Advertisement

Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry

Published:October 21, 2016DOI:https://doi.org/10.1016/j.trsl.2016.10.002
      The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health.

      Abbreviations:

      ASD (Autism spectrum disorder), ADHD (Attention-deficit hyperactive disorder), AMPK (AMP-activated protein kinase), ANS (Autonomic nervous system), BDNF (Brain-derived neurotrophic factor), BMI (Body mass index), BCFA (Branched chain fatty acid), CCK (Cholecystokinin), CNS (Central nervous system), CREB (cAMP response element-binding protein), DA (Dopamine), EECs (Enteroendocrine cells), ENS (Enteric nervous system), FOS (Fructo-oligosaccharides), FXR (Farnesoid X receptor), GOS (Galacto-oligosaccharides), GF (Germ-free), GLP1 (Glycogen-like protein 1), GABA (Gama-aminobutyric acid), GI (Gastrointestinal tract), HPA (Hypothalamus-Pituitary Axis), IBS (Irritable bowel syndrome), IL (Interleukin), LPS (Lipopolysaccharide), LTP (Long-term potentiation), MAMP (Microbes-associated molecular patterns), NOD (Nucleotide-binding-oligomerization domain containing peptide), PYY (Peptide YY), PUFA (Polyunsaturated fatty acid), Reg3γ (Regenerating family member 3 gamma), SCFA (Short chain fatty acid), sp (Species), SPF (Specific-pathogen-free), TMAO (Trimethylamine oxide), TNF (Tumor necrosis factor), T-regs (regulatory T cells), WHO (World Health Organization), ZO (Zonula occludens)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sarris J.
        • Logan A.C.
        • Akbaraly T.N.
        • et al.
        Nutritional medicine as mainstream psychiatry.
        Lancet Psychiatry. 2015; 2: 271-274
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Macdonald T.T.
        • Monteleone G.
        Immunity, inflammation, and allergy in the gut.
        Science. 2005; 307: 1920-1925
        • Ley R.E.
        • Bäckhed F.
        • Turnbaugh P.
        • Lozupone C.A.
        • Knight R.D.
        • Gordon J.I.
        Obesity alters gut microbial ecology.
        Proc Natl Acad Sci U S A. 2005; 102: 11070-11075
        • Steer T.
        • Carpenter H.
        • Tuohy K.
        • Gibson G.R.
        Perspectives on the role of the human gut microbiota and its modulation by pro- and prebiotics.
        Nutr Res Rev. 2000; 13: 229-254
        • Bäckhed F.
        • Ding H.
        • Wang T.
        • et al.
        The gut microbiota as an environmental factor that regulates fat storage.
        Proc Natl Acad Sci U S A. 2004; 101: 15718-15723
        • Cryan J.F.
        • O'Mahony S.M.
        The microbiome-gut-brain axis: from bowel to behavior.
        Neurogastroenterol Motil. 2011; 23: 187-192
        • Cryan J.F.
        • Dinan T.G.
        More than a gut feeling: the microbiota regulates neurodevelopment and behavior.
        Neuropsychopharmacology. 2015; 40: 241-242
        • Wang Y.
        • Kasper L.H.
        The role of microbiome in central nervous system disorders.
        Brain Behav Immun. 2014; 38: 1-12
        • Mulle J.G.
        • Sharp W.G.
        • Cubells J.F.
        The gut microbiome: a new frontier in autism research.
        Curr Psychiatry Rep. 2013; 15: 337
        • Kelly J.R.
        • Borre Y.
        • O'Brien C.
        • et al.
        Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat.
        J Psychiatr Res. 2016; 82: 109-118
        • Jiang H.
        • Ling Z.
        • Zhang Y.
        • et al.
        Altered fecal microbiota composition in patients with major depressive disorder.
        Brain Behav Immun. 2015; 48: 186-194
        • Ridler C.
        Gut microbiota: gut bacteria affect post-ischaemic inflammation in stroke by modulating intestinal T cells.
        Nat Rev Gastroenterol Hepatol. 2016; 13: 250
        • Dinan T.G.
        • Borre Y.E.
        • Cryan J.F.
        Genomics of schizophrenia: time to consider the gut microbiome?.
        Mol Psychiatry. 2014; 19: 1252-1257
        • De Filippo C.
        • Cavalieri D.
        • Di Paola M.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696
        • Cryan J.F.
        • Dinan T.G.
        Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour.
        Nat Rev Neurosci. 2012; 10: 701-712
        • Borre Y.E.
        • Moloney R.D.
        • Clarke G.
        • Dinan T.G.
        • Cryan J.F.
        The impact of microbiota on brain and behavior: mechanisms & therapeutic potential.
        Adv Exp Med Biol. 2014; 817: 373-403
        • Goodrich J.K.
        • Davenport E.R.
        • Waters J.L.
        • Clark A.G.
        • Ley R.E.
        Cross-species comparisons of host genetic associations with the microbiome.
        Science. 2016; 352: 532-535
        • Kovatcheva-Datchary P.
        • Arora T.
        Nutrition, the gut microbiome and the metabolic syndrome.
        Best Pract Res Clin Gastroenterol. 2013; 27: 59-72
        • Flint H.J.
        • Scott K.P.
        • Louis P.
        • Duncan S.H.
        The role of the gut microbiota in nutrition and health.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 577-589
        • Kurokawa K.
        • Itoh T.
        • Kuwahara T.
        • et al.
        Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes.
        DNA Res. 2007; 14: 169-181
        • Grześkowiak Ł.
        • Collado M.C.
        • Mangani C.
        • et al.
        Distinct gut microbiota in southeastern African and northern European infants.
        J Pediatr Gastroenterol Nutr. 2012; 54: 812-816
        • Mayer E.A.
        Gut feelings: the emerging biology of gut-brain communication.
        Nat Rev Neurosci. 2011; 12: 453-466
        • Collins S.M.
        • Bercik P.
        Gut microbiota: intestinal bacteria influence brain activity in healthy humans.
        Nat Rev Gastroenterol Hepatol. 2013; 10: 326-327
        • Foster J.A.
        • McVey Neufeld K.A.
        Gut-brain axis: how the microbiome influences anxiety and depression.
        Trends Neurosci. 2013; 36: 305-312
        • Furness J.B.
        • Rivera L.R.
        • Cho H.J.
        • Bravo D.M.
        • Callaghan B.
        The gut as a sensory organ.
        Nat Rev Gastroenterol Hepatol. 2013; 10: 729-740
        • Rinaman L.
