenko A.
        • Saveliev V.
        • Gurevich A.
        MetaQUAST: evaluation of metagenome assemblies.
        Bioinformatics. 2016; 32: 1088-1090
        • Burton J.
        • Liachko I.
        • Dunham M.
        • Shendure J.
        Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps.
        G3 (Bethesda). 2014; 4: 1339-1346
        • Marbouty M.
        • Cournac A.
        • Flot J.F.
        • Marie-Nelly H.
        • Mozziconacci J.
        • Koszul R.
        Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms.
        Elife. 2014; 3: e03318
        • Beitel C.W.
        • Froenicke L.
        • Lang J.M.
        • et al.
        Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products.
        PeerJ. 2014; 2: e415
        • Tsai Y.C.
        • Conlan S.
        • Deming C.
        • et al.
        Resolving the complexity of human skin metagenomes using single-molecule sequencing.
        MBio. 2016; 7: e01948-e02015
        • Sharon I.
        • Kertesz M.
        • Hug L.A.
        • et al.
        Accurate multi-kb reads resolve complex populations and detect rare microorganisms.
        Genome Res. 2015; 25: 534-543
        • Kuleshov V.
        • Jiang C.
        • Zhou W.
        • Jahanbani F.
        • Batzoglou S.
        • Snyder M.
        Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome.
        Nat Biotechnol. 2015; 34: 64-69
        • Tringe S.G.
        • von Mering C.
        • Kobayashi A.
        • et al.
        Comparative metagenomics of microbial communities.
        Science. 2005; 308: 554-557
        • Illeghems K.
        • Weckx S.
        • De Vuyst L.
        Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.
        Food Microbiol. 2015; 50: 54-63
        • White R.A.
        • Chan A.M.
        • Gavelis G.S.
        • et al.
        Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community.
        Front Microbiol. 2016; 6: 1531
        • Greenblum S.
        • Turnbaugh P.J.
        • Borenstein E.
        Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.
        Proc Natl Acad Sci U S A. 2012; 109: 594-599
        • Freedman Z.B.
        • Upchurch R.A.
        • Zak D.R.
        • Cline L.C.
        Anthropogenic N deposition slows decay by favoring bacterial metabolism: insights from metagenomic analyses.
        Front Microbiol. 2016; 7: 259
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Li B.
        • Yang Y.
        • Ma L.
        • et al.
        Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.
        ISME J. 2015; 9: 2490-2502
        • Lederberg J.
        Infectious history.
        Science. 2000; 288: 287-293
        • Gordon J.I.
        • Klaenhammer T.R.
        A rendezvous with our microbes.
        Proc Natl Acad Sci U S A. 2011; 108: 4513-4515
        • Borenstein E.
        Computational systems biology and in silico modeling of the human microbiome.
        Brief Bioinform. 2012; 13: 769-780
        • Meyer F.
        • Paarmann D.
        • D'Souza M.
        • et al.
        The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes.
        BMC Bioinformatics. 2008; 9: 386
        • Wu S.
        • Zhu Z.
        • Fu L.
        • Niu B.
        • Li W.
        WebMGA: a customizable web server for fast metagenomic sequence analysis.
        BMC Genomics. 2011; 12: 444
        • Arumugam M.
        • Harrington E.D.
        • Foerstner K.U.
        • Raes J.
        • Bork P.
        SmashCommunity: a metagenomic annotation and analysis tool.
        Bioinformatics. 2010; 26: 2977-2978
        • Kanehisa M.
        • Sato Y.
        • Morishima K.
        BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences.
        J Mol Biol. 2015; 428: 726-731
        • Bose T.
        • Haque M.M.
        • Reddy C.
        • Mande S.S.
        COGNIZER: a framework for functional annotation of metagenomic datasets.
        PLoS One. 2015; 10: e0142102
        • Kultima J.R.
        • Coelho L.P.
        • Forslund K.
        • et al.
        MOCAT2: a metagenomic assembly, annotation and profiling framework.
        Bioinformatics. 2016; ([Epub ahead of print])
        • Kanehisa M.
        KEGG: Kyoto Encyclopedia of Genes and Genomes.
        Nucleic Acids Res. 2000; 28: 27-30
        • Yeoh Y.K.
        • Paungfoo-Lonhienne C.
