Advertisement

Advances in imaging approaches to fracture risk evaluation

  • Mary Kate Manhard
    Affiliations
    Biomedical Engineering, Vanderbilt University, Nashville, TN

    Vanderbilt University Institute of Imaging Science, Nashville, TN
    Search for articles by this author
  • Jeffry S. Nyman
    Affiliations
    Biomedical Engineering, Vanderbilt University, Nashville, TN

    Vanderbilt University Institute of Imaging Science, Nashville, TN

    Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Nashville, TN

    Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN

    Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
    Search for articles by this author
  • Mark D. Does
    Correspondence
    Reprint requests: Mark D. Does, 1161 21 Ave S, AA-1105 MCN, Nashville, TN 37232-2310
    Affiliations
    Biomedical Engineering, Vanderbilt University, Nashville, TN

    Vanderbilt University Institute of Imaging Science, Nashville, TN

    Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN

    Electrical Engineering, Vanderbilt University, Nashville, TN
    Search for articles by this author
Published:October 17, 2016DOI:https://doi.org/10.1016/j.trsl.2016.09.006
      Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high-resolution HR-peripheral QCT (HR-pQCT) and micromagnetic resonance imaging assess the microarchitecture of trabecular bone; quantitative ultrasound measures the modulus or tissue stiffness of cortical bone; and quantitative ultrashort echo-time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions.

      Abbreviations:

      BMD (bone mineral density), BUA (broadband ultrasound attenuation), DXA (dual-energy x-ray absorptiometry), FRAX (fracture risk algorithm), HR-pQCT (high-resolution peripheral quantitative computed tomography), MRI (magnetic resonance imaging), MRS (magnetic resonance spectroscopy), NMR (nuclear magnetic resonance), QUI (quantitative ultrasound index), QUS (quantitative ultrasound), SI (stiffness index), SoS (speed of sound), UTE (ultrashort echo time)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hernlund E.
        • Svedbom A.
        • Ivergård M.
        • et al.
        Osteoporosis in the European Union: medical management, epidemiology and economic burden.
        Arch Osteoporos. 2013; 8: 136
        • Wright N.C.
        • Looker A.C.
        • Saag K.G.
        • et al.
        The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine.
        J Bone Miner Res. 2014; 29: 2520-2526
        • WHO
        WHO scientific group on the assessment of osteoporosis at primary health care level, Technical report.
        World Health Organization, Brussels, Belgium2004
        • Burge R.
        • DawsonHughes B.
        • Solomon D.H.
        • Wong J.B.
        • King A.
        • Tosteson A.
        Incidence and economic burden of osteoporosis-related fractures in the United States, 2005 to 2025.
        J Bone Miner Res. 2007; 22: 465-475
        • Wild S.
        • Roglic G.
        • Green A.
        • Sicree R.
        • King H.
        Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
        Diabetes Care. 2004; 27: 1047-1053
        • Blake G.M.
        • Fogelman I.
        Technical principles of dual energy x-ray absorptiometry.
        Semin Nucl Med. 1997; 27: 210-228
        • WHO
        Technical report: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis, Technical report.
        World Health Organization, Geneva1994
        • Kanis J.
        Diagnosis of osteoporosis and assessment of fracture risk.
        Lancet. 2002; 359: 1929-1936
        • Bouxsein M.L.
        Technology insight: noninvasive assessment of bone strength in osteoporosis.
        Nat Clin Pract Rheum. 2008; 4: 310-318
        • Kanis J.
        • Johnell O.
        • Oden A.
        • Dawson A.
        • De Laet C.
        • Jonsson B.
        Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds.
        Osteoporos Int. 2001; 12: 989-995
        • Schwartz A.V.
        • Sellmeyer D.E.
        Diabetes, fracture, and bone fragility.
        Curr Osteoporos Rep. 2007; 5: 105-111
        • Siris E.S.
        • Chen Y.T.
        • Abbott T.A.
        • et al.
        Bone mineral density thresholds for pharmacological intervention to prevent fractures.
        Arch Intern Med. 2004; 164: 1108-1112
        • Cosman F.
        • de Beur S.J.
        • LeBoff M.S.
        • et al.
        Clinicians guide to prevention and treatment of osteoporosis.
        Osteoporos Int. 2014; 25: 2359-2381
        • Nguyen N.
        • Frost S.
        • Center J.
        • Eisman J.
        • Nguyen T.
        Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks.
