Advertisement

Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer

  • Author Footnotes
    1 These authors contributed equally to this work.
    Mingjiao Weng
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Pathology, Harbin Medical University, Harbin, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Di Wu
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Chao Yang
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Pathology, Harbin Medical University, Harbin, China
    Search for articles by this author
  • Haisheng Peng
    Affiliations
    Research and Development of Natural Products Key Laboratory, Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Daqing, China
    Search for articles by this author
  • Guangyu Wang
    Correspondence
    Guangyu Wang, Department of Oncology, the Third Affiliated Hospital of Harbin Medical University, No. 150, Haping Road, Nangang District, Harbin, Heilongjiang Province, 150086
    Affiliations
    Department of Oncology, the Third Affiliated Hospital of Harbin Medical University, Harbin, China
    Search for articles by this author
  • Tianzhen Wang
    Correspondence
    Reprint requests: Xiaobo Li or Tianzhen Wang, Department of Pathology, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150086
    Affiliations
    Department of Pathology, Harbin Medical University, Harbin, China
    Search for articles by this author
  • Xiaobo Li
    Correspondence
    Reprint requests: Xiaobo Li or Tianzhen Wang, Department of Pathology, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150086
    Affiliations
    Department of Pathology, Harbin Medical University, Harbin, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:October 14, 2016DOI:https://doi.org/10.1016/j.trsl.2016.10.001
      More than 90% of the human genome is actively transcribed, but less than 2% of the total genome encodes protein-coding RNA, and thus, noncoding RNA (ncRNA) is a major component of the human transcriptome. Recently, ncRNA was demonstrated to play important roles in multiple biological processes by directly or indirectly interfering with gene expression, and the dysregulation of ncRNA is associated with a variety of diseases, including cancer. In this review, we summarize the function and mechanism of miRNA, long intergenic ncRNA, and some other types of ncRNAs, such as small nucleolar RNA, circular ncRNA, pseudogene RNA, and even protein-coding mRNA, in the progression of colorectal cancer (CRC). We also presented their clinical application in the diagnosis and prognosis of CRC. The summary of the current state of ncRNA in CRC will contribute to our understanding of the complex processes of CRC initiation and development and will help in the discovery of novel biomarkers and therapeutic targets for CRC diagnosis and treatment.

      Abbreviations:

      ceRNA (competitive endogenous RNA), circRNA (circular ncRNA), CRC (colorectal cancer), EMT (epithelial-to-mesenchymal transition), IBD (inflammatory bowel disease), MPE (molecular pathological epidemiology), MRE (miRNA response element), ncRNA (non-coding RNA), paRNA (promoter-associated RNA), piRNA (PIWI interaction RNA), snoRNA (small nucleolar RNA)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • International Human Genome Sequencing Consortium
        Finishing the euchromatic sequence of the human genome.
        Nature. 2004; 431: 931-945
        • Hattori M.
        Tanpakushitsu Kakusan Koso. 2005; 50: 162-168
        • Kapranov P.
        • Drenkow J.
        • Cheng J.
        • et al.
        Examples of the complex architecture of the human transcriptome revealed by race and high-density tiling arrays.
        Genome Res. 2005; 15: 987-997
        • Yang C.
        • Wu D.
        • Gao L.
        • et al.
        Competing endogenous rna networks in human cancer: hypothesis, validation, and perspectives.
        Oncotarget. 2016; 7: 13479-13490
        • Carthew R.W.
        • Sontheimer E.J.
        Origins and mechanisms of mirnas and sirnas.
        Cell. 2009; 136: 642-655
        • Maass P.G.
        • Luft F.C.
        • Bahring S.
        Long non-coding rna in health and disease.
        J Mol Med. 2014; 92: 337-346
        • Taft R.J.
        • Pang K.C.
        • Mercer T.R.
        • et al.
        Non-coding rnas: regulators of disease.
        J Pathol. 2010; 220: 126-139
        • Ferlay J.
        • Shin H.R.
        • Bray F.
        • et al.
        Estimates of worldwide burden of cancer in 2008: Globocan 2008.
        Int J Cancer. 2010; 127: 2893-2917
        • Ragusa M.
        • Barbagallo C.
        • Statello L.
        • et al.
        Non-coding landscapes of colorectal cancer.
        World J Gastroenterol. 2015; 21: 11709-11739
        • Wang J.
        • Song Y.X.
        • Ma B.
        • et al.
        Regulatory roles of non-coding rnas in colorectal cancer.
        Int J Mol Sci. 2015; 16: 19886-19919
        • Lasda E.
        • Parker R.
        Circular rnas: diversity of form and function.
        RNA. 2014; 20: 1829-1842
        • Sana J.
        • Faltejskova P.
        • Svoboda M.
        • et al.
        Novel classes of non-coding rnas and cancer.
        J Transl Med. 2012; 10: 103
        • Fabian M.R.
        • Sonenberg N.
        • Filipowicz W.
        Regulation of mrna translation and stability by micrornas.