        Visceral sensory inputs to the endocrine hypothalamus.
        Front Neuroendocrinol. 2007; 28: 50-60
        • Scarlett J.M.
        • Schwartz M.W.
        Gut-brain mechanisms controlling glucose homeostasis.
        F1000Prime Rep. 2015; 7: 12
        • Forsythe P.
        • Sudo N.
        • Dinan T.
        • Taylor V.H.
        • Bienenstock J.
        Mood and gut feelings.
        Brain Behav Immun. 2010; 24: 9-16
        • Stilling R.M.
        • van de Wouw M.
        • Clarke G.
        • et al.
        The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis?.
        Neurochem Int. 2016; 99: 110-132
        • Chiang J.Y.
        Bile acid metabolism and signaling.
        Compr Physiol. 2013; 3: 1191-1212
        • Bravo J.A.
        • Forsythe P.
        • Chew M.V.
        • et al.
        Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
        Proc Natl Acad Sci U S A. 2011; 108: 16050-16055
        • Bercik P.
        • Park A.J.
        • Sinclair D.
        • et al.
        The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.
        Neurogastroenterol Motil. 2011; 23: 1132-1139
        • Latorre R.
        • Sternini C.
        • De Giorgio R.
        • Greenwood-Van Meerveld B.
        2015 Enteroendocrine cells: a review of their role in brain-gut communication.
        Neurogastroenterol Motil. 2016; 28: 620-630
        • Romijn J.A.
        • Corssmit E.P.
        • Havekes L.M.
        • Pijl H.
        Gut-brain axis.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 518-521
        • Batterham R.L.
        • Cowley M.A.
        • Small C.J.
        • et al.
        Gut hormone PYY(3–36) physiologically inhibits food intake.
        Nature. 2002; 418: 650-654
        • Koda S.
        • Date Y.
        • Murakami N.
        • et al.
        The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats.
        Endocrinology. 2005; 146: 2369-2375
        • Cani P.D.
        • Everard A.
        • Duparc T.
        Gut microbiota, enteroendocrine functions and metabolism.
        Curr Opin Pharmacol. 2013; 13: 935-940
        • Egerod K.L.
        • Engelstoft M.S.
        • Grunddal K.V.
        • et al.
        A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin.
        Endocrinology. 2012; 153: 5782-5795
        • Whited K.L.
        • Thao D.
        • Lloyd K.C.
        • Kopin A.S.
        • Raybould H.E.
        Targeted disruption of the murine CCK1 receptor gene reduces intestinal lipid-induced feedback inhibition of gastric function.
        Am J Physiol Gastrointest Liver Physiol. 2006; 291: G156-G162
        • Kimura I.
        • Inoue D.
        • Hirano K.
        • Tsujimoto G.
        The SCFA receptor GPR43 and energy metabolism.
        Front Endocrinol (Lausanne). 2014; 5: 85
        • Samuel B.S.
        • Shaito A.
        • Motoike T.
        • et al.
        Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.
        Proc Natl Acad Sci U S A. 2008; 105: 16767-16772
        • Tolhurst G.
        • Heffron H.
        • Lam Y.S.
        • et al.
        Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.
        Diabetes. 2012; 61: 364-371
        • Ganapathy V.
        • Thangaraju M.
        • Prasad P.D.
        • Martin P.M.
        • Singh N.
        Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host.
        Curr Opin Pharmacol. 2013; 13: 869-874
        • Marchiando A.M.
        • Graham W.V.
        • Turner J.R.
        Epithelial barriers in homeostasis and disease.
        Annu Rev Pathol. 2010; 5: 119-144
        • Belkaid Y.
        • Hand T.
        Role of the microbiota in immunity and inflammation.
        Cell. 2014; 157: 121-141
        • McGuckin M.A.
        • Linden S.K.
        • Sutton P.
        • Florin T.H.
        Mucin dynamics and enteric pathogens.
        Nat Rev Microbiol. 2011; 9: 265-278
        • Cash H.L.
        • Whitham C.V.
        • Behrendt C.L.
        • Hooper L.V.
        Symbiotic bacteria direct expression of an intestinal bactericidal lectin.
        Science. 2006; 313: 1126-1130
        • Round J.L.
        • Mazmanian S.K.
        The gut microbiota shapes intestinal immune responses during health and disease.
        Nat Rev Immunol. 2009; 95: 313-323
        • Hooper L.V.
        • Macpherson A.J.
        Immune adaptations that maintain homeostasis with the intestinal microbiota.
        Nat Rev Immunol. 2010; 10: 159-169
        • Pamer E.G.
        Immune responses to commensal and environmental microbes.
        Nat Immunol. 2007; 8: 1173-1178
        • Macpherson A.J.
        • Uhr T.
        Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria.
        Science. 2004; 303: 1662-1665
        • Bengmark S.
        Gut microbiota, immune development and function.
        Pharmacol Res. 2013; 69: 87-113
        • Dantzer R.
        • O'Connor J.C.
        • Freund G.G.
        • Johnson R.W.
        • Kelley K.W.
        From inflammation to sickness and depression: when the immune system subjugates the brain.
        Nat Rev Neurosci. 2008; 9: 46-56
        • Lawson M.A.
        • Parrott J.M.
        • McCusker R.H.
        • Dantzer R.
        • Kelley K.W.
        • O'Connor J.C.
        Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors.
        J Neuroinflammation. 2013; 10: 87
        • Erny D.
        • Hrabě de Angelis A.L.
        • Jaitin D.
        • et al.
        Host microbiota constantly control maturation and function of microglia in the CNS.
        Nat Neurosci. 2015; 18: 965-977
        • Kau A.L.
        • Ahern P.P.
        • Griffin N.W.
        • et al.
        Human nutrition, the gut microbiome and the immune system.
        Nature. 2011; 474: 327-336
        • Stilling R.M.
        • Dinan T.G.
        • Cryan J.F.
        Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis.
        Genes Brain Behav. 2014; 13: 69-86
        • Hullar M.A.
        • Fu B.C.
        Diet, the gut microbiome, and epigenetics.
        Cancer J. 2014; 20: 170-175
        • Stilling R.M.
        • Bordenstein S.R.
        • Dinan T.G.
        • Cryan J.F.
        Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?.
        Front Cell Infect Microbiol. 2014; 4: 147
        • Alenghat T.
        • Artis D.
        Epigenomic regulation of host-microbiota interactions.
        Trends Immunol. 2014; 35: 518-525
        • Bourassa M.W.
        • Alim I.
        • Bultman S.J.
