Advertisement

Microbiota as a mediator of cancer progression and therapy

Published:August 02, 2016DOI:https://doi.org/10.1016/j.trsl.2016.07.021
      Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis.

      Abbreviations:

      AOM (azoxymethane), Apc (adenomatous polyposis coli), CAC (colitis associated cancer), CRC (colorectal cancer), DNA-PK (DNA-dependent protein kinase), GF (germ free), GI (gastrointestinal), IBD (inflammatory bowel diseases), IL (interleukin), MAIT (mucosa-associated invariant T), MTX (methotrexate), NLR (NOD-like receptor), NLRP1 (NLR family, pyrin domain containing 1), NOD (nucleotide-binding oligomerization domain-containing protein), PDL-1 (programmed cell death protein 1 ligand 1), PI3K (phosphoinositide 3-kinase), PRR (pattern recognition receptors), SCFA (short chain fatty acids), TIGIT (T cell immunoglobulin and ITIM domain), TLR (toll-like receptors), Tregs (regulatory T cells), WT (wild type)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stratton M.R.
        • Campbell P.J.
        • Futreal P.A.
        The cancer genome.
        Nature. 2009; 458: 719-724
        • Vogelstein B.
        • Papadopoulos N.
        • Velculescu V.E.
        • Zhou S.
        • Diaz L.A.
        • Kinzler K.W.
        Cancer genome landscapes.
        Science. 2013; 339: 1546-1558
        • Garraway L.A.
        • Lander E.S.
        Lessons from the cancer genome.
        Cell. 2013; 153: 17-37
        • Anand P.
        • Kunnumakkara A.B.
        • Sundaram C.
        • et al.
        Cancer is a preventable disease that requires major lifestyle changes.
        Pharm Res. 2008; 25: 2097-2116
        • Dewhirst F.E.
        • Chen T.
        • Izard J.
        • et al.
        The human oral microbiome.
        J Bacteriol. 2010; 192: 5002-5017
        • Whiteside S.A.
        • Razvi H.
        • Dave S.
        • Reid G.
        • Burton J.P.
        The microbiome of the urinary tract–a role beyond infection.
        Nat Rev Urol. 2015; 12: 81-90
        • Canny G.O.
        • McCormick B.A.
        Bacteria in the intestine, helpful residents or enemies from within?.
        Infect Immun. 2008; 76: 3360-3373
        • Spor A.
        • Koren O.
        • Ley R.
        Unravelling the effects of the environment and host genotype on the gut microbiome.
        Nat Rev Microbiol. 2011; 9: 279-290
        • Fujimura K.E.
        • Lynch S.V.
        Microbiota in allergy and asthma and the emerging relationship with the gut microbiome.
        Cell Host Microbe. 2015; 17: 592-602
        • Scher J.U.
        • Abramson S.B.
        The microbiome and rheumatoid arthritis.
        Nat Rev Rheumatol. 2011; 7: 569-578
        • Tang W.H.
        • Hazen S.L.
        The contributory role of gut microbiota in cardiovascular disease.
        J Clin Invest. 2014; 124: 4204-4211
        • Ussar S.
        • Griffin N.W.
        • Bezy O.
        • et al.
        Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome.
        Cell Metab. 2015; 22: 516-530
        • Kallus S.J.
        • Brandt L.J.
        The intestinal microbiota and obesity.
        J Clin Gastroenterol. 2012; 46: 16-24
        • Borges-Canha M.
        • Portela-Cidade J.P.
        • Dinis-Ribeiro M.
        • Leite-Moreira A.F.
        • Pimentel-Nunes P.
        Role of colonic microbiota in colorectal carcinogenesis: a systematic review.
        Rev Esp Enferm Dig. 2015; 107: 659-671
        • De Martel C.
        • Ferlay J.
        • Franceschi S.
        • et al.
        Global burden of cancers attributable to infections in 2008: a review and synthetic analysis.
        Lancet Oncol. 2012; 13: 607-615
        • Jobin C.