        • Dennis P.G.
        • et al.
        The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application.
        Environ Microbiol. 2016; 18: 1338-1351
        • Nelson M.B.
        • Berlemont R.
        • Martiny A.C.
        • Martiny J.B.H.
        Nitrogen cycling potential of a grassland litter microbial community.
        Appl Environ Microbiol. 2015; 81 (Kostka JE, ed): 7012-7022
        • Clemente J.C.
        • Pehrsson E.C.
        • Blaser M.J.
        • et al.
        The microbiome of uncontacted Amerindians.
        Sci Adv. 2015; 1: e1500183
        • Rampelli S.
        • Schnorr S.L.
        • Consolandi C.
        • et al.
        Metagenome sequencing of the Hadza hunter-gatherer gut microbiota.
        Curr Biol. 2015; 25: 1682-1693
        • Jones M.B.
        • Highlander S.K.
        • Anderson E.L.
        • et al.
        Library preparation methodology can influence genomic and functional predictions in human microbiome research.
        Proc Natl Acad Sci. 2015; 112: 14024-14029
        • Carr R.
        • Borenstein E.
        Comparative analysis of functional metagenomic annotation and the mappability of short reads.
        PLoS One. 2014; 9: e105776
        • Huson D.H.
        • Auch A.F.
        • Qi J.
        • Schuster S.C.
        MEGAN analysis of metagenomic data.
        Genome Res. 2007; 17: 377-386
        • Gori F.
        • Folino G.
        • Jetten M.S.M.
        • Marchiori E.
        MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks.
        Bioinformatics. 2010; 27: 196-203
        • Kunin V.
        • Copeland A.
        • Lapidus A.
        • Mavromatis K.
        • Hugenholtz P.
        A Bioinformatician’s guide to metagenomics.
        Microbiol Mol Biol Rev. 2008; 72: 557-578
        • MacDonald N.J.
        • Parks D.H.
        • Beiko R.G.
        Rapid identification of high-confidence taxonomic assignments for metagenomic data.
        Nucleic Acids Res. 2012; 40: e111
        • Vervier K.
        • Mahé P.
        • Tournoud M.
        • Veyrieras J.B.
        • Vert J.P.
        Large-scale machine learning for metagenomics sequence classification.
        Bioinformatics. 2016; 32: 1023-1032
        • Edlund A.
        • Yang Y.
        • Yooseph S.
        • et al.
        Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism.
        ISME J. 2015; 9: 2605-2619
        • Ferrer M.
        • Ruiz A.
        • Lanza F.
        • et al.
        Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure.
        Environ Microbiol. 2013; 15: 211-226
        • Franzosa E.A.
        • Hsu T.
        • Sirota-Madi A.
        • et al.
        Sequencing and beyond: integrating molecular “omics” for microbial community profiling.
        Nat Rev Microbiol. 2015; 13: 360-372
        • Lamendella R.
        • VerBerkmoes N.
        • Jansson J.K.
        ‘Omics’ of the mammalian gut – new insights into function.
        Curr Opin Biotechnol. 2012; 23: 491-500
        • Waldor M.K.
        • Tyson G.
        • Borenstein E.
        • et al.
        Where next for microbiome research?.
        PLoS Biol. 2015; 13: e1002050
        • Greenblum S.
        • Chiu H.
        • Levy R.
        • Carr R.
        • Borenstein E.
        Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities.
        Curr Opin Biotechnol. 2013; 24: 810-820
        • Pérez-Cobas A.E.
        • Gosalbes M.J.
        • Friedrichs A.
        • et al.
        Gut microbiota disturbance during antibiotic therapy: a multi-omic approach.
        Gut. 2013; 62: 1591-1601
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • De Filippis F.
        • Genovese A.
        • Ferranti P.
        • Gilbert J.A.
        • Ercolini D.
        Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate.
        Sci Rep. 2016; 6: 21871
        • Shi W.
        • Moon C.D.
        • Leahy S.C.
        • et al.
        Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.
        Genome Res. 2014; 24: 1517-1525
        • Jorth P.
        • Turner K.H.
        • Gumus P.
        • Nizam N.
        • Buduneli N.
        • Whiteley M.
        Metatranscriptomics of the human oral microbiome during health and disease.