        Osteoporos Int. 2008; 19: 1431-1444
        • HippisleyCox J.
        • Coupland C.
        Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study.
        BMJ. 2012; 344: 1-16
        • Silva B.C.
        • Leslie W.D.
        • Resch H.
        • et al.
        Trabecular bone score: a noninvasive analytical method based upon the DXA image.
        J Bone Miner Res. 2014; 29: 518-530
        • Kanis J.A.
        • Hans D.
        • Cooper C.
        • et al.
        Interpretation and use of FRAX in clinical practice.
        Osteoporos Int. 2011; 22: 2395-2411
        • Unnanuntana A.
        • Gladnick B.P.
        • Donnelly E.
        • Lane J.M.
        The assessment of fracture risk.
        J Bone Joint Surg Am. 2010; 92: 743-753
        • Seeman E.
        • Delmas P.D.
        Bone quality the material and structural basis of bone strength and fragility.
        N Engl J Med. 2006; 354: 2250-2261
        • Boutroy S.
        • Bouxsein M.L.
        • Munoz F.
        • Delmas P.D.
        In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography.
        J Clin Endocr Metab. 2005; 90: 6508-6515
        • Davison K.S.
        • Kendler D.L.
        • Ammann P.
        • et al.
        Assessing fracture risk and effects of osteoporosis drugs: bone mineral density and beyond.
        Am J Med. 2009; 122: 992-997
        • Link T.M.
        Osteoporosis imaging: state of the art and advanced imaging.
        Radiology. 2012; 263: 3-17
        • Downey P.A.
        • Siegel M.I.
        Bone biology and the clinical implications for osteoporosis.
        Phys Ther. 2006; 86: 77-91
        • Zioupos P.
        • Currey J.D.
        • Hamer A.J.
        The role of collagen in the declining mechanical properties of aging human cortical bone.
        J Biomed Mater Res. 1999; 45: 108-116
        • Wang X.
        • Shen X.
        • Li X.
        • Agrawal C.M.
        Age-related changes in the collagen network and toughness of bone.
        Bone. 2002; 31: 1-7
        • Cann C.E.
        • Genant H.K.
        Precise measurement of vertebral mineral content using computed tomography.
        J Comput Assist Tomo. 1980; 3: 493-500
        • Cann C.E.
        • Genant H.K.
        • Ettinger B.
        Quantitative computed tomography for prediction of vertebral fracture risk.
        Bone. 1985; 6: 1-7
        • Beck T.J.
        • Ruff C.B.
        • Warden K.K.
        • Scott W.W.
        • Rao G.U.
        Predicting femoral neck strength from bone mineral data: a structural approach.
        Invest Radiol. 1990; 25: 6-18
        • Pickhardt P.J.
        • Pooler B.D.
        • Lauder T.
        • Munoz del Rio A.
        • Bruce R.J.
        • Binkley N.
        Annals of internal medicine opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications.
        Ann Intern Med. 2013; 158: 588-595
        • Shepherd J.A.
        • Schousboe J.T.
        • Broy S.B.
        • Engelke K.
        • Leslie W.D.
        Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD.
        J Clin Densitom. 2016; 18: 274-286
        • Link T.M.
        • Lang T.F.
        Axial QCT: clinical applications and new developments.
        J Clin Densitom. 2014; 17: 438-448
        • Cheng X.
        • Li J.
        • Lu Y.
        • Keyak J.
        • Lang T.
        Proximal femoral density and geometry measurements by quantitative computed tomography : association with hip fracture.
        Bone. 2007; 40: 169-174
        • Black D.M.
        • Bouxsein M.L.
        • Marshall L.M.
        • Cummings S.R.
        • Lang T.F.
        • Cauley J.A.
        Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT.
        J Bone Miner Res. 2008; 23: 1326-1333
        • RodriguezSoto A.E.
        • Fritscher K.D.
        • Schuler B.
        • et al.
        Texture analysis, bone mineral density, and cortical thickness of the proximal femur: fracture risk prediction.
        J Comput Assist Tomo. 2010; 34: 949-957
        • Yu W.
        • Glfier C.C.
        • Grampp S.
        • et al.
        Spinal bone mineral assessment in postmenopausal women: a comparison between dual x-ray absorptiometry and quantitative computed tomography.
        Osteoporos Int. 1995; 5: 433-439
        • Bergot C.
        • Laval-Jeantet A.
        • Hutchinson K.
        • Dautraix I.
        • Caulin F.
        • Genant H.