        • Ratan R.R.
        Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health?.
        Neurosci Lett. 2016; 625: 56-63
        • Davie J.R.
        Inhibition of histone deacetylase activity by butyrate.
        J Nutr. 2003; 133: 2485S-2493S
        • Arpaia N.
        • Campbell C.
        • Fan X.
        • et al.
        Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.
        Nature. 2013; 504: 451-455
        • Furusawa Y.
        • Obata Y.
        • Fukuda S.
        • et al.
        Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.
        Nature. 2013; 504: 446-450
        • Gao Z.
        • Yin J.
        • Zhang J.
        • et al.
        Butyrate improves insulin sensitivity and increases energy expenditure in mice.
        Diabetes. 2009; 58: 1509-1517
        • Fushimi T.
        • Suruga K.
        • Oshima Y.
        • Fukiharu M.
        • Tsukamoto Y.
        • Goda T.
        Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet.
        Br J Nutr. 2006; 95: 916-924
        • den Besten G.
        • van Eunen K.
        • Groen A.K.
        • Venema K.
        • Reijngoud D.J.
        • Bakker B.M.
        The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.
        J Lipid Res. 2013; 54: 2325-2340
        • Hong Y.H.
        • Nishimura Y.
        • Hishikawa D.
        • et al.
        Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43.
        Endocrinology. 2005; 146: 5092-5099
        • Ge H.
        • Li X.
        • Weiszmann J.
        • et al.
        Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids.
        Endocrinology. 2008; 149: 4519-4526
        • Suokas A.
        • Kupari M.
        • Heikkilä J.
        • Lindros K.
        • Ylikahri R.
        Acute cardiovascular and metabolic effects of acetate in men.
        Alcohol Clin Exp Res. 1988; 12: 52-58
        • Al-Lahham S.H.
        • Peppelenbosch M.P.
        • Roelofsen H.
        • Vonk R.J.
        • Venema K.
        Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms.
        Biochim Biophys Acta. 2010; 1801: 1175-1183
        • Sakakibara S.
        • Yamauchi T.
        • Oshima Y.
        • Tsukamoto Y.
        • Kadowaki T.
        Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice.
        Biochem Biophys Res Commun. 2006; 344: 597-604
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Frost G.
        • Sleeth M.L.
        • Sahuri-Arisoylu M.
        • et al.
        The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism.
        Nat Commun. 2014; 5: 3611
        • Chambers E.S.
        • Viardot A.
        • Psichas A.
        • et al.
        Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults.
        Gut. 2015; 64: 1744-1754
        • Byrne C.S.
        • Chambers E.S.
        • Alhabeeb H.
        • et al.
        Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods.
        Am J Clin Nutr. 2016; 104: 5-14
        • Wall R.
        • Ross R.P.
        • Ryan C.A.
        • et al.
        Role of gut microbiota in early infant development.
        Clin Med Pediatr. 2009; 3: 45-54
        • Lyte M.
        Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics.
        Bioessays. 2011; 33: 574-581
        • Clarke G.
        • Grenham S.
        • Scully P.
        • et al.
        The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.
        Mol Psychiatry. 2013; 18: 666-673
        • Heijtz R.D.
        • Wang S.
        • Anuar F.
        • et al.
        Normal gut microbiota modulates brain development and behaviour.
        Proc Natl Acad Sci U S A. 2011; 108: 3047-3055
        • Wikoff W.R.
        • Anfora A.T.
        • Liu J.
        • et al.
        Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites.
        Proc Natl Acad Sci U S A. 2009; 106: 3698-3703
        • El Aidy S.
        • Kunze W.
        • Bienenstock J.
        • Kleerebezem M.
        The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine.
        Benef Microbes. 2012; 3: 251-259
        • Voreades N.
        • Kozil A.
        • Weir T.L.
        Diet and the development of the human intestinal microbiome.
        Front Microbiol. 2014; 5: 494
        • Salazar N.
        • Arboleya S.
        • Valdés L.
        • et al.
        The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations.
        Front Genet. 2014; 5: 406
        • Canani R.B.
        • Costanzo M.D.
        • Leone L.
        Epigenetic mechanisms elicited by nutrition in early life.
        Nutr Res Rev. 2011; 24: 198-205
        • Kerperien J.
        • Schouten B.
        • Boehm G.
        • et al.
        Development of the immune system-early nutrition and consequences for later life. Recent Advances in Immunology to Target Cancer, Inflammation and Infections.
        InTech Europe Press, Rijeka2012: 315-334
        • Hinde K.
        • Lewis Z.T.
        MICROBIOTA. Mother's littlest helpers.
        Science. 2015; 348: 1427-1428
        • Lewis Z.T.
        • Totten S.M.
        • Smilowitz J.T.
        • et al.
        Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants.
        Microbiome. 2015; 3: 13
        • Kramer M.S.
        • Kakuma R.
        Optimal duration of exclusive breastfeeding.
        Cochrane Database Syst Rev. 2012; : CD003517
        • Charbonneau M.R.
        • O'Donnell D.
        • Blanton L.V.
        • et al.
        Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant Undernutrition.
        Cell. 2016; 164: 859-871
        • Sela D.A.
        • Chapman J.
        • Adeuya A.
        • et al.
        The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.
        Proc Natl Acad Sci U S A. 2008; 105: 18964-18969
        • Houghteling P.D.
        • Walker W.A.
        Why is initial bacterial colonization of the intestine important to infants' and children's health?.
        J Pediatr Gastroenterol Nutr. 2015; 60: 294-307
        • Bezirtzoglou E.
        • Tsiotsias A.
        • Welling G.W.
        Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH).
        Anaerobe. 2011; 17: 478-482
        • Guaraldi F.
        • Salvatori G.
        Effect of breast and formula feeding on gut microbiota shaping in newborns.
        Front Cell Infect Microbiol. 2012; 2: 94
        • Le Huërou-Luron I.
        • Blat S.
        • Boudry G.
        Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects.
        Nutr Res Rev. 2010; 23: 23-36
        • Pacheco A.R.
        • Barile D.
        • Underwood M.A.
        • Mills D.A.
        The impact of the milk Glycobiome on the neonate gut microbiota.
        Annu Rev Anim Biosci. 2015; 3: 419-445
        • Hill D.R.
        • Newburg D.S.
        Clinical applications of bioactive milk components.
        Nutr Rev. 2015; 73: 463-476
        • Mugambi M.N.
        • Musekiwa A.
        • Lombard M.
        • Young T.
        • Blaauw R.