        MBio. 2014; 5: e01012-e01014
        • Aylward F.O.
        • Eppley J.M.
        • Smith J.M.
        • Chavez F.P.
        • Scholin C.A.
        • DeLong E.F.
        Microbial community transcriptional networks are conserved in three domains at ocean basin scales.
        Proc Natl Acad Sci. 2015; 112: 5443-5448
        • Leimena M.M.
        • Ramiro-Garcia J.
        • Davids M.
        • et al.
        A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets.
        BMC Genomics. 2013; 14: 530
        • Toseland A.
        • Moxon S.
        • Mock T.
        • Moulton V.
        Metatranscriptomes from diverse microbial communities: assessment of data reduction techniques for rigorous annotation.
        BMC Genomics. 2014; 15: 901
        • Dillies M.A.
        • Rau A.
        • Aubert J.
        • et al.
        A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.
        Brief Bioinform. 2012; 14: 671-683
        • Qin L.X.
        • Huang H.C.
        • Niu Y.
        Differential expression analysis for RNA-Seq: an overview of statistical methods and computational software.
        Cancer Inform. 2015; 14: 57-67
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Muth T.
        • Kolmeder C.A.
        • Salojärvi J.
        • et al.
        Navigating through metaproteomics data: A logbook of database searching.
        Proteomics. 2015; 15: 3439-3453
        • Erickson A.R.
        • Cantarel B.L.
        • Lamendella R.
        • et al.
        Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease.
        PLoS One. 2012; 7: e49138
        • Brooks B.
        • Mueller R.S.
        • Young J.C.
        • Morowitz M.J.
        • Hettich R.L.
        • Banfield J.F.
        Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant.
        Front Microbiol. 2015; 6: 654
        • Tobalina L.
        • Bargiela R.
        • Pey J.
        • et al.
        Context-specific metabolic network reconstruction of a naphthalene-degrading bacterial community guided by metaproteomic data.
        Bioinformatics. 2015; 31: 1771-1779
        • Ren S.
        • Hinzman A.A.
        • Kang E.L.
        • Szczesniak R.D.
        • Lu L.J.
        Computational and statistical analysis of metabolomics data.
        Metabolomics. 2015; 11: 1492-1513
        • Jansson J.
        • Willing B.
        • Lucio M.
        • et al.
        Metabolomics reveals metabolic biomarkers of Crohn’s disease.
        PLoS One. 2009; 4: e6386
        • Weir T.L.
        • Manter D.K.
        • Sheflin A.M.
        • Barnett B.A.
        • Heuberger A.L.
        • Ryan E.P.
        Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults.
        PLoS One. 2013; 8: e70803
        • Theriot C.M.
        • Koenigsknecht M.J.
        • Carlson P.E.
        • et al.
        Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection.
        Nat Commun. 2014; 5: 3114
        • Gomez A.
        • Petrzelkova K.
        • Yeoman C.J.
        • et al.
        Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology.
        Mol Ecol. 2015; 24: 2551-2565
        • McHardy I.H.
        • Goudarzi M.
        • Tong M.
        • et al.
        Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships.
        Microbiome. 2013; 1: 17
        • Sridharan G.V.
        • Choi K.
        • Klemashevich C.
        • et al.
        Prediction and quantification of bioactive microbiota metabolites in the mouse gut.
        Nat Commun. 2014; 5: 5492
        • Donaldson G.P.
        • Lee S.M.
        • Mazmanian S.K.
        Gut biogeography of the bacterial microbiota.
        Nat Rev Microbiol. 2016; 14: 20-32
        • Welch J.L.M.
        • Rossetti B.J.
        • Rieken C.W.
        • Dewhirst F.E.
        • Borisy G.G.
        Biogeography of a human oral microbiome at the micron scale.
        Proc Natl Acad Sci. 2016; 113: E791-E800
        • Watrous J.D.
        • Phelan V.V.
        • Hsu C.C.
        • et al.
        Microbial metabolic exchange in 3D.
        ISME J. 2013; 7: 770-780
        • Bouslimani A.
        • Porto C.
        • Rath C.M.
        • et al.
        Molecular cartography of the human skin surface in 3D.
        Proc Natl Acad Sci. 2015; 112: E2120-E2129