        A comparison of spinal quantitative computed tomography with dual energy x-ray absorptiometry in European women with vertebral and nonvertebral fractures.
        Calcif Tissue Int. 2001; 68: 74-82
        • Ito M.
        • Ikeda K.
        • Nishiguchi M.
        • et al.
        Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk.
        J Bone Miner Res. 2005; 20: 1828-1836
        • Manske S.L.
        • Liu-Ambrose T.
        • Bakker P.M.
        • et al.
        Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength.
        Osteoporos Int. 2006; 17: 1539-1545
        • Kopperdahl D.L.
        • Aspelund T.
        • Hoffmann P.F.
        • et al.
        Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans.
        J Bone Miner Res. 2014; 29: 570-580
        • Zysset P.K.
        • Ara E.D.
        • Varga P.
        • Pahr D.H.
        Finite element analysis for prediction of bone strength.
        Bonekey Rep. 2013; 386: 1-9
        • Imai K.
        Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment.
        World J Exp Med. 2015; 5: 182-188
        • Hernandez C.J.
        • Cresswell E.N.
        Understanding bone strength from finite element models: concepts for non-engineers.
        Clinic Rev Bone Miner Metab. 2016; 14: 161-166
        • Keyak J.H.
        • Rossi S.A.
        • Jones K.A.
        • Skinner H.B.
        Prediction of femoral fracture load using automated finite element modeling.
        J Biomech. 1998; 31: 125-133
        • Crawford R.
        • Cann C.E.
        • Keaveny T.M.
        Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.
        Bone. 2003; 33: 744-750
        • Orwoll E.S.
        • Marshall L.M.
        • Nielson C.M.
        • et al.
        Finite element analysis of the proximal femur and hip fracture risk in older men.
        J Bone Miner Res. 2009; 24: 475-483
        • Keyak J.H.
        • Sigurdsson S.
        • Karlsdottir G.
        • et al.
        Male female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study.
        Bone. 2011; 48: 1239-1245
        • Geusens P.
        • Chapurlat R.
        • Schett G.
        • et al.
        High-resolution in vivo imaging of bone and joints: a window to microarchitecture.
        Nat Rev Rheumatol. 2014; 10: 304-313
        • Laib A.
        • Häuselmann J.H.
        • Rüegsegger P.
        In vivo high resolution 3D-QCT of the human forearm.
        Technol Health Care. 1998; 6: 329-337
        • Kabel J.
        • Odgaard A.
        • van Rietbergen B.
        • Huiskes R.
        Connectivity and the elastic properties of cancellous bone.
        Bone. 1999; 24: 115-120
        • Odgaard A.
        Three-dimensional methods for quantification of cancellous bone architecture.
        Bone. 1997; 20: 315-328
        • Hildebrand T.
        • Rüegsegger P.
        Quantification of bone microarchitecture with the structure model index.
        Comput Methods Biomec Biomed Engin. 1997; 1: 15-23
        • Liu X.S.
        • Sajda P.
        • Saha P.K.
        • et al.
        Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.
        J Bone Miner Res. 2008; 23: 223-235
        • Burrows M.
        • Liu D.
        • McKay H.
        High-resolution peripheral QCT imaging of bone micro-structure in adolescents.
        Osteoporos Int. 2010; 21: 515-520
        • Nishiyama K.K.
        • Pauchard Y.
        • Nikkel L.E.
        • et al.
        Longitudinal HR pQCT and image registration detects endocortical bone loss in kidney transplantation patients.
        J Bone Miner Res. 2015; 30: 554-561
        • SornayRendu E.
        • Boutroy S.
        • Munoz F.
        • Delmas P.D.
        Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study.
        J Bone Miner Res. 2007; 22: 425-433
        • Liu X.S.
        • Stein E.M.
        • Zhou B.
        • et al.
        Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements.
        J Bone Miner Res. 2012; 27: 263-272
        • Macdonald H.M.
        • Nishiyama K.K.
        • Kang J.
        • Hanley D.A.
        • Boyd S.K.
        Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study.
        J Bone Miner Res. 2011; 26: 50-62
        • Paccou J.
        • Ward K.A.
        • Jameson K.A.
        • Dennison E.M.
        • Cooper C.
        • Edwards M.H.
        Bone microarchitecture in men and women with diabetes: the importance of cortical porosity.
        Calcif Tissue Int. 2016; 98: 465-473
        • Kazakia G.J.
        • Tjong W.
        • Nirody J.A.
        • et al.
        The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT.