        Annu Rev Biochem. 2010; 79: 351-379
        • Thomson T.
        • Lin H.
        The biogenesis and function of piwi proteins and pirnas: Progress and prospect.
        Annu Rev Cell Dev Biol. 2009; 25: 355-376
        • Kiss T.
        Small nucleolar rnas: an abundant group of noncoding rnas with diverse cellular functions.
        Cell. 2002; 109: 145-148
        • Ender C.
        • Krek A.
        • Friedlander M.R.
        • et al.
        A human snorna with microrna-like functions.
        Mol Cell. 2008; 32: 519-528
        • Imamura T.
        • Yamamoto S.
        • Ohgane J.
        • et al.
        Non-coding rna directed DNA demethylation of sphk1 cpg island.
        Biochem Biophys Res Commun. 2004; 322: 593-600
        • Wang K.C.
        • Chang H.Y.
        Molecular mechanisms of long noncoding rnas.
        Mol Cell. 2011; 43: 904-914
        • Paraskevopoulou M.D.
        • Georgakilas G.
        • Kostoulas N.
        • et al.
        Diana-lncbase: Experimentally verified and computationally predicted microrna targets on long non-coding rnas.
        Nucleic Acids Res. 2013; 41: D239-D245
        • D'Errico I.
        • Gadaleta G.
        • Saccone C.
        Pseudogenes in metazoa: Origin and features.
        Brief Funct Genomic Proteomic. 2004; 3: 157-167
        • Liedtke S.
        • Enczmann J.
        • Waclawczyk S.
        • et al.
        Oct4 and its pseudogenes confuse stem cell research.
        Cell Stem Cell. 2007; 1: 364-366
        • Swami M.
        Small rnas: pseudogenes act as microrna decoys.
        Nat Rev Genet. 2010; 11: 530-531
        • Tam O.H.
        • Aravin A.A.
        • Stein P.
        • et al.
        Pseudogene-derived small interfering rnas regulate gene expression in mouse oocytes.
        Nature. 2008; 453: 534-538
        • Hollander M.C.
        • Blumenthal G.M.
        • Dennis P.A.
        Pten loss in the continuum of common cancers, rare syndromes and mouse models. Nature reviews.
        Cancer. 2011; 11: 289-301
        • Karreth F.A.
        • Tay Y.
        • Perna D.
        • et al.
        In vivo identification of tumor- suppressive pten cernas in an oncogenic braf-induced mouse model of melanoma.
        Cell. 2011; 147: 382-395
        • Memczak S.
        • Jens M.
        • Elefsinioti A.
        • et al.
        Circular rnas are a large class of animal rnas with regulatory potency.
        Nature. 2013; 495: 333-338
        • Ito M.
        • Mitsuhashi K.
        • Igarashi H.
        • et al.
        Microrna-31 expression in relation to braf mutation, cpg island methylation and colorectal continuum in serrated lesions.
        Int J Cancer. 2014; 135: 2507-2515
        • Colussi D.
        • Brandi G.
        • Bazzoli F.
        • et al.
        Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention.
        Int J Mol Sci. 2013; 14: 16365-16385
        • Okayama H.
        • Schetter A.J.
        • Harris C.C.
        Micrornas and inflammation in the pathogenesis and progression of colon cancer.
        Dig Dis. 2012; 30: 9-15
        • Wang G.
        • Li Z.
        • Zhao Q.
        • et al.
        Lincrna-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the wnt/beta-catenin signaling pathway.
        Oncol Rep. 2014; 31: 1839-1845
        • Iliopoulos D.
        • Jaeger S.A.
        • Hirsch H.A.
        • et al.
        Stat3 activation of mir-21 and mir-181b-1 via pten and cyld are part of the epigenetic switch linking inflammation to cancer.
        Mol Cell. 2010; 39: 493-506
        • Lu Z.
        • Liu M.
        • Stribinskis V.
        • et al.
        Microrna-21 promotes cell transformation by targeting the programmed cell death 4 gene.
        Oncogene. 2008; 27: 4373-4379
        • Sayed D.
        • Rane S.
        • Lypowy J.
        • et al.
        Microrna-21 targets sprouty2 and promotes cellular outgrowths.
        Mol Biol Cell. 2008; 19: 3272-3282
        • Liu Q.
        • Huang J.
        • Zhou N.
        • et al.
        Lncrna loc285194 is a p53-regulated tumor suppressor.
        Nucleic Acids Res. 2013; 41: 4976-4987
        • Graham L.D.
        • Pedersen S.K.
        • Brown G.S.
        • et al.
        Colorectal neoplasia differentially expressed (crnde), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas.
        Genes Cancer. 2011; 2: 829-840
        • Michael M.Z.
        • O' Connor S.M.
        • van Holst Pellekaan N.G.
        • et al.
        Reduced accumulation of specific micrornas in colorectal neoplasia.
        Mol Cancer Res. 2003; 1: 882-891
        • Wang C.J.
        • Zhou Z.G.
        • Wang L.
        • et al.