        Synbiotics, probiotics or prebiotics in infant formula for full term infants: a systematic review.
        Nutr J. 2012; 4: 81
        • Srinivasjois R.
        • Rao S.
        • Patole S.
        Prebiotic supplementation in preterm neonates: updated systematic review and meta-analysis of randomised controlled trials.
        Clin Nutr. 2013; 32: 958-965
        • Vandenplas Y.
        • De Greef E.
        • Veereman G.
        Prebiotics in infant formula.
        Gut Microbes. 2014; 5: 681-687
        • Fallani M.
        • Young D.
        • Scott J.
        • et al.
        Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics.
        J Pediatr Gastroenterol Nutr. 2010; 51: 77-84
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Blanton L.V.
        • Charbonneau M.R.
        • Salih T.
        • et al.
        Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children.
        Science. 2016; 351
        • Falony G.
        • Joossens M.
        • Vieira-Silva S.
        • et al.
        Population-level analysis of gut microbiome variation.
        Science. 2016; 352: 560-564
        • O'Toole P.W.
        • Jeffery I.B.
        Gut microbiota and aging.
        Science. 2015; 350: 1214-1215
        • Claesson M.J.
        • Cusack S.
        • O'Sullivan O.
        • et al.
        Composition, variability, and temporal stability of the intestinal microbiota of the elderly.
        Proc Natl Acad Sci U S A. 2011; 108: 4586-4591
        • Woodmansey E.J.
        Intestinal bacteria and ageing.
        J Appl Microbiol. 2007; 102: 1178-1186
        • Lakshminarayanan B.
        • Stanton C.
        • O'Toole P.W.
        • Ross R.P.
        Compositional dynamics of the human intestinal microbiota with aging: implications for health.
        J Nutr Health Aging. 2014; 18: 773-786
        • Ma J.
        • Prince A.L.
        • Bader D.
        • et al.
        High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model.
        Nat Commun. 2014; 5: 3889
        • Li H.
        • Li T.
        • Beasley D.E.
        • et al.
        Diet diversity is associated with beta but not alpha diversity of Pika gut microbiota.
        Front Microbiol. 2016; 7: 1169
        • Albenberg L.G.
        • Wu G.D.
        Diet and the intestinal microbiome: associations, functions, and implications for health and disease.
        Gastroenterology. 2014; 146: 1564-1572
        • Brown K.
        • DeCoffe D.
        • Molcan E.
        • Gibson D.L.
        Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease.
        Nutrients. 2012; 4: 1095-1119
        • Brinkworth G.D.
        • Noakes M.
        • Buckley J.D.
        • Keogh J.B.
        • Clifton P.M.
        Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 months.
        Am J Clin Nutr. 2009; 90: 23-32
        • Russell W.R.
        • Gratz S.W.
        • Duncan H.S.
        • et al.
        High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health.
        Am J Clin Nutr. 2011; 93: 1062-1072
        • Parnell J.A.
        • Reimer R.A.
        Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome.
        Gut Microbes. 2012; 3: 29-34
        • Myles I.A.
        Fast food fever: reviewing the impacts of the Western diet on immunity.
        Nutr J. 2014; 13: 61
        • Mizunoya W.
        • Ohnuki K.
        • Baba K.
        • et al.
        Effect of dietary fat type on anxiety-like and depression-like behavior in mice.
        Springerplus. 2013; 2: 165
        • Paik J.
        • Fierce Y.
        • Treuting P.M.
        • Brabb T.
        • Maggio-Price L.
        High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice.
        J Nutr. 2013; 143: 1240-1247
        • Torres-Fuentes C.
        • Schellekens H.
        • Dinan T.G.
        • Cryan J.F.
        A natural solution for obesity: bioactives for the prevention and treatment of weight gain. A review.
        Nutr Neurosci. 2015; 18: 49-65
        • Murphy E.A.
        • Velazquez K.T.
        • Herbert K.M.
        Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk.
        Curr Opin Clin Nutr Metab Care. 2015; 18: 515-520
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Turnbaugh P.J.
        • Ridaura V.K.
        • Faith J.J.
        • Rey F.E.
        • Knight R.
        • Gordon J.I.
        The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.
        Sci Transl Med. 2009; 1: 6ra14
        • Kallus S.J.
        • Brandt L.J.
        The intestinal microbiota and obesity.
        J Clin Gastroenterol. 2012; 46: 16-24
        • Turnbaugh P.J.
        • Bäckhed F.
        • Fulton L.
        • Gordon J.I.
        Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.
        Cell Host Microbe. 2008; 3: 213-223
        • Estruch R.
        • Ros E.
        • Salas-Salvadó J.
        • et al.
        Primary prevention of cardiovascular disease with a Mediterranean diet.
        N Engl J Med. 2013; 368: 1279-1290
        • Del Chierico F.
        • Vernocchi P.
        • Dallapiccola B.
        • Putignani L.
        Mediterranean diet and health: food effects on gut microbiota and disease control.
        Int J Mol Sci. 2014; 15: 11678-11699
        • Marlow G.
        • Ellett S.
        • Ferguson I.R.
        • et al.
        Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients.
        Hum Genomics. 2013; 7: 24
        • Yamashita H.
        • Fujisawa K.
        • Ito E.
        • et al.
        Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats.
        Biosci Biotechnol Biochem. 2007; 71: 1236-1243
        • Lin J.
        • Handschin C.
        • Spiegelman B.M.
        Metabolic control through the PGC-1 family of transcription coactivators.
        Cell Metab. 2005; 1: 361-370
        • Jäger S.
        • Handschin C.
        • St.-Pierre J.
        • Spiegelman B.M.
        AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α.
        Proc Natl Acad Sci U S A. 2007; 104: 12017-12022
        • De Filippis F.
        • Pellegrini N.
        • Vannini L.
        • et al.
        High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome.
        Gut. 2015; 65: 1812-1821
        • Boss A.
        • Bishop K.S.
        • Marlow G.
        • Barnett M.P.
        • Ferguson L.R.
        Evidence to support the Anti-Cancer effect of olive leaf extract and future Directions.
        Nutrients. 2016; 8
        • Amel N.
        • Wafa T.
        • Samia D.
        • et al.
        Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-dichlorophenoxyacetic acid in rats.
        J Food Sci Technol. 2016; 53: 1454-1464
        • Sánchez-Villegas A.
        • Henríquez P.
        • Bes-Rastrollo M.
        • Doreste J.
        Mediterranean diet and depression.