        Bone. 2014; 63: 132-140
        • Pistoia W.
        • van Rietbergen B.
        • Lochmüller E.M.
        • Lill C.A.
        • Eckstein F.
        • Rüegsegger P.
        Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images.
        Bone. 2002; 30: 842-848
        • Khosla S.
        • Riggs B.L.
        • Atkinson E.J.
        • et al.
        Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment.
        J Bone Miner Res. 2006; 21: 124-131
        • Melton L.J.
        • Riggs B.L.
        • Lenthe G.H.V.
        • et al.
        Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women.
        J Bone Miner Res. 2007; 22: 1442-1448
        • Vico L.
        • Zouch M.
        • Amirouche A.
        • et al.
        High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures.
        J Bone Miner Res. 2008; 23: 1741-1750
        • Boutry S.
        • Brunin S.
        • Mahieu I.
        • Laurent S.
        • Vander Elst L.
        • Muller R.N.
        Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study.
        Contrast Media Mol Imaging. 2008; 3: 223-232
        • Stein E.M.
        • Liu X.S.
        • Nickolas T.L.
        • et al.
        Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures.
        J Bone Miner Res. 2010; 25: 2572-2581
        • SornayRendu E.
        • CabreraBravo J.L.
        • Boutroy S.
        • Munoz F.
        • Delmas P.D.
        Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women.
        J Bone Miner Res. 2009; 24: 737-743
        • Stein E.M.
        • Liu X.S.
        • Nickolas T.L.
        • et al.
        Microarchitectural abnormalities are more severe in postmenopausal women with vertebral compared to nonvertebral fractures.
        J Clin Endocr Metab. 2012; 97: 1918-1926
        • Mueller T.L.
        • Wirth A.J.
        • Lenthe G.H.V.
        • et al.
        Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: a non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis.
        J Tissue Eng Regen Med. 2011; 5: 415-420
        • De Jong J.J.
        • Willems P.C.
        • Arts J.J.
        • et al.
        Assessment of the healing process in distal radius fractures by high resolution peripheral quantitative computed tomography.
        Bone. 2014; 64: 65-74
        • Christen D.
        • Melton L.J.
        • Zwahlen A.
        • Amin S.
        • Khosla S.
        • Müller R.
        Improved fracture risk assessment based on nonlinear micro finite element simulations from HRpQCT images at the distal radius.
        J Bone Miner Res. 2013; 28: 2601-2608
        • Damilakis J.
        • Adams J.E.
        • Guglielmi G.
        • Link T.M.
        Radiation exposure in X-ray-based imaging techniques used in osteoporosis.
        Eur Radiol. 2010; 20: 2707-2714
        • Gregg E.
        • Kriska A.
        • Salamone L.
        • et al.
        The epidemiology of quantitative ultrasound: a review of the relationships with bone mass, osteoporosis and fracture risk.
        Osteoporos Int. 1997; 7: 89-99
        • Guglielmi G.
        • Terlizzi F.D.
        Quantitative ultrasound in the assessment of osteoporosis.
        Eur J Radiol. 2009; 71: 425-431
        • Bouxsein M.L.
        • Coan B.S.
        • Lee S.C.
        Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia.
        Bone. 1999; 25: 49-54
        • Trimpou P.
        • Bosaeus I.
        • Bengtsson B.A.
        • Landin-Wiilhelmsen K.
        High correlation between quantitative ultrasound and DXA during 7 years of follow-up.
        Eur J Radiol. 2010; 73: 360-364
        • Moayyeri A.
        • Adams J.E.
        • Adler R.A.
        • et al.
        Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis.
        Osteoporos Int. 2012; 23: 143-153
        • Chan M.Y.
        • Nguyen N.D.
        • Center J.R.
        • Eisman J.A.
        • Nguyen T.V.
        Absolute fracture-risk prediction by a combination of calcaneal quantitative ultrasound and bone mineral density.
        Calcif Tissue Int. 2012; 90: 128-136
        • Chan M.Y.
        • Nguyen N.D.
        • Center J.R.
        • Eisman J.A.
        • Nguyen T.V.
        Quantitative ultrasound and fracture risk prediction in non-osteoporotic men and women as defined by WHO criteria.
        Osteoporos Int. 2013; 24: 1015-1022
        • Kauppi M.
        • Impivaara O.
        • Mäki J.
        • Heliövaara M.
        • Jula A.
        Quantitative ultrasound measurements and vitamin D status in the assessment of hip fracture risk in a nationally representative population sample.