        Colorectal cancer: looking for answers in the microbiota.
        Cancer Discov. 2013; 3: 384-387
        • Marchesi J.R.
        • Dutilh B.E.
        • Hall N.
        • et al.
        Towards the human colorectal cancer microbiome.
        PLoS One. 2011; 6: e20447
        • Gao Z.
        • Guo B.
        • Gao R.
        • Zhu Q.
        • Qin H.
        Microbiota disbiosis is associated with colorectal cancer.
        Front Microbiol. 2015; 6: 20
        • Feng Q.
        • Liang S.
        • Jia H.
        • et al.
        Gut microbiome development along the colorectal adenoma-carcinoma sequence.
        Nat Commun. 2015; 6: 6528
        • Zackular J.P.
        • Rogers M.A.
        • Ruffin M.T.
        • Schloss P.D.
        The human gut microbiome as a screening tool for colorectal cancer.
        Cancer Prev Res (Phila). 2014; 7: 1112-1121
        • Narayanan V.
        • Peppelenbosch M.P.
        • Konstantinov S.R.
        Human fecal microbiome-based biomarkers for colorectal cancer.
        Cancer Prev Res (Phila). 2014; 7: 1108-1111
        • Zeller G.
        • Tap J.
        • Voigt A.Y.
        • et al.
        Potential of fecal microbiota for early-stage detection of colorectal cancer.
        Mol Syst Biol. 2014; 10: 766
        • Pevsner-Fischer M.
        • Tuganbaev T.
        • Meijer M.
        • et al.
        Role of the microbiome in non-gastrointestinal cancers.
        World J Clin Oncol. 2016; 7: 200-213
        • Riley D.R.
        • Sieber K.B.
        • Robinson K.M.
        • et al.
        Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples.
        PLoS Comput Biol. 2013; 9: e1003107
        • Yamamoto M.L.
        • Maier I.
        • Dang A.T.
        • et al.
        Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity.
        Cancer Res. 2013; 73: 4222-4232
        • Witkowska M.
        • Smolewski P.
        Helicobacter pylori infection, chronic inflammation, and genomic transformations in gastric MALT lymphoma.
        Mediators Inflamm. 2013; 2013: 523170
        • Wotherspoon A.C.
        • Doglioni C.
        • Diss T.C.
        • et al.
        Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori.
        Lancet. 1993; 342: 575-577
        • Park H.S.
        • Kim Y.J.
        • Yang W.I.
        • Suh C.O.
        • Lee Y.C.
        Treatment outcome of localized Helicobacter pylori-negative low-grade gastric MALT lymphoma.
        World J Gastroenterol. 2010; 16: 2158-2162
        • Zackular J.P.
        • Baxter N.T.
        • Iverson K.D.
        • et al.
        The gut microbiome modulates colon tumorigenesis.
        MBio. 2013; 4: e00692-e00713
        • Son J.S.
        • Khair S.
        • Pettet D.W.
        • et al.
        Altered interactions between the gut microbiome and colonic mucosa precede polyposis in APCMin/+ mice.
        PLoS One. 2015; 10: e0127985
        • Schwabe R.F.
        • Jobin C.
        The microbiome and cancer.
        Nat Rev Cancer. 2013; 13: 800-812
        • Zhan Y.
        • Chen P.J.
        • Sadler W.D.
        • et al.
        Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury.
        Cancer Res. 2013; 73: 7199-7210
        • Dejea C.M.
        • Wick E.C.
        • Hechenbleikner E.M.
        • et al.
        Microbiota organization is a distinct feature of proximal colorectal cancers.
        Proc Natl Acad Sci U S A. 2014; 111: 18321-18326
        • Johnson C.H.
        • Dejea C.M.
        • Edler D.
        • et al.
        Metabolism links bacterial biofilms and colon carcinogenesis.
        Cell Metab. 2015; 21: 891-897
        • Wu G.D.
        • Compher C.
        • Chen E.Z.
        • et al.
        Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.
        Gut. 2016; 65: 63-72
        • Sesink A.L.