        Clinicopathological significance of microrna-31, -143 and -145 expression in colorectal cancer.
        Dis Markers. 2009; 26: 27-34
        • Pekow J.R.
        • Dougherty U.
        • Mustafi R.
        • et al.
        Mir-143 and mir-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes.
        Inflamm Bowel Dis. 2012; 18: 94-100
        • Pagliuca A.
        • Valvo C.
        • Fabrizi E.
        • et al.
        Analysis of the combined action of mir-143 and mir-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression.
        Oncogene. 2013; 32: 4806-4813
        • Chen X.
        • Guo X.
        • Zhang H.
        • et al.
        Role of mir-143 targeting kras in colorectal tumorigenesis.
        Oncogene. 2009; 28: 1385-1392
        • Sachdeva M.
        • Zhu S.
        • Wu F.
        • et al.
        P53 represses c-myc through induction of the tumor suppressor mir-145.
        Proc Natl Acad Sci U S A. 2009; 106: 3207-3212
        • Iliou M.S.
        • da Silva-Diz V.
        • Carmona F.J.
        • et al.
        Impaired dicer1 function promotes stemness and metastasis in colon cancer.
        Oncogene. 2014; 33: 4003-4015
        • Gregory P.A.
        • Bert A.G.
        • Paterson E.L.
        • et al.
        The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting zeb1 and sip1.
        Nat Cell Biol. 2008; 10: 593-601
        • Park S.M.
        • Gaur A.B.
        • Lengyel E.
        • et al.
        The mir-200 family determines the epithelial phenotype of cancer cells by targeting the e-cadherin repressors zeb1 and zeb2.
        Genes Dev. 2008; 22: 894-907
        • Burk U.
        • Schubert J.
        • Wellner U.
        • et al.
        A reciprocal repression between zeb1 and members of the mir-200 family promotes emt and invasion in cancer cells.
        EMBO Rep. 2008; 9: 582-589
        • Hur K.
        • Toiyama Y.
        • Takahashi M.
        • et al.
        Microrna-200c modulates epithelial-to-mesenchymal transition (emt) in human colorectal cancer metastasis.
        Gut. 2013; 62: 1315-1326
        • Tian Y.
        • Pan Q.
        • Shang Y.
        • et al.
        Microrna-200 (mir-200) cluster regulation by achaete scute-like 2 (ascl2): Impact on the epithelial-mesenchymal transition in colon cancer cells.
        J Biol Chem. 2014; 289: 36101-36115
        • Mateescu B.
        • Batista L.
        • Cardon M.
        • et al.
        Mir-141 and mir-200a act on ovarian tumorigenesis by controlling oxidative stress response.
        Nat Med. 2011; 17: 1627-1635
        • Korpal M.
        • Ell B.J.
        • Buffa F.M.
        • et al.
        Direct targeting of sec23a by mir-200s influences cancer cell secretome and promotes metastatic colonization.
        Nat Med. 2011; 17: 1101-1108
        • Cui H.
        • Onyango P.
        • Brandenburg S.
        • et al.
        Loss of imprinting in colorectal cancer linked to hypomethylation of h19 and igf2.
        Cancer Res. 2002; 62: 6442-6446
        • Tsang W.P.
        • Ng E.K.
        • Ng S.S.
        • et al.
        Oncofetal h19-derived mir-675 regulates tumor suppressor rb in human colorectal cancer.
        Carcinogenesis. 2010; 31: 350-358
        • Liang W.C.
        • Fu W.M.
        • Wong C.W.
        • et al.
        The lncrna h19 promotes epithelial to mesenchymal transition by functioning as mirna sponges in colorectal cancer.
        Oncotarget. 2015; 6: 22513-22525
        • Ling H.
        • Spizzo R.
        • Atlasi Y.
        • et al.
        Ccat2, a novel noncoding rna mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer.
        Genome Res. 2013; 23: 1446-1461
        • Xu C.
        • Yang M.
        • Tian J.
        • et al.
        Malat-1: a long non-coding rna and its important 3' end functional motif in colorectal cancer metastasis.
        Int J Oncol. 2011; 39: 169-175
        • Ji Q.
        • Zhang L.
        • Liu X.
        • et al.
        Long non-coding rna malat1 promotes tumour growth and metastasis in colorectal cancer through binding to sfpq and releasing oncogene ptbp2 from sfpq/ptbp2 complex.
        Br J Cancer. 2014; 111: 736-748
        • Hu Z.Y.
        • Wang X.Y.
        • Guo W.B.
        • et al.
        Long non-coding rna malat1 increases akap-9 expression by promoting srpk1-catalyzed srsf1 phosphorylation in colorectal cancer cells.
        Oncotarget. 2016; 7: 11733-11743
        • Xiang J.F.
        • Yin Q.F.
        • Chen T.
        • et al.
        Human colorectal cancer-specific ccat1-l lncrna regulates long-range chromatin interactions at the myc locus.
        Cell Res. 2014; 24: 513-531
        • He X.
        • Tan X.