        Osteoporos Int. 2013; 24: 2611-2618
        • Damilakis J.
        • Papadokostakis G.
        • Perisinakis K.
        • Maris T.G.
        • Karantanas A.H.
        Hip fracture discrimination by the Achilles Insight QUS imaging device.
        Eur J Radiol. 2007; 63: 59-62
        • Hans D.
        • Krieg M.A.
        The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 1529-1538
        • Zhang L.
        • Lv H.
        • Zheng H.
        • et al.
        Correlation between parameters of calcaneal quantitative ultrasound and hip structural analysis in osteoporotic fracture patients.
        PLoS One. 2015; 10: e0145879
        • McLeod K.M.
        • Johnson S.
        • Rasali D.
        • Verma A.
        Discriminatory performance of the calcaneal quantitative ultrasound and osteoporosis self-assessment tool to select Older women for dual-energy x-ray absorptiometry.
        J Clin Densitom. 2016; 18: 157-164
        • Villa P.
        • Lassandro A.
        • Moruzzi M.
        • et al.
        A non invasive prevention program model for the assessment of osteoporosis in the early postmenopausal period: a pilot study on FRAX and QUS tools advantages.
        J Endocrinol Invest. 2016; 39: 191-198
        • Briot K.
        What is the role of DXA, QUS and bone markers in fracture prediction, treatment allocation and monitoring?.
        Best Pract Res Clin Rheumatol. 2005; 19: 951-964
        • Guglielmi G.
        • Adams J.
        • Link T.M.
        Quantitative ultrasound in the assessment of skeletal status.
        Eur Radiol. 2009; 19: 1837-1848
        • Majumdar S.
        • Genant H.K.
        • Grampp S.
        • et al.
        Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging.
        J Bone Miner Res. 1997; 12: 111-118
        • Majumdar S.
        Magnetic resonance imaging of trabecular bone structure.
        Top Magn Reson Img. 2002; 13: 323-334
        • Wehrli F.W.
        • Song H.K.
        • Saha P.K.
        • Wright A.C.
        Quantitative MRI for the assessment of bone structure and function.
        NMR Biomed. 2006; 19: 731-764
        • Wehrli F.W.
        Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging.
        J Magn Reson Img. 2007; 409: 390-409
        • Krug R.
        • CarballidoGamio J.
        • Burghardt A.J.
        • et al.
        Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo.
        Osteoporos Int. 2008; 19: 653-661
        • Boutry N.
        • Cortet B.
        • Dubois P.
        • Marchandise X.
        • Cotten A.
        Radiology trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis.
        Radiology. 2003; 227: 708-717
        • Chesnut C.H.
        • Majumdar S.
        • Newitt D.C.
        • et al.
        Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging : results from the QUEST study.
        J Bone Miner Res. 2005; 20: 1548-1561
        • Banerjee S.
        • Han E.T.
        • Krug R.
        • Newitt D.C.
        • Majumdar S.
        Application of refocused steady-state free- precession methods at 1. 5 and 3 T to in vivo high- resolution MRI of trabecular bone: simulations and experiments.
        J Magn Reson Img. 2005; 21: 818-825
        • Techawiboonwong A.
        • Song H.K.
        • Magland J.F.
        • Saha P.K.
        • Wehrli F.W.
        Implications of pulse sequence in structural imaging of trabecular bone.
        J Magn Reson Img. 2005; 22: 647-655
        • Ma J.
        • Wehrli F.W.
        • Song H.K.
        Fast 3D large-angle spin-echo imaging (3D FLASE).
        Magn Reson Med. 1996; 35: 903-910
        • Song H.K.
        • Wehrli F.W.
        In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis.
        Magn Reson Med. 1999; 953: 947-953
        • Vasilic B.
        • Wehrli F.W.
        A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in vivo MRI.
        IEEE Trans Med Imaging. 2005; 24: 1574-1585
        • Krug R.
        • Banerjee S.
        • Han E.T.
        • Newitt D.C.
        • Link T.M.
        • Majumdar S.
        Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur.
        Osteoporos Int. 2005; 16: 1307-1314
        • Chang G.
        • Deniz C.M.
        • Honig S.
        • et al.
        MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.
        J Magn Reson Img. 2014; 39: 1384-1393
        • Hotca A.
        • Rajapakse C.S.
        • Cheng C.
        • et al.
        In vivo measurement reproducibility of femoral neck microarchitectural parameters derived from 3T MR images.