        • Termont D.S.
        • Kleibeuker J.H.
        • Van der Meer R.
        Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme.
        Cancer Res. 1999; 59: 5704-5709
        • Ijssennagger N.
        • Belzer C.
        • Hooiveld G.J.
        • et al.
        Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.
        Proc Natl Acad Sci U S A. 2015; 112: 10038-10043
        • Rooks M.G.
        • Garrett W.S.
        Gut microbiota, metabolites and host immunity.
        Nat Rev Immunol. 2016; 16: 341-352
        • Louis P.
        • Hold G.L.
        • Flint H.J.
        The gut microbiota, bacterial metabolites and colorectal cancer.
        Nat Rev Microbiol. 2014; 12: 661-672
        • Dorrestein P.C.
        • Mazmanian S.K.
        • Knight R.
        Finding the missing links among metabolites, microbes, and the host.
        Immunity. 2014; 40: 824-832
        • Matanoski G.
        • Tao X.
        • Almon L.
        • Adade A.A.
        • Davies-Cole J.O.
        Demographics and tumor characteristics of colorectal cancers in the United States, 1998-2001.
        Cancer. 2006; 107: 1112-1120
        • O'Keefe S.J.
        • Li J.V.
        • Lahti L.
        • et al.
        Fat, fibre and cancer risk in African Americans and rural Africans.
        Nat Commun. 2015; 6: 6342
        • Ou J.
        • Carbonero F.
        • Zoetendal E.G.
        • et al.
        Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans.
        Am J Clin Nutr. 2013; 98: 111-120
        • Cao H.
        • Luo S.
        • Xu M.
        • et al.
        The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling.
        Fam Cancer. 2014; 13: 563-571
        • Donohoe D.R.
        • Holley D.
        • Collins L.B.
        • et al.
        A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner.
        Cancer Discov. 2014; 4: 1387-1397
        • Singh N.
        • Gurav A.
        • Sivaprakasam S.
        • et al.
        Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis.
        Immunity. 2014; 40: 128-139
        • Holmes E.
        • Li J.V.
        • Marchesi J.R.
        • Nicholson J.K.
        Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk.
        Cell Metab. 2012; 16: 559-564
        • Nicholson J.K.
        • Holmes E.
        • Kinross J.
        • et al.
        Host-gut microbiota metabolic interactions.
        Science. 2012; 336: 1262-1267
        • Yoshimoto S.
        • Loo T.M.
        • Atarashi K.
        • et al.
        Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome.
        Nature. 2013; 499: 97-101
        • Bindels L.B.
        • Neyrinck A.M.
        • Claus S.P.
        • et al.
        Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia.
        ISME J. 2016; 10: 1456-1470
        • Bindels L.B.
        • Neyrinck A.M.
        • Salazar N.
        • et al.
        Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice.
        PLoS One. 2015; 10: e0131009
        • Kipanyula M.J.
        • Seke Etet P.F.
        • Vecchio L.
        • Farahna M.
        • Nukenine E.N.
        • Nwabo Kamdje A.H.
        Signaling pathways bridging microbial-triggered inflammation and cancer.
        Cell Signal. 2013; 25: 403-416
        • Davis B.K.
        • Philipson C.
        • Hontecillas R.
        • Eden K.
        • Bassaganya-Riera J.
        • Allen I.C.
        Emerging significance of NLRs in inflammatory bowel disease.
        Inflamm Bowel Dis. 2014; 20: 2412-2432
        • Vipperla K.
        • O'Keefe S.J.
        Diet, microbiota, and dysbiosis: a “recipe” for colorectal cancer.
        Food Funct. 2016; 7: 1731-1740
        • Cao X.
        Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease.
        Nat Rev Immunol. 2015; 16: 35-50
        • Renehan A.G.
        • Zwahlen M.
        • Egger M.
        Adiposity and cancer risk: new mechanistic insights from epidemiology.
        Nat Rev Cancer. 2015; 15: 484-498
        • Van Der Kraak L.