        • Wang X.
        • et al.
        C-myc-activated long noncoding rna ccat1 promotes colon cancer cell proliferation and invasion.
        Tumour Biol. 2014; 35: 12181-12188
        • Merry C.R.
        • Forrest M.E.
        • Sabers J.N.
        • et al.
        Dnmt1-associated long non-coding rnas regulate global gene expression and DNA methylation in colon cancer.
        Hum Mol Genet. 2015; 24: 6240-6253
        • Taniue K.
        • Kurimoto A.
        • Sugimasa H.
        • et al.
        Long noncoding rna upat promotes colon tumorigenesis by inhibiting degradation of uhrf1.
        Proc Natl Acad Sci U S A. 2016; 113: 1273-1278
        • Qiu M.
        • Xu Y.
        • Yang X.
        • et al.
        Ccat2 is a lung adenocarcinoma-specific long non-coding rna and promotes invasion of non-small cell lung cancer.
        Tumour Biol. 2014; 35: 5375-5380
        • Zhou J.
        • Li X.
        • Wu M.
        • et al.
        Knockdown of long noncoding rna ghet1 inhibits cell proliferation and invasion of colorectal cancer.
        Oncol Res. 2016; 23: 303-309
        • Sun J.
        • Ding C.
        • Yang Z.
        • et al.
        The long non-coding rna tug1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition.
        J Transl Med. 2016; 14: 42
        • Gupta R.A.
        • Shah N.
        • Wang K.C.
        • et al.
        Long non-coding rna hotair reprograms chromatin state to promote cancer metastasis.
        Nature. 2010; 464: 1071-1076
        • Wu Z.H.
        • Wang X.L.
        • Tang H.M.
        • et al.
        Long non-coding rna hotair is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer.
        Oncol Rep. 2014; 32: 395-402
        • Kogo R.
        • Shimamura T.
        • Mimori K.
        • et al.
        Long noncoding rna hotair regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers.
        Cancer Res. 2011; 71: 6320-6326
        • Li Y.
        • Li Y.
        • Chen W.
        • et al.
        Neat expression is associated with tumor recurrence and unfavorable prognosis in colorectal cancer.
        Oncotarget. 2015; 6: 27641-27650
        • Yang P.
        • Chen T.
        • Xu Z.
        • et al.
        Long noncoding rna gaplinc promotes invasion in colorectal cancer by targeting snai2 through binding with psf and nono.
        Oncotarget. 2016;
        • Yang P.
        • Xu Z.P.
        • Chen T.
        • et al.
        Long noncoding rna expression profile analysis of colorectal cancer and metastatic lymph node based on microarray data.
        Onco Targets Ther. 2016; 9: 2465-2478
        • Niu H.
        • Hu Z.
        • Liu H.
        • et al.
        Long non-coding rna ak027294 involves in the process of proliferation, migration, and apoptosis of colorectal cancer cells.
        Tumour Biol. 2016; 37: 10097-10105
        • Thorenoor N.
        • Faltejskova-Vychytilova P.
        • Hombach S.
        • et al.
        Long non-coding rna zfas1 interacts with cdk1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer.
        Oncotarget. 2016; 7: 622-637
        • Marin-Bejar O.
        • Marchese F.P.
        • Athie A.
        • et al.
        Pint lincrna connects the p53 pathway with epigenetic silencing by the polycomb repressive complex 2.
        Genome Biol. 2013; 14: R104
        • Shi Y.
        • Liu Y.
        • Wang J.
        • et al.
        Downregulated long noncoding rna bancr promotes the proliferation of colorectal cancer cells via downregualtion of p21 expression.
        PLoS One. 2015; 10: e0122679
        • Takahashi Y.
        • Sawada G.
        • Kurashige J.
        • et al.
        Amplification of pvt-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers.
        Br J Cancer. 2014; 110: 164-171
        • Wang F.
        • Ni H.
        • Sun F.
        • et al.
        Overexpression of lncrna afap1-as1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer.
        Biomed Pharmacother. 2016; 81: 152-159
        • Ma Y.
        • Yang Y.
        • Wang F.
        • et al.
        Long non-coding rna ccal regulates colorectal cancer progression by activating wnt/beta-catenin signalling pathway via suppression of activator protein 2alpha.
        Gut. 2016; 65: 1494-1504
        • Yuan Z.
        • Yu X.
        • Ni B.
        • et al.
        Overexpression of long non-coding rna-ctd903 inhibits colorectal cancer invasion and migration by repressing wnt/beta-catenin signaling and predicts favorable prognosis.
        Int J Oncol. 2016; 48: 2675-2685
        • Zhang Z.
        • Zhou C.
        • Chang Y.
        • et al.
        Long non-coding RNA casc11 interacts with hnrnp-k and activates the wnt/beta-catenin pathway to promote growth and metastasis in colorectal cancer.
        Cancer Lett. 2016; 376: 62-73
        • Zhang Z.Y.
        • Lu Y.X.
        • Zhang Z.Y.