        J Magn Reson Imaging. 2015; 42: 1339-1345
        • Chang G.
        • Honig S.
        • Brown R.
        • et al.
        Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects.
        Radiology. 2014; 272: 464-474
        • Wehrli F.W.
        • Gomberg B.R.
        • Saha P.K.
        • Song H.K.
        • Hwang S.N.
        • Snyder P.J.
        Digital Topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis.
        J Bone Miner Res. 2001; 16: 1520-1531
        • Laib A.
        • Newitt D.C.
        • Lu Y.
        • Majumdar S.
        New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images.
        Osteoporos Int. 2002; 13: 130-136
        • VanRietbergen B.
        • Majumdar S.
        • Newitt D.
        • MacDonald B.
        High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment.
        Clin Biomech. 2002; 17: 81-88
        • Zhang X.H.
        • Liu X.S.
        • Vasilic B.
        • et al.
        In vivo micro-MRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment.
        J Bone Miner Res. 2008; 23: 1426-1434
        • Wehrli F.W.
        • Rajapakse C.S.
        • Magland J.F.
        • Snyder P.J.
        Mechanical implications of estrogen supplementation in early postmenopausal women.
        J Bone Miner Res. 2010; 25: 1406-1414
        • Sharma G.B.
        • Robertson D.D.
        • Laney D.A.
        • Gambello M.J.
        • Terk M.
        Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease.
        J Biomech. 2016; 49: 1961-1968
        • Chang G.
        • Rajapakse C.S.
        • Babb J.S.
        • Honig S.P.
        • Recht M.P.
        • Regatte R.R.
        In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis.
        J Bone Miner Metab. 2012; 30: 243-251
        • Zhang N.
        • Magland J.F.
        • Rajapakse C.S.
        • Bhagat Y.A.
        • Wehrli F.W.
        Potential of in vivo MRI-based nonlinear finite-element analysis for the assessment of trabecular bone post-yield properties.
        Med Phys. 2013; 40: 1-10
        • Rajapakse C.S.
        • Leonard M.B.
        • Bhagat Y.A.
        • Sun W.
        • Magland J.F.
        • Wehrli F.W.
        Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation.
        Radiology. 2012; 262: 912-920
        • Chang G.
        • Deniz C.M.
        • Honig S.
        • et al.
        Feasibility of three dimensional MRI of proximal femur microarchitecture at 3 tesla using 26 receive elements without and with parallel imaging.
        J Magn Reson Img. 2014; 40: 229-238
        • Chang G.
        • Rajapakse C.S.
        • Regatte R.R.
        • et al.
        3 tesla MRI detects deterioration in proximal femur microarchitecture and strength in long-term glucocorticoid users compared with controls.
        J Magn Reson Img. 2015; 42: 1489-1496
        • Folkesson J.
        • Goldenstein J.
        • Carballidogamio J.
        • et al.
        Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women.
        Bone. 2011; 48: 611-621
        • Gomberg B.R.
        • Wehrli F.W.
        • Vasilic B.
        • et al.
        Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia.
        Bone. 2004; 35: 266-276
        • Vasilic B.
        • Ladinsky G.A.
        • Saha P.K.
        • Wehrli F.W.
        Micro-MRI-based image acquisition and processing system for assessing the response to therapeutic intervention.
        Proc SPIE. 2006; 6143: 1-11
        • Justesen J.
        • Stenderup K.
        • Ebbesen E.N.
        • Mosekilde L.
        • Steiniche T.
        • Kassem M.
        Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis.
        Biogerontology. 2001; 2: 165-171
        • Rosen C.J.
        • Bouxsein M.L.
        Mechanisms of disease: is osteoporosis the obesity of bone?.
        Nat Clin Pract Rheum. 2006; 2: 35-43
        • Fazeli P.K.
        • Horowitz M.C.
        • Macdougald O.A.
        • et al.
        Marrow fat and bone new perspectives.
        J Clin Endocr Metab. 2013; 98: 935-945
        • Yeung D.K.W.
        • Griffith J.F.
        • Antonio G.E.
        • Lee F.K.H.
        • Woo J.
        • Leung P.C.
        Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study.
        J Magn Reson Img. 2005; 22: 279-285
        • Schellinger D.
        • Lin C.S.
        • Hatipoglu H.G.
        • Fertikh D.
        Potential value of vertebral proton MR spectroscopy in determining bone weakness.
        Am J Neuroradiol. 2001; 22: 1620-1627
        • Wehrli F.W.
        • Hopkins J.A.