        Public Health Nutr. 2006; 9: 1104-1109
        • Sánchez-Villegas A.
        • Delgado-Rodríguez M.
        • Alonso A.
        • et al.
        Association of the Mediterranean dietary pattern with the incidence of depression: the Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort.
        Arch Gen Psychiatry. 2009; 66: 1090-1098
        • Delgado P.L.
        • Moreno F.A.
        Role of norepinephrine in depression.
        J Clin Psychiatry. 2000; 61: 5-12
        • Sofi F.
        • Abbate R.
        • Gensini G.F.
        • Casini A.
        Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis.
        Am J Clin Nutr. 2010; 92: 1189-1196
        • Peng L.
        • He Z.
        • Chen W.
        • Holzman I.R.
        • Lin J.
        Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier.
        Pediatr Res. 2007; 61: 37-41
        • Wang L.
        • Christophersen C.T.
        • Sorich M.J.
        • Gerber J.P.
        • Angley M.T.
        • Conlon M.A.
        Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder.
        Dig Dis Sci. 2012; 57: 2096-2102
        • Plöger S.
        • Stumpff F.
        • Penner G.B.
        • et al.
        Microbial butyrate and its role for barrier function in the gastrointestinal tract.
        Ann N Y Acad Sci. 2012; 1258: 52-59
        • Lewis K.
        • Lutgendorff F.
        • Phan V.
        • Söderholm J.D.
        • Sherman P.M.
        • McKay D.M.
        Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate.
        Inflamm Bowel Dis. 2010; 16: 1138-1148
        • Dvořáková M.
        • Paduchová Z.
        • Muchová J.
        • Duračková Z.
        • Collins A.R.
        How does pycnogenol® influence oxidative damage to DNA and its repair ability in elderly people?.
        Prague Med Rep. 2010; 111: 263-271
        • Finsterwald C.
        • Fiumelli H.
        • Cardinaux J.R.
        • Martin J.L.
        Regulation of dendritic development by BDNF requires activation of CRTC1 by glutamate.
        J Biol Chem. 2010; 285: 28587-28595
        • Gomez-Pinilla F.
        • Nguyen T.T.
        Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders.
        Nutr Neurosci. 2012; 15: 127-133
        • Celik Guzel E.
        • Bakkal E.
        • Guzel S.
        • et al.
        Can low brain-derived neurotrophic factor levels be a marker of the presence of depression in obese women?.
        Neuropsychiatr Dis Treat. 2014; 10: 2079-2086
        • Sun Z.L.
        • Liu J.
        • Guo W.
        • et al.
        Serum brain-derived neurotrophic factor levels associate with cognitive improvement in patients with schizophrenia treated with electroacupuncture.
        Psychiatry Res. 2016; 244: 370-375
        • Rajilić-Stojanović M.
        Function of the microbiota.
        Best Pract Res Clin Gastroenterol. 2013; 27: 5-16
        • Nicholson J.K.
        • Holmes E.
        • Kinross J.
        • et al.
        Host-gut microbiota metabolic interactions.
        Science. 2012; 336: 1262-1267
        • Lyte M.
        • Chapel A.
        • Lyte J.M.
        • et al.
        Resistant starch alters the microbiota-gut brain axis: implications for dietary modulation of behavior.
        PLoS One. 2016; 11: e0146406
        • Sonnenburg E.D.
        • Smits S.A.
        • Tikhonov M.
        • Higginbottom S.K.
        • Wingreen N.S.
        • Sonnenburg J.L.
        Diet-induced extinctions in the gut microbiota compound over generations.
        Nature. 2016; 529: 212
        • Grube B.
        • Chong P.W.
        • Lau K.Z.
        • Orzechowski H.D.
        A natural fiber complex reduces body weight in the overweight and obese: a double-blind, randomized, placebo-controlled study.
        Obesity (Silver Spring). 2013; 21: 58-64
        • Melanson K.J.
        • Angelopoulos T.J.
        • Nguyen V.T.
        • et al.
        Consumption of whole-grain cereals during weight loss: effects on dietary quality, dietary fiber, magnesium, vitamin B-6, and obesity.
        J Am Diet Assoc. 2006; 106: 1380-1388
        • Gann P.H.
        • Chatterton R.T.
        • Gapstur S.M.
        • et al.
        The effects of a low-fat/high-fiber diet on sex hormone levels and menstrual cycling in premenopausal women: a 12-month randomized trial (the diet and hormone study).
        Cancer. 2003; 98: 1870-1879
        • Kolida S.
        • Tuohy K.
        • Gibson G.R.
        Prebiotic effects of inulin and oligofructose.
        Br J Nutr. 2002; 87: S193-S197
        • Sabater-Molina M.
        • Larqué E.
        • Torrella F.
        • Zamora S.
        Dietary fructooligosaccharides and potential benefits on health.
        J Physiol Biochem. 2009; 65: 315-328
        • Kuo S.M.
        The interplay between fiber and the intestinal microbiome in the inflammatory response.
        Adv Nutr. 2013; 4: 16-28
        • Vandenplas Y.
        Oligosaccharides in infant formula.
        Br J Nutr. 2002; 87: S293-S296
        • Barile D.
        • Rastall R.A.
        Human milk and related oligosaccharides as prebiotics.
        Curr Opin Biotechnol. 2013; 24: 214-219
        • Ben X.M.
        • Zhou X.Y.
        • Zhao W.H.
        • et al.
        Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants.
        Chin Med J (Engl). 2004; 117: 927-931
        • Garrido D.
        • Dallas D.C.
        • Mills D.A.
        Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications.
        Microbiology. 2013; 159: 649-664
        • Vulevic J.
        • Juric A.
        • Walton G.E.
        • et al.
        Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons.
        Br J Nutr. 2015; 114: 586-595
        • Schmidt K.
        • Cowen P.J.
        • Harmer C.J.
        • Tzortzis G.
        • Errington S.
        • Burnet P.W.
        Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers.
        Psychopharmacology (Berl). 2015; 232: 1793-1801
        • Gibson G.R.
        • Wang X.
        Regulatory effects of bifidobacteria on the growth of other colonic bacteria.
        J Appl Bacteriol. 1994; 77: 412-420
        • Ramirez-Farias C.
        • Slezak K.
        • Fuller Z.
        • Duncan A.
        • Holtrop G.
        • Louis P.
        Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.
        Br J Nutr. 2009; 101: 541-550
        • Kruse H.P.
        • Kleessen B.
        • Blaut M.
        Effects of inulin on faecal bifidobacteria in human subjects.