        • et al.
        Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer.
        Oncotarget. 2016; 7: 22639-22649
        • Chen N.
        • Guo D.
        • Xu Q.
        • et al.
        Long non-coding rna fezf1-as1 facilitates cell proliferation and migration in colorectal carcinoma.
        Oncotarget. 2016; 7: 11271-11283
        • Liu B.
        • Shen E.D.
        • Liao M.M.
        • et al.
        Expression and mechanisms of long non-coding rna genes meg3 and anril in gallbladder cancer.
        Tumour Biol. 2016; 37: 9875-9886
        • Wu X.
        • He X.
        • Li S.
        • et al.
        Long non-coding rna ucoo2kmd.1 regulates cd44-dependent cell growth by competing for mir-211-3p in colorectal cancer.
        PLoS One. 2016; 11: e0151287
        • Sun L.
        • Xue H.
        • Jiang C.
        • et al.
        Lncrna dq786243 contributes to proliferation and metastasis of colorectal cancer both in vitro and in vivo.
        Biosci Rep. 2016; 36
        • Han D.
        • Gao X.
        • Wang M.
        • et al.
        Long noncoding rna h19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eif4a3.
        Oncotarget. 2016; 7: 22159-22173
        • Liu T.
        • Zhang X.
        • Yang Y.M.
        • et al.
        Increased expression of the long noncoding rna crnde-h indicates a poor prognosis in colorectal cancer, and is positively correlated with irx5 mrna expression.
        Onco Targets Ther. 2016; 9: 1437-1448
        • Huang G.
        • Wu X.
        • Li S.
        • et al.
        The long noncoding rna casc2 functions as a competing endogenous rna by sponging mir-18a in colorectal cancer.
        Sci Rep. 2016; 6: 26524
        • Wang L.
        • Bu P.
        • Ai Y.
        • et al.
        A long non-coding rna targets microrna mir-34a to regulate colon cancer stem cell asymmetric division.
        Elife. 2016; 5
        • Bian Z.
        • Jin L.
        • Zhang J.
        • et al.
        Lncrna-uca1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting mir-204-5p.
        Sci Rep. 2016; 6: 23892
        • Yue B.
        • Sun B.
        • Liu C.
        • et al.
        Long non-coding rna fer-1-like protein 4 suppresses oncogenesis and exhibits prognostic value by associating with mir-106a-5p in colon cancer.
        Cancer Sci. 2015; 106: 1323-1332
        • Yan B.
        • Gu W.
        • Yang Z.
        • et al.
        Downregulation of a long noncoding rna-ncrupar contributes to tumor inhibition in colorectal cancer.
        Tumour Biol. 2014; 35: 11329-11335
        • Nakano S.
        • Murakami K.
        • Meguro M.
        • et al.
        Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers.
        Cancer Sci. 2006; 97: 1147-1154
        • Sunamura N.
        • Ohira T.
        • Kataoka M.
        • et al.
        Regulation of functional KCNQ1OT1 lncRNA by beta-catenin.
        Sci Rep. 2016; 6: 20690
        • Kumegawa K.
        • Maruyama R.
        • Yamamoto E.
        • et al.
        A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer.
        Sci Rep. 2016; 6: 26699
        • Yang L.
        • Qiu M.
        • Xu Y.
        • et al.
        Upregulation of long non-coding RNA PRNCR1 in colorectal cancer promotes cell proliferation and cell cycle progression.
        Oncol Rep. 2016; 35: 318-324
        • Ding J.
        • Lu B.
        • Wang J.
        • et al.
        Long non-coding RNA Loc554202 induces apoptosis in colorectal cancer cells via the caspase cleavage cascades.
        J Exp Clin Cancer Res. 2015; 34: 100
        • Han Y.J.
        • Ma S.F.
        • Yourek G.
        • et al.
        A transcribed pseudogene of mylk promotes cell proliferation.
        FASEB J. 2011; 25: 2305-2312
        • Ye X.
        • Fan F.
        • Bhattacharya R.
        • et al.
        Vegfr-1 pseudogene expression and regulatory function in human colorectal cancer cells.
        Mol Cancer Res. 2015; 13: 1274-1282
        • Bachmayr-Heyda A.
        • Reiner A.T.
        • Auer K.
        • et al.
        Correlation of circular rna abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues.
        Sci Rep. 2015; 5: 8057
        • Wang X.
        • Zhang Y.
        • Huang L.
        • et al.
        Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances.
        Int J Clin Exp Pathol. 2015; 8: 16020-16025
        • Okugawa Y.
        • Toiyama Y.
        • Toden S.
        • et al.
        Clinical significance of snora42 as an oncogene and a prognostic biomarker in colorectal cancer.
        Gut. 2015;
        • Shen K.
        • Mao R.
        • Ma L.
        • et al.
        Post-transcriptional regulation of the tumor suppressor mir-139-5p and a network of mir-139-5p-mediated mrna interactions in colorectal cancer.
        FEBS J. 2014; 281: 3609-3624
        • Kudryavtseva A.V.