        • Hwang S.N.
        • Song H.K.
        • Snyder P.J.
        • Haddad J.G.
        Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry.
        Radiology. 2000; 217: 527-538
        • Machann J.
        • Stefan N.
        • Schick F.
        (1)H MR spectroscopy of skeletal muscle, liver and bone marrow.
        Eur J Radiol. 2008; 67: 275-284
        • Ren J.
        • Dimitrov I.
        • Sherry A.D.
        • Malloy C.R.
        Composition of adipose tissue and marrow fat in humans by 1 H NMR at 7 Tesla.
        J Lipid Res. 2008; 49: 2055-2062
        • Li X.
        • Kuo D.
        • Schafer A.L.
        • et al.
        Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis.
        J Magn Reson Img. 2011; 33: 974-979
        • Verma S.
        • Rajaratnam J.H.
        • Denton J.
        • Hoyland J.A.
        • Byers R.J.
        Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis.
        J Clin Pathol. 2002; 55: 693-698
        • Patsch J.M.
        • Li X.
        Bone marrow composition, diabetes, and fracture risk: more bad news for saturated fat.
        J Bone Miner Res. 2013; 28: 1718-1720
        • Krings A.
        • Rahman S.
        • Huang S.
        • Lu Y.
        • Czernik P.J.
        • Lecka-Czernik B.
        Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes.
        Bone. 2012; 50: 546-552
        • Baum T.
        • Yap S.P.
        • Karampinos D.C.
        • et al.
        Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?.
        J Magn Reson Img. 2012; 35: 117-124
        • Techawiboonwong A.
        • Song H.K.
        • Leonard M.B.
        • Wehrli F.W.
        Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging.
        Radiology. 2008; 248: 824-833
        • Ni Q.
        • Nyman J.S.
        • Wang X.
        • Santos A.D.L.
        • Nicolella D.P.
        Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance.
        Meas Sci Technology. 2007; 18: 715-723
        • Horch R.A.
        • Nyman J.S.
        • Gochberg D.F.
        • Dortch R.D.
        • Does M.D.
        Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging.
        Magn Reson Med. 2010; 64: 680-687
        • Ong H.H.
        • Wright A.C.
        • Wehrli F.W.
        Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone.
        J Bone Miner Res. 2012; 27: 2573-2581
        • Fantazzini P.
        • Brown R.J.S.
        • Borgia G.C.
        Bone tissue and porous media: common features and differences studied by NMR relaxation.
        Magn Reson Img. 2003; 21: 227-234
        • Robson M.D.
        • Gatehouse P.D.
        • Bydder M.
        • Bydder G.M.
        Magnetic resonance: an introduction to ultrashort TE (UTE) imaging.
        J Comput Assist Tomo. 2003; 27: 825-846
        • Wu Y.
        • Ackerman J.L.
        • Chesler D.A.
        • Graham L.
        • Wang Y.
        • Glimcher M.J.
        Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI.
        Magn Reson Med. 2003; 50: 59-68
        • Weiger M.
        • Pruessmann K.P.
        • Hennel F.
        MRI with zero echo time: hard versus sweep pulse excitation.
        Magn Reson Med. 2011; 66: 379-389
        • Idiyatullin D.
        • Corum C.
        • Park J.Y.
        • Garwood M.
        Fast and quiet MRI using a swept radiofrequency.
        J Magn Reson. 2006; 181: 342-349
        • Diaz E.
        • Chung C.B.
        • Bae W.C.
        • et al.
        Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water.
        NMR Biomed. 2012; 25: 161-168
        • Techawiboonwong A.
        • Song H.K.
        • Wehrli F.W.
        In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water.
        NMR Biomed. 2008; 21: 59-70
        • Du J.
        • Carl M.
        • Bydder M.
        • Takahashi A.
        • Chung C.B.
        • Bydder G.M.
        Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone.
        J Magn Reson. 2010; 207: 304-311
        • Bae W.C.
        • Chen P.C.
        • Chung C.B.
        • Masuda K.
        • D'Lima D.
        • Du J.
        Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties.
        J Bone Miner Res. 2012; 27: 848-857
        • Rad H.S.
        • Lam S.C.B.
        • Magland J.F.
        • et al.
        Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI.
        NMR Biomed. 2011; 24: 855-864
        • Manhard M.K.
        • Horch R.A.
        • Gochberg D.F.
        • Nyman J.S.
        • Does M.D.
        In vivo quantitative MR imaging of bound and pore water in cortical bone.