        Br J Nutr. 1999; 82: 375-382
        • Videla S.
        • Vilaseca J.
        • Antolín M.
        Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat.
        Am J Gastroenterol. 2001; 96: 1486-1493
        • Bouchaud G.
        • Castan L.
        • Chesné J.
        • et al.
        Maternal exposure to GOS/inulin mixture prevents food allergies and promotes tolerance in offspring in mice.
        Allergy. 2016; 71: 68-76
        • Maki K.C.
        • Galant R.
        • Samuel P.
        • et al.
        Effects of consuming foods containing oat beta-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure.
        Eur J Clin Nutr. 2007; 61: 786-795
        • Chan G.C.
        • Chan W.K.
        • Sze D.M.
        The effects of beta-glucan on human immune and cancer cells.
        J Hematol Oncol. 2009; 2: 25
        • Alp H.
        • Varol S.
        • Celik M.M.
        • et al.
        Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozotocin.
        Exp Diabetes Res. 2012; 2012: 230342
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Zhao Y.
        • Wu J.
        • Li J.V.
        • Zhou N.Y.
        • Tang H.
        • Wang Y.
        Gut microbiota composition modifies fecal metabolic profiles in mice.
        J Proteome Res. 2013; 12: 2987-2999
        • Devkota S.
        • Wang Y.
        • Musch M.W.
        • et al.
        Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice.
        Nature. 2012; 487: 104-108
        • Narushima S.
        • Itoha K.
        • Miyamoto Y.
        • et al.
        Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria.
        Lipids. 2006; 41: 835-843
        • Stamp D.H.
        Three hypotheses linking bile to carcinogenesis in the gastrointestinal tract: certain bile salts have properties that may be used to complement chemotherapy.
        Med Hypotheses. 2002; 59: 398-405
        • Duboc H.
        • Rajca S.
        • Rainteau D.
        • et al.
        Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases.
        Gut. 2013; 62: 531-539
        • Kim I.
        • Ahn S.H.
        • Inagaki T.
        • et al.
        Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine.
        J Lipid Res. 2007; 48: 2664-2672
        • Begley M.
        • Gahan C.G.
        • Hill C.
        The interaction between bacteria and bile.
        FEMS Microbiol Rev. 2005; 29: 625-651
        • Weingarden A.R.
        • Chen C.
        • Bobr A.
        • et al.
        Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.
        Am J Physiol Gastrointest Liver Physiol. 2014; 306: G310-G319
        • Sorg J.A.
        • Sonenshein A.L.
        Bile salts and glycine as cogerminants for Clostridium difficile spores.
        J Bacteriol. 2008; 190: 2505-2512
        • Nie Y.F.
        • Hu J.
        • Yan X.H.
        Cross-talk between bile acids and intestinal microbiota in host metabolism and health.
        J Zhejiang Univ Sci B. 2015; 16: 436-446
        • Joyce S.A.
        • Shanahan F.
        • Hill C.
        • Gahan C.G.
        Bacterial bile salt hydrolase in host metabolism: potential for influencing gastrointestinal microbe-host crosstalk.
        Gut Microbes. 2014; 5: 669-674
        • Bu J.
        • Dou Y.
        • Tian X.
        • Wang Z.
        • Chen G.
        The role of omega-3 polyunsaturated fatty acids in stroke.
        Oxid Med Cell Longev. 2016; 2016: 6906712
        • Lauritzen I.
        • Blondeau N.
        • Heurteaux C.
        • Widmann C.
        • Romey G.
        • Lazdunski M.
        Polyunsaturated fatty acids are potent neuroprotectors.
        EMBO J. 2000; 19: 1784-1793
        • Nobre M.E.
        • Correia A.O.
        • Mendonça F.N.
        • et al.
        Omega-3 fatty acids: possible neuroprotective mechanisms in the model of global ischemia in rats.
        J Nutr Metab. 2016; 2016: 6462120
        • Logan S.L.
        • Spriet L.L.
        Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females.
        PLoS One. 2015; 10: e0144828
        • Grosso G.
        • Galvano F.
        • Marventano S.
        • et al.
        Omega-3 fatty acids and depression: scientific evidence and biological mechanisms.
        Oxid Med Cell Longev. 2014; 2014: 313570
        • Chalon S.
        Omega-3 fatty acids and monoamine neurotransmission.
        Prostaglandins Leukot Essent Fatty Acids. 2006; 75: 259-269
        • Heinrichs S.C.
        Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function.
        Mol Nutr Food Res. 2010; 54: 447-456
        • Pusceddu M.M.
        • El Aidy S.
        • Crispie F.
        • et al.
        N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota.
        PLoS One. 2015; 10: e0139721
        • Devillard E.
        • McIntosh F.M.
        • Duncan S.H.
        • Wallace R.J.
        Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid.
        J Bacteriol. 2007; 189: 2566-2570
        • Kaliannan K.
        • Wang B.
        • Li X.Y.
        • Bhan A.K.
        • Kang J.X.
        Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity.
        Int J Obes (Lond). 2016; 40: 1039-1042
        • Robertson R.C.
        • Seira Oriach C.
        • Murphy K.
        • et al.
        Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood.
        Brain Behav Immun. 2016; : 1-57
        • Sarris J.
        • Murphy J.
        • Mischoulon D.
        • et al.
        Adjunctive nutraceuticals for depression: a systematic review and meta-analyses.
        Am J Psychiatry. 2016; 173: 575-587
        • LeBlanc J.G.
        • Milani C.
        • de Giori G.S.
        • Sesma F.
        • van Sinderen D.
        • Ventura M.
        Bacteria as vitamin suppliers to their host: a gut microbiota perspective.
        Curr Opin Biotechnol. 2013; 24: 160-168
        • Ivanov I.I.
        • Atarashi K.
        • Manel N.
        • et al.
        Induction of intestinal Th17 cells by segmented filamentous bacteria.
        Cell. 2009; 139: 485-498
        • Gaboriau-Routhiau V.
        • Rakotobe S.
        • Lécuyer E.
        • et al.
        The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses.
        Immunity. 2009; 31: 677-689
        • Bashir M.
        • Prietl B.
        • Tauschmann M.
        • et al.
        Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract.
        Eur J Nutr. 2016; 55: 1479-1489
        • Norton R.
        • O'Connell M.A.
        Vitamin D: Potential in the prevention and treatment of lung cancer.
        Anticancer Res. 2012; 32: 211-221
        • Fletcher J.M.
        • Basdeo S.A.
        • Allen A.C.