        • Lipatova A.V.
        • Zaretsky A.R.
        • et al.
        Important molecular genetic markers of colorectal cancer.
        Oncotarget. 2016;
        • Xu M.D.
        • Qi P.
        • Du X.
        Long non-coding rnas in colorectal cancer: Implications for pathogenesis and clinical application.
        Mod Pathol. 2014; 27: 1310-1320
        • Ng E.K.
        • Chong W.W.
        • Jin H.
        • et al.
        Differential expression of micrornas in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening.
        Gut. 2009; 58: 1375-1381
        • Cheng H.
        • Zhang L.
        • Cogdell D.E.
        • et al.
        Circulating plasma mir-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis.
        PLoS One. 2011; 6: e17745
        • Yong F.L.
        • Law C.W.
        • Wang C.W.
        Potentiality of a triple microrna classifier: mir-193a-3p, mir-23a and mir-338-5p for early detection of colorectal cancer.
        BMC Cancer. 2013; 13: 280
        • Aherne S.T.
        • Madden S.F.
        • Hughes D.J.
        • et al.
        Circulating mirnas mir-34a and mir-150 associated with colorectal cancer progression.
        BMC Cancer. 2015; 15: 329
        • Ogata-Kawata H.
        • Izumiya M.
        • Kurioka D.
        • et al.
        Circulating exosomal micrornas as biomarkers of colon cancer.
        PLoS One. 2014; 9: e92921
        • Beckett E.L.
        • Martin C.
        • Choi J.H.
        • et al.
        Folate status, folate-related genes and serum mir-21 expression: Implications for mir-21 as a biomarker.
        BBA Clin. 2015; 4: 45-51
        • Ahmed F.E.
        • Ahmed N.C.
        • Vos P.W.
        • et al.
        Diagnostic microrna markers to screen for sporadic human colon cancer in stool: I. Proof of principle.
        Cancer Genomics Proteomics. 2013; 10: 93-113
        • Wu C.W.
        • Ng S.C.
        • Dong Y.
        • et al.
        Identification of microrna-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma.
        Clin Cancer Res. 2014; 20: 2994-3002
        • Nissan A.
        • Stojadinovic A.
        • Mitrani-Rosenbaum S.
        • et al.
        Colon cancer associated transcript-1: a novel rna expressed in malignant and pre-malignant human tissues.
        Int J Cancer. 2012; 130: 1598-1606
        • Alaiyan B.
        • Ilyayev N.
        • Stojadinovic A.
        • et al.
        Differential expression of colon cancer associated transcript1 (ccat1) along the colonic adenoma-carcinoma sequence.
        BMC Cancer. 2013; 13: 196
        • Kam Y.
        • Rubinstein A.
        • Naik S.
        • et al.
        Detection of a long non-coding rna (ccat1) in living cells and human adenocarcinoma of colon tissues using fit-pna molecular beacons.
        Cancer Lett. 2014; 352: 90-96
        • Pedersen S.K.
        • Mitchell S.M.
        • Graham L.D.
        • et al.
        Cahm, a long non-coding rna gene hypermethylated in colorectal neoplasia.
        Epigenetics. 2014; 9: 1071-1082
        • Xi Y.
        • Formentini A.
        • Chien M.
        • et al.
        Prognostic values of micrornas in colorectal cancer.
        Biomark Insights. 2006; 2: 113-121
        • Chen J.
        • Wang W.
        • Zhang Y.
        • et al.
        Predicting distant metastasis and chemoresistance using plasma mirnas.
        Med Oncol. 2014; 31: 799
        • Toiyama Y.
        • Hur K.
        • Tanaka K.
        • et al.
        Serum mir-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer.
        Ann Surg. 2014; 259: 735-743
        • Fang L.
        • Li H.
        • Wang L.
        • et al.
        Microrna-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing pten expression.
        Oncotarget. 2014; 5: 2974-2987
        • Rapti S.M.
        • Kontos C.K.
        • Papadopoulos I.N.
        • et al.
        High mir-96 levels in colorectal adenocarcinoma predict poor prognosis, particularly in patients without distant metastasis at the time of initial diagnosis.
        Tumour Biol. 2016; 9: 11815-11824
        • Pu X.X.
        • Huang G.L.
        • Guo H.Q.
        • et al.
        Circulating mir-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression.
        J Gastroenterol Hepatol. 2010; 25: 1674-1680
        • Liu G.H.
        • Zhou Z.G.
        • Chen R.
        • et al.
        Serum mir-21 and mir-92a as biomarkers in the diagnosis and prognosis of colorectal cancer.
        Tumour Biol. 2013; 34: 2175-2181
        • Brunet Vega A.
        • Pericay C.
        • Moya I.
        • et al.
        Microrna expression profile in stage iii colorectal cancer: Circulating mir-18a and mir-29a as promising biomarkers.
        Oncol Rep. 2013; 30: 320-326
        • Toiyama Y.
        • Takahashi M.