        Radiology. 2015; 277: 221-229
        • Rajapakse C.S.
        • BashoorZadeh M.
        • Li C.
        • Sun W.
        • Wright A.C.
        • Wehrli F.W.
        Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility.
        Radiology. 2015; 276: 526-535
        • Nyman J.S.
        • Ni Q.
        • Nicolella D.P.
        • Wang X.
        Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone.
        Bone. 2008; 42: 193-199
        • Horch R.A.
        • Gochberg D.F.
        • Nyman J.S.
        • Does M.D.
        Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray.
        PLoS One. 2011; 6: e16359
        • Seifert A.C.
        • Wehrli F.W.
        Solid-state quantitative 1 H and 31 P MRI of cortical bone in humans.
        Curr Osteoporos Rep. 2016; 14: 77-86
        • Du J.
        • Diaz E.
        • Carl M.
        • Bae W.
        • Chung C.B.
        • Bydder G.M.
        Ultrashort echo time imaging with bicomponent analysis.
        Magn Reson Med. 2012; 67: 645-649
        • Du J.
        • Hermida J.C.
        • Diaz E.
        • et al.
        Assessment of cortical bone with clinical and ultrashort echo time sequences.
        Magn Reson Med. 2013; 70: 697-704
        • Li C.
        • Seifert A.C.
        • Rad H.S.
        • et al.
        Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction.
        Radiology. 2014; 272: 796-806
        • Ni Q.
        • King J.D.
        • Wang X.
        The characterization of human compact bone structure changes by low-field nuclear magnetic resonance.
        Meas Sci Technol. 2004; 15: 58-66
        • Horch R.A.
        • Gochberg D.F.
        • Nyman J.S.
        • Does M.D.
        Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone.
        Magn Reson Med. 2012; 68: 1774-1784
        • Li C.
        • Seifert A.
        • Magland J.
        • Wehrli F.
        Zero Echo Time (ZTE) imaging with anisotropic field-of-view.
        Proc Intl Soc Magn Reson Med. 2013; 21: 762
        • Seifert A.C.
        • Wehrli S.L.
        • Wehrli F.W.
        Bi-component T2* analysis of bound and pore bone water fractions fails at high field strengths.
        NMR Biomed. 2015; 28: 861-872
        • Manhard M.K.
        • Horch R.A.
        • Harkins K.D.
        • Gochberg D.F.
        • Nyman J.S.
        • Does M.D.
        Validation of quantitative bound- and pore-water imaging in cortical bone.
        Magn Reson Med. 2014; 71: 2166-2171
        • Manhard M.K.
        • Uppuganti S.
        • Granke M.
        • Gochberg D.F.
        • Nyman J.S.
        • Does M.D.
        MRI-derived bound and pore water concentrations as predictors of fracture resistance.
        Bone. 2016; 87: 1-10
        • Larson P.E.Z.
        • Conolly S.M.
        • Pauly J.M.
        • Nishimura D.G.
        Using adiabatic inversion pulses for long-T2 suppression in ultrashort echo time (UTE) imaging.
        Magn Reson Med. 2007; 58: 952-961
        • Li C.
        • Magland J.F.
        • Rad H.S.
        • Song H.K.
        • Wehrli F.W.
        Comparison of optimized soft-tissue suppression schemes for ultrashort echo time MRI.
        Magn Reson Med. 2011; 689: 680-689
        • Seifert A.C.
        • Li C.
        • Rajapakse C.S.
        • et al.
        Bone mineral 31 P and matrix-bound water densities measured by solid-state 31 P and 1 H MRI.
        NMR Biomed. 2014; 27: 739-748
        • Gatehouse P.
        • Bydder G.
        Magnetic resonance imaging of short T2 components in tissue.
        Clin Radiol. 2003; 58: 1-19
        • Atkinson I.C.
        • Lu A.
        • Thulborn K.R.
        Characterization and correction of system delays and eddy currents for MR imaging with ultrashort echo-time and time-varying gradients.
        Magn Reson Med. 2009; 62: 532-537
        • Harkins K.D.
        • Does M.D.
        • Grissom W.A.
        Iterative method for predistortion of MRI gradient waveforms.
        IEEE Trans Med Imaging. 2014; 33: 1641-1647
        • Manhard M.K.
        • Harkins K.D.
        • Gochberg D.F.
        • Nyman J.S.
        • Does M.D.
        30-Second bound- and pore-water maps of cortical bone.
        Int Soc Magn Res Med. 2016; : 676