        • Dunne P.J.
        Therapeutic use of vitamin D and its analogues in autoimmunity.
        Recent Pat Inflamm Allergy Drug Discov. 2012; 6: 22-34
        • Valipour G.
        • Saneei P.
        • Esmaillzadeh A.
        Serum vitamin D levels in relation to schizophrenia: a systematic review and meta-analysis of observational studies.
        J Clin Endocrinol Metab. 2014; 99: 3863-3872
        • Sadeghian M.
        • Saneei P.
        • Siassi F.
        • Esmaillzadeh A.
        Vitamin D status in relation to Crohn's disease: meta-analysis of observational studies.
        Nutrition. 2016; 32: 505-514
        • Pereira-Santos M.
        • Costa P.R.
        • Assis A.M.
        • Santos C.A.
        • Santos D.B.
        Obesity and vitamin D deficiency: a systematic review and meta-analysis.
        Obes Rev. 2015; 16: 341-349
        • O'Keefe S.J.
        • Ou J.
        • Aufreiter S.
        • et al.
        Products of the colonic microbiota mediate the effects of diet on colon cancer risk.
        J Nutr. 2009; 139: 2044-2048
        • Foxx-Orenstein A.E.
        • Chey W.D.
        Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders.
        Am J Gastroenterol Suppl. 2012; 1: 41-46
        • Shenderov B.A.
        Metabiotics: novel idea or natural development of probiotic conception.
        Microb Ecol Health Dis. 2013; 12: 24
        • Pompei A.
        • Cordisco L.
        • Amaretti A.
        • Zanoni S.
        • Matteuzzi D.
        • Rossi M.
        Folate production by bifidobacteria as a potential probiotic property.
        Appl Environ Microbiol. 2007; 73: 179-185
        • Hooper L.V.
        • Midtvedt T.
        • Gordon J.I.
        How host-microbial interactions shape the nutrient environment of the mammalian intestine.
        Annu Rev Nutr. 2002; 22: 283-307
        • Pan L.A.
        • Martin P.
        • Zimmer T.
        • et al.
        Neurometabolic disorders: potentially treatable abnormalities in patients with treatment-refractory depression and suicidal behavior.
        Am J Psychiatry. 2016; : 1-9
        • Papakostas G.I.
        • Shelton R.C.
        • Zajecka J.M.
        • et al.
        L-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials.
        Am J Psychiatry. 2012; 169: 1267-1274
        • Owen R.T.
        Folate augmentation of antidepressant response.
        Drugs Today (Barc). 2013; 49: 791-798
        • Pandey K.B.
        • Rizvi S.I.
        Plant polyphenols as dietary antioxidants in human health and disease.
        Oxid Med Cell Longev. 2009; 2: 270-278
        • Agouni A.
        • Lagrue-Lak-Hal A.H.
        • Mostefai H.A.
        • et al.
        Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa).
        PLoS One. 2009; 4: e5557
        • Simonyi A.
        • Wang Q.
        • Miller R.L.
        • et al.
        Polyphenols in cerebral ischemia: novel targets for neuroprotection.
        Mol Neurobiol. 2005; 31: 135-147
        • Middleton Jr., E.
        • Kandaswami C.
        • Theoharides T.C.
        The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.
        Pharmacol Rev. 2000; 52: 673-751
        • Roopchand D.E.
        • Carmody R.N.
        • Kuhn P.
        • et al.
        Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome.
        Diabetes. 2015; 64: 2847-2858
        • Cardona F.
        • Andrés-Lacueva C.
        • Tulipani S.
        • Tinahones F.J.
        • Queipo-Ortuño M.I.
        Benefits of polyphenols on gut microbiota and implications in human health.
        J Nutr Biochem. 2013; 24: 1415-1422
        • Kulkarni S.K.
        • Bhutani M.K.
        • Bishnoi M.
        Antidepressant activity of curcumin: involvement of serotonin and dopamine system.
        Psychopharmacology (Berl). 2008; 201: 435-442
        • Park A.J.
        • Collins J.
        • Blennerhassett P.A.
        • et al.
        Altered colonic function and microbiota profile in a mouse model of chronic depression.
        Neurogastroenterol Motil. 2013; 25 (733-e575)
        • Yáñez M.
        • Fraiz N.
        • Cano E.
        • Orallo F.
        Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity.
        Biochem Biophys Res Commun. 2006; 344: 688-695
        • Hurley L.L.
        • Akinfiresoye L.
        • Kalejaiye O.
        • Tizabi Y.
        Antidepressant effects of resveratrol in an animal model of depression.
        Behav Brain Res. 2014; 268: 1-7
        • Zheng L.T.
        • Ock J.
        • Kwon B.M.
        • Suk K.
        Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity.
        Int Immunopharmacol. 2008; 8: 484-494
        • Zhen L.
        • Zhu J.
        • Zhao X.
        • et al.
        The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system.
        Behav Brain Res. 2012; 228: 359-366
        • Magnusson J.
        • Kull I.
        • Westman M.
        • et al.
        Fish and polyunsaturated fat intake and development of allergic and nonallergic rhinitis.
        J Allergy Clin Immunol. 2015; 136: 1247-1253
        • Coultrap S.J.
        • Bickford P.C.
        • Browning M.D.
        Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP.
        Age (Dordr). 2008; 30: 263-272
        • Azam S.
        • Hadi N.
        • Khan N.U.
        • Hadi S.M.
        Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties.
        Toxicol In Vitro. 2004; 18: 555-561
        • Chen Y.
        • Liu W.H.
        • Chen B.L.
        • et al.
        Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers.
        Ann Pharmacother. 2010; 44: 1038-1045
        • Kuroda Y.
        • Hara Y.
        Antimutagenic and anticarcinogenic activity of tea polyphenols.
        Mutat Res. 1999; 436: 69-97
        • Zhu W.L.
        • Shi H.S.
        • Wei Y.M.
        • et al.
        Green tea polyphenols produce antidepressant-like effects in adult mice.
        Pharmacol Res. 2012; 65: 74-80
        • Mazzio E.A.
        • Harris N.
        • Soliman K.F.
        Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells.
        Planta Med. 1998; 64: 603-606
        • Tzounis X.
        • Vulevic J.
        • Kuhnle G.G.
        • et al.
        Flavanol monomer-induced changes to the human faecal microflora.
        Br J Nutr. 2008; 99: 782-792
        • Dolara P.
        • Luceri C.
        • De Filippo C.
        • et al.
        Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats.
        Mutat Res. 2005; 591: 237-246
        • Yamakoshi J.