        • Hur K.
        • et al.
        Serum mir-21 as a diagnostic and prognostic biomarker in colorectal cancer.
        J Natl Cancer Inst. 2013; 105: 849-859
        • Yu H.
        • Gao G.
        • Jiang L.
        • et al.
        Decreased expression of mir-218 is associated with poor prognosis in patients with colorectal cancer.
        Int J Clin Exp Pathol. 2013; 6: 2904-2911
        • Lv Z.C.
        • Fan Y.S.
        • Chen H.B.
        • et al.
        Investigation of microrna-155 as a serum diagnostic and prognostic biomarker for colorectal cancer.
        Tumour Biol. 2015; 36: 1619-1625
        • Liu M.
        • Zhi Q.
        • Wang W.
        • et al.
        Up-regulation of mir-592 correlates with tumor progression and poor prognosis in patients with colorectal cancer.
        Biomed Pharmacother. 2015; 69: 214-220
        • Matsumura T.
        • Sugimachi K.
        • Iinuma H.
        • et al.
        Exosomal microrna in serum is a novel biomarker of recurrence in human colorectal cancer.
        Br J Cancer. 2015; 113: 275-281
        • Yu J.
        • Jin L.
        • Jiang L.
        • et al.
        Serum mir-372 is a diagnostic and prognostic biomarker in patients with early colorectal cancer.
        Anticancer Agents Med Chem. 2016; 16: 424-431
        • Kjersem J.B.
        • Ikdahl T.
        • Lingjaerde O.C.
        • et al.
        Plasma micrornas predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment.
        Mol Oncol. 2014; 8: 59-67
        • Yang I.P.
        • Tsai H.L.
        • Huang C.W.
        • et al.
        The functional significance of microrna-29c in patients with colorectal cancer: A potential circulating biomarker for predicting early relapse.
        PLoS One. 2013; 8: e66842
        • Tsai H.L.
        • Yang I.P.
        • Huang C.W.
        • et al.
        Clinical significance of microrna-148a in patients with early relapse of stage ii stage and iii colorectal cancer after curative resection.
        Transl Res. 2013; 162: 258-268
        • Shivapurkar N.
        • Weiner L.M.
        • Marshall J.L.
        • et al.
        Recurrence of early stage colon cancer predicted by expression pattern of circulating micrornas.
        PLoS One. 2014; 9: e84686
        • Hansen T.F.
        • Carlsen A.L.
        • Heegaard N.H.
        • et al.
        Changes in circulating microrna-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer.
        Br J Cancer. 2015; 112: 624-629
        • Svoboda M.
        • Slyskova J.
        • Schneiderova M.
        • et al.
        Hotair long non-coding rna is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients.
        Carcinogenesis. 2014; 35: 1510-1515
        • Qi P.
        • Xu M.D.
        • Ni S.J.
        • et al.
        Low expression of loc285194 is associated with poor prognosis in colorectal cancer.
        J Transl Med. 2013; 11: 122
        • Iguchi T.
        • Uchi R.
        • Nambara S.
        • et al.
        A long noncoding rna, lncrna-atb, is involved in the progression and prognosis of colorectal cancer.
        Anticancer Res. 2015; 35: 1385-1388
        • Qu S.
        • Yang X.
        • Song W.
        • et al.
        Downregulation of lncrna-atb correlates with clinical progression and unfavorable prognosis in pancreatic cancer.
        Tumour Biol. 2016; 37: 3933-3938
        • Yin D.D.
        • Liu Z.J.
        • Zhang E.
        • et al.
        Decreased expression of long noncoding rna meg3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer.
        Tumour Biol. 2015; 36: 4851-4859
        • Yin D.
        • He X.
        • Zhang E.
        • et al.
        Long noncoding rna gas5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer.
        Med Oncol. 2014; 31: 253
        • Ge X.
        • Chen Y.
        • Liao X.
        • et al.
        Overexpression of long noncoding rna pcat-1 is a novel biomarker of poor prognosis in patients with colorectal cancer.
        Med Oncol. 2013; 30: 588
        • Shi D.
        • Zheng H.
        • Zhuo C.
        • et al.
        Low expression of novel lncrna rp11-462c24.1 suggests a biomarker of poor prognosis in colorectal cancer.
        Med Oncol. 2014; 31: 31
        • Zheng H.T.
        • Shi D.B.
        • Wang Y.W.
        • et al.
        High expression of lncrna malat1 suggests a biomarker of poor prognosis in colorectal cancer.
        Int J Clin Exp Pathol. 2014; 7: 3174-3181
        • Deng Q.
        • He B.
        • Gao T.
        • et al.
        Up-regulation of 91h promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer.
        PLoS One. 2014; 9: e103022
        • Qiu J.J.
        • Yan J.B.
        Long non-coding rna linc01296 is a potential prognostic biomarker in patients with colorectal cancer.
        Tumour Biol. 2015; 36: 7175-7183
        • Cheng J.
        • Guo J.M.
        • Xiao B.X.