        • Gros P.
        • Beauchemin N.
        Colitis-associated colon cancer: is it in your genes?.
        World J Gastroenterol. 2015; 21: 11688-11699
        • Liu J.
        • He C.
        • Xu Q.
        • Xing C.
        • Yuan Y.
        NOD2 polymorphisms associated with cancer risk: a meta-analysis.
        PLoS One. 2014; 9: e89340
        • Liu R.
        • Truax A.D.
        • Chen L.
        • et al.
        Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components.
        Oncotarget. 2015; 6: 33456-33469
        • Nigro G.
        • Rossi R.
        • Commere P.H.
        • Jay P.
        • Sansonetti P.J.
        The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration.
        Cell Host Microbe. 2014; 15: 792-798
        • Pédron T.
        • Mulet C.
        • Dauga C.
        • et al.
        A crypt-specific core microbiota resides in the mouse colon.
        MBio. 2012; 3https://doi.org/10.1128/mBio.00116-12
        • Chen G.Y.
        • Shaw M.H.
        • Redondo G.
        • Núñez G.
        The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis.
        Cancer Res. 2008; 68: 10060-10067
        • Couturier-Maillard A.
        • Secher T.
        • Rehman A.
        • et al.
        NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer.
        J Clin Invest. 2013; 123: 700-711
        • Alnabhani Z.
        • Hugot J.P.
        • Montcuquet N.
        • et al.
        Respective roles of hematopoietic and nonhematopoietic Nod2 on the gut microbiota and mucosal homeostasis.
        Inflamm Bowel Dis. 2016; 22: 763-773
        • Robertson S.J.
        • Zhou J.Y.
        • Geddes K.
        • et al.
        Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis.
        Gut Microbes. 2013; 4: 222-231
        • Ayres J.S.
        Inflammasome-microbiota interplay in host physiologies.
        Cell Host Microbe. 2013; 14: 491-497
        • Hu B.
        • Elinav E.
        • Huber S.
        • et al.
        Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer.
        Proc Natl Acad Sci U S A. 2013; 110: 9862-9867
        • Levy M.
        • Thaiss C.A.
        • Zeevi D.
        • et al.
        Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling.
        Cell. 2015; 163: 1428-1443
        • Allen I.C.
        • TeKippe E.M.
        • Woodford R.M.
        • et al.
        The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer.
        J Exp Med. 2010; 207: 1045-1056
        • Hu B.
        • Elinav E.
        • Huber S.
        • et al.
        Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4.
        Proc Natl Acad Sci U S A. 2010; 107: 21635-21640
        • Williams T.M.
        • Leeth R.A.
        • Rothschild D.E.
        • et al.
        The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis.
        J Immunol. 2015; 194: 3369-3380
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674
        • Dupaul-Chicoine J.
        • Arabzadeh A.
        • Dagenais M.
        • et al.
        The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity.
        Immunity. 2015; 43: 751-763
        • Man S.M.
        • Karki R.
        • Malireddi R.K.
        • et al.
        The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection.
        Nat Immunol. 2015; 16: 467-475
        • Meunier E.
        • Wallet P.
        • Dreier R.F.
        • et al.
        Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida.
        Nat Immunol. 2015; 16: 476-484
        • Man S.M.
        • Zhu Q.
        • Zhu L.
        • et al.
        Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer.
        Cell. 2015; 162: 45-58
        • Wilson J.E.
        • Petrucelli A.S.
        • Chen L.
        • et al.
        Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt.
        Nat Med. 2015; 21: 906-913
        • West N.R.
        • McCuaig S.
        • Franchini F.
        • Powrie F.
        Emerging cytokine networks in colorectal cancer.
        Nat Rev Immunol. 2015; 15: 615-629
        • Grivennikov S.I.
        • Wang K.
        • Mucida D.
        • et al.
        Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.
        Nature. 2012; 491: 254-258
        • Song X.
        • Gao H.
        • Lin Y.
        • et al.
        Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis.
        Immunity. 2014; 40: 140-152
        • Sundström P.