        • Tokutake S.
        • Kikuchi M.
        Effect of proanthocyanidin- rich extract from grape seeds on human fecal flora and fecal odor.
        Microb Ecol Health Dis. 2001; 13: 25-31
        • Massot-Cladera M.
        • Pérez-Berezo T.
        • Franch A.
        • Castell M.
        • Pérez-Cano F.J.
        Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk.
        Arch Biochem Biophys. 2012; 527: 105-112
        • Larrosa M.
        • Luceri C.
        • Vivoli E.
        • et al.
        Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models.
        Mol Nutr Food Res. 2009; 53: 1044-1054
        • Queipo-Ortuño M.I.
        • Boto-Ordóñez M.
        • Murri M.
        • et al.
        Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers.
        Am J Clin Nutr. 2012; 95: 1323-1334
        • Xue B.
        • Xie J.
        • Huang J.
        • et al.
        Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro.
        Food Funct. 2016; 7: 1501-1507
        • Greenwood C.E.
        • Winocur G.
        High-fat diets, insulin resistance and declining cognitive function.
        Neurobiol Aging. 2005; 26: 42-45
        • Parrott M.D.
        • Greenwood C.E.
        Dietary influences on cognitive function with aging: from high-fat diets to healthful eating.
        Ann N Y Acad Sci. 2007; 1114: 389-397
        • Ferguson B.J.
        • Marler S.
        • Altstein L.L.
        • et al.
        Associations between cytokines, endocrine stress response, and gastrointestinal symptoms in autism spectrum disorder.
        Brain Behav Immun. 2016; 58: 57-62
        • Wang S.S.
        • Kloth A.D.
        • Badura A.
        The cerebellum, sensitive periods, and autism.
        Neuron. 2014; 83: 518-532
        • Finegold S.M.
        • Downes J.
        • Summanen P.H.
        Microbiology of regressive autism.
        Anaerobe. 2012; 18: 260-262
        • Tomova A.
        • Husarova V.
        • Lakatosova S.
        • et al.
        Gastrointestinal microbiota in children with autism in Slovakia.
        Physiol Behav. 2015; 138: 179-187
        • Parracho H.M.
        • Bingham M.O.
        • Gibson G.R.
        • McCartney A.L.
        Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children.
        J Med Microbiol. 2005; 54: 987-991
        • Kang D.W.
        • Park J.G.
        • Ilhan Z.E.
        • et al.
        Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children.
        PLoS One. 2013; 8: e68322
        • Buffington S.A.
        • Di Prisco G.V.
        • Auchtung T.A.
        • Ajami N.J.
        • Petrosino J.F.
        • Costa-Mattioli M.
        Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring.
        Cell. 2016; 165: 1762-1775
        • De Theije C.G.
        • Wopereis H.
        • Ramadan M.
        • et al.
        Altered gut microbiota and activity in a murine model of autism spectrum disorders.
        Brain Behav Immun. 2014; 37: 197-206
        • Hsiao E.Y.
        • McBride S.W.
        • Hsien S.
        • et al.
        Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.
        Cell. 2013; 155: 1451-1463
        • Ramirez P.L.
        • Barnhill K.
        • Gutierrez A.
        • Schutte C.
        • Hewitson L.
        Improvements in behavioral symptoms following antibiotic therapy in a 14-year-old male with autism.
        Case Rep Psychiatry. 2013; 2013: 239034
        • Ait-Belgnaoui A.
        • Durand H.
        • Cartier C.
        • et al.
        Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats.
        Psychoneuroendocrinology. 2012; 37: 1885-1895
        • Bercik P.
        • Denou E.
        • Collins J.
        • et al.
        The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.
        Gastroenterology. 2011; 141: 599-609
        • MacFabe D.F.
        • Cain N.E.
        • Boon F.
        • Ossenkopp K.P.
        • Cain D.P.
        Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder.
        Behav Brain Res. 2011; 217: 47-54
        • Thomas P.
        • Zahorodny W.
        • Peng B.
        • et al.
        The association of autism diagnosis with socioeconomic status.
        Autism. 2012; 16: 201-213
        • Toh M.C.
        • Allen-Vercoe E.
        The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts.
        Microb Ecol Health Dis. 2015; 28: 1-6
        • Son J.S.
        • Zheng L.J.
        • Rowehl L.M.
        • et al.
        Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the Simons Simplex Collection.
        PLoS One. 2015; 10: e0137725
        • Srinivasan P.
        A review of dietary interventions in autism.
        Ann Clin Psychiatry. 2009; 21: 237-247
        • Roy A.
        • Roy M.
        • Deb S.
        • et al.
        Are opioid antagonists effective in attenuating the core symptoms of autism spectrum conditions in children: a systematic review.
        J Intellect Disabil Res. 2015; 59: 293-306
        • Whiteley P.
        Nutritional management of (some) autism: a case for gluten- and casein-free diets?.
        Proc Nutr Soc. 2015; 74: 202-207
        • Theoharides T.C.
        • Asadi S.
        • Patel A.B.
        Focal brain inflammation and autism.
        J Neuroinflammation. 2013; 10: 46
        • Theoharides T.C.
        • Angelidou A.
        • Alysandratos K.D.
        • et al.
        Mast cell activation and autism.
        Biochim Biophys Acta. 2012; 1822: 34-41
        • Tsilioni I.
        • Taliou A.
        • Francis K.
        • Theoharides T.C.
        Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6.
        Transl Psychiatry. 2015; 5: e647
        • Jang K.S.
        • Hwang S.Y.
        • Choi J.Y.
        Internet addiction and psychiatric symptoms among Korean adolescents.
        J Sch Health. 2008; 78: 165-171
        • Parker-Athill E.
        • Luo D.
        • Bailey A.
        • et al.
        Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism.
        J Neuroimmunol. 2009; 217: 20-27
        • Klein M.
        • Berger S.
        • Hoogman M.
        • et al.
        Meta-analysis of the DRD5 VNTR in persistent ADHD.
        Eur Neuropsychopharmacol. 2016; 26: 1527-1532
        • Graham J.
        • Banaschewski T.
        • Buitelaar J.
        • et al.
        • European Guidelines Group
        European guidelines on managing adverse effects of medication for ADHD.
        Eur Child Adolesc Psychiatry. 2011; 20: 17-37
        • van de Loo-Neus G.H.
        • Rommelse N.
        • Buitelaar J.K.
        To stop or not to stop? How long should medication treatment of attention-deficit hyperactivity disorder be extended?.