        • et al.
        piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells.
        Clin Chim Acta. 2011; 412: 1621-1625
        • Dong X.Y.
        • Rodriguez C.
        • Guo P.
        • et al.
        Snorna u50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer.
        Hum Mol Genet. 2008; 17: 1031-1042
        • Tanaka R.
        • Satoh H.
        • Moriyama M.
        • et al.
        Intronic u50 small-nucleolar-rna (snorna) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human b-cell lymphoma.
        Genes Cells. 2000; 5: 277-287
        • Mei Y.P.
        • Liao J.P.
        • Shen J.
        • et al.
        Small nucleolar rna 42 acts as an oncogene in lung tumorigenesis.
        Oncogene. 2012; 31: 2794-2804
        • Liao J.
        • Yu L.
        • Mei Y.
        • et al.
        Small nucleolar rna signatures as biomarkers for non-small-cell lung cancer.
        Mol Cancer. 2010; 9: 198
        • Gee H.E.
        • Buffa F.M.
        • Camps C.
        • et al.
        The small-nucleolar rnas commonly used for microrna normalisation correlate with tumour pathology and prognosis.
        Br J Cancer. 2011; 104: 1168-1177
        • Affymetrix E.T.
        Cold Spring Harbor Laboratory ETP. Post-transcriptional processing generates a diversity of 5'-modified long and short rnas.
        Nature. 2009; 457: 1028-1032
        • Hawkins P.G.
        • Santoso S.
        • Adams C.
        • et al.
        Promoter targeted small rnas induce long-term transcriptional gene silencing in human cells.
        Nucleic Acids Res. 2009; 37: 2984-2995
        • Taft R.J.
        • Hawkins P.G.
        • Mattick J.S.
        • et al.
        The relationship between transcription initiation rnas and ccctc-binding factor (ctcf) localization.
        Epigenetics Chromatin. 2011; 4: 13
        • Wang X.
        • Arai S.
        • Song X.
        • et al.
        Induced ncrnas allosterically modify rna-binding proteins in cis to inhibit transcription.
        Nature. 2008; 454: 126-130
        • Manikandan M.
        • Munirajan A.K.
        Single nucleotide polymorphisms in microrna binding sites of oncogenes: Implications in cancer and pharmacogenomics.
        OMICS. 2014; 18: 142-154
        • He H.
        • Liyanarachchi S.
        • Akagi K.
        • et al.
        Mutations in u4atac snrna, a component of the minor spliceosome, in the developmental disorder mopd i.
        Science. 2011; 332: 238-240
        • Chen X.
        • Ba Y.
        • Ma L.
        • et al.
        Characterization of micrornas in serum: A novel class of biomarkers for diagnosis of cancer and other diseases.
        Cell Res. 2008; 18: 997-1006
        • Peng J.
        • Xie Z.
        • Cheng L.
        • et al.
        Paired design study by real-time pcr: Mir-378* and mir-145 are potent early diagnostic biomarkers of human colorectal cancer.
        BMC Cancer. 2015; 15: 158
        • Kong H.
        • Zhu M.
        • Cui F.
        • et al.
        Quantitative assessment of short amplicons in ffpe-derived long-chain rna.
        Sci Rep. 2014; 4: 7246
        • Wu Y.
        • Yang L.
        • Zhao J.
        • et al.
        Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in colorectal cancer.
        Mol Cancer. 2015; 14: 191
        • Ramalingam S.
        • Subramaniam D.
        • Anant S.
        Manipulating mirna expression: A novel approach for colon cancer prevention and chemotherapy.
        Curr Pharmacol Rep. 2015; 1: 141-153
        • Bertoli G.
        • Cava C.
        • Castiglioni I.
        Micrornas: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer.
        Theranostics. 2015; 5: 1122-1143
        • Bekeredjian R.
        • Grayburn P.A.
        • Shohet R.V.
        Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine.
        J Am Coll Cardiol. 2005; 45: 329-335
        • Wood A.K.
        • Sehgal C.M.
        A review of low-intensity ultrasound for cancer therapy.
        Ultrasound Med Biol. 2015; 41: 905-928
        • Ogino S.
        • Nishihara R.
        • VanderWeele T.J.
        • et al.
        Review article: The role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine.
        Epidemiology. 2016; 27: 602-611
        • Ogino S.
        • Chan A.T.
        • Fuchs C.S.
        • et al.
        Molecular pathological epidemiology of colorectal neoplasia: An emerging transdisciplinary and interdisciplinary field.
        Gut. 2011; 60: 397-411
        • Ogino S.
        • Lochhead P.
        • Giovannucci E.
        • et al.
        Discovery of colorectal cancer pik3ca mutation as potential predictive biomarker: Power and promise of molecular pathological epidemiology.
        Oncogene. 2014; 33: 2949-2955
        • Han P.
        • Liu G.
        • Lu X.
        • et al.
        Cdh1 rs9929218 variant at 16q22.1 contributes to colorectal cancer susceptibility.
        Oncotarget. 2016;