        • Ahlmanner F.
        • Akéus P.
        • et al.
        Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-γ.
        J Immunol. 2015; 195: 3472-3481
        • Kjer-Nielsen L.
        • Patel O.
        • Corbett A.J.
        • et al.
        MR1 presents microbial vitamin B metabolites to MAIT cells.
        Nature. 2012; 491: 717-723
        • Ling L.
        • Lin Y.
        • Zheng W.
        • et al.
        Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients.
        Sci Rep. 2016; 6: 20358
        • Deretic V.
        • Saitoh T.
        • Akira S.
        Autophagy in infection, inflammation and immunity.
        Nat Rev Immunol. 2013; 13: 722-737
        • Lévy J.
        • Cacheux W.
        • Bara M.A.
        • et al.
        Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth.
        Nat Cell Biol. 2015; 17: 1062-1073
        • Garrett W.S.
        Cancer and the microbiota.
        Science. 2015; 348: 80-86
        • Geis A.L.
        • Fan H.
        • Wu X.
        • et al.
        Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis.
        Cancer Discov. 2015; 5: 1098-1109
        • Housseau F.
        • Wu S.
        • Wick E.C.
        • et al.
        Redundant innate and adaptive sources of IL-17 production drive colon tumorigenesis.
        Cancer Res. 2016; 76: 2115-2124
        • DeStefano Shields C.E.
        • Van Meerbeke S.W.
        • Housseau F.
        • et al.
        Reduction of murine colon tumorigenesis driven by enterotoxigenic Bacteroides fragilis using cefoxitin treatment.
        J Infect Dis. 2016; 214: 122-129
        • Nougayrède J.P.
        • Homburg S.
        • Taieb F.
        • et al.
        Escherichia coli induces DNA double-strand breaks in eukaryotic cells.
        Science. 2006; 313: 848-851
        • Cuevas-Ramos G.
        • Petit C.R.
        • Marcq I.
        • Boury M.
        • Oswald E.
        • Nougayrède J.P.
        Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells.
        Proc Natl Acad Sci U S A. 2010; 107: 11537-11542
        • Arthur J.C.
        • Perez-Chanona E.
        • Mühlbauer M.
        • et al.
        Intestinal inflammation targets cancer-inducing activity of the microbiota.
        Science. 2012; 338: 120-123
        • Arthur J.C.
        • Gharaibeh R.Z.
        • Mühlbauer M.
        • et al.
        Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer.
        Nat Commun. 2014; 5: 4724
        • Mousa J.J.
        • Yang Y.
        • Tomkovich S.
        • et al.
        MATE transport of the E. coli-derived genotoxin colibactin.
        Nature Microbiology. 2016; 1: 15009
        • Yang Y.
        • Jobin C.
        Microbial imbalance and intestinal pathologies: connections and contributions.
        Dis Model Mech. 2014; 7: 1131-1142
        • Kostic A.D.
        • Chun E.
        • Robertson L.
        • et al.
        Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.
        Cell Host Microbe. 2013; 14: 207-215
        • Gur C.
        • Ibrahim Y.
        • Isaacson B.
        • et al.
        Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack.
        Immunity. 2015; 42: 344-355
        • Mima K.
        • Sukawa Y.
        • Nishihara R.
        • et al.
        Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.
        JAMA Oncol. 2015; 1: 653-661
        • Kirchberger S.
        • Royston D.J.
        • Boulard O.
        • et al.
        Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model.
        J Exp Med. 2013; 210: 917-931
        • Zitvogel L.
        • Galluzzi L.
        • Viaud S.
        • et al.
        Cancer and the gut microbiota: an unexpected link.
        Sci Transl Med. 2015; 7: 271ps1
        • Bultman S.J.
        The microbiome and its potential as a cancer preventive intervention.
        Semin Oncol. 2016; 43: 97-106
        • Belcheva A.
        • Irrazabal T.
        • Martin A.
        Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health?.
        Bioessays. 2015; 37: 403-412
        • Ambalam P.
        • Raman M.
        • Purama R.K.
        • Doble M.
        Probiotics, prebiotics and colorectal cancer prevention.
        Best Pract Res Clin Gastroenterol. 2016; 30: 119-131
      1. Chemo side effects. Available at: http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/chemotherapy/understandingchemotherapyaguideforpatientsandfamilies/understanding-chemotherapy-chemo-side-effects. Accessed April 6, 2016.

      2. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Available at: http://clincancerres.aacrjournals.org/content/7/8/2182.full.pdf+html. Accessed March 27, 2016.

        • Mori K.
        • Kondo T.
        • Kamiyama Y.
        • Kano Y.
        • Tominaga K.
        Preventive effect of Kampo medicine (Hangeshashin-to) against irinotecan-induced diarrhea in advanced non-small-cell lung cancer.
        Cancer Chemother Pharmacol. 2003; 51: 403-406
        • Fittkau M.
        • Voigt W.
        • Holzhausen H.J.
        • Schmoll H.J.
        Saccharic acid 1.4-lactone protects against CPT-11-induced mucosa damage in rats.
        J Cancer Res Clin Oncol. 2004; 130: 388-394
        • Roberts A.B.
        • Wallace B.D.
        • Venkatesh M.K.
        • Mani S.
        • Redinbo M.R.
        Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity.
        Mol Pharmacol. 2013; 84: 208-217
        • Kong R.
        • Liu T.
        • Zhu X.
        • et al.
        Old drug new use–amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity.
        Clin Cancer Res. 2014; 20: 3521-3530
        • Wallace B.D.
        • Roberts A.B.
        • Pollet R.M.
        • et al.
        Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity.
        Chem Biol. 2015; 22: 1238-1249
        • Lin X.B.
        • Farhangfar A.
        • Valcheva R.
        • et al.
        The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.
        PLoS One. 2014; 9: e83644
        • Paci A.
        • Veal G.
        • Bardin C.
        • et al.
        Review of therapeutic drug monitoring of anticancer drugs part 1–cytotoxics.
        Eur J Cancer. 2014; 50: 2010-2019
        • Frank M.
        • Hennenberg E.M.
        • Eyking A.
        • et al.
        TLR signaling modulates side effects of anticancer therapy in the small intestine.
        J Immunol. 2015; 194: 1983-1995
        • Mellman I.
        • Coukos G.
        • Dranoff G.
        Cancer immunotherapy comes of age.
        Nature. 2011; 480: 480-489
        • Vétizou M.
        • Pitt J.M.
        • Daillère R.
        • et al.
        Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.
        Science. 2015; 350: 1079-1084
        • Dubin K.
        • Callahan M.K.
        • Ren B.
        • et al.
        Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis.
        Nat Commun. 2016; 7: 10391
        • Lehouritis P.
        • Cummins J.
        • Stanton M.
        • et al.
        Local bacteria affect the efficacy of chemotherapeutic drugs.
        Sci Rep. 2015; 5: 14554
        • Sistigu A.
        • Viaud S.
        • Chaput N.
        • Bracci L.
        • Proietti E.
        • Zitvogel L.
        Immunomodulatory effects of cyclophosphamide and implementations for vaccine design.
        Semin Immunopathol. 2011; 33: 369-383
        • Viaud S.
        • Saccheri F.
        • Mignot G.
        • et al.
        The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.
        Science. 2013; 342: 971-976
        • Iida N.
        • Dzutsev A.
        • Stewart C.A.
        • et al.
        Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.
        Science. 2013; 342: 967-970
        • Gui Q.F.
        • Lu H.F.
        • Zhang C.X.
        • Xu Z.R.
        • Yang Y.H.
        Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model.
        Genet Mol Res. 2015; 14: 5642-5651
        • Sivan A.
        • Corrales L.
        • Hubert N.
        • et al.
        Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
        Science. 2015; 350: 1084-1089
        • Goto Y.
        • Panea C.
        • Nakato G.
        • et al.
        Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation.
        Immunity. 2014; 40: 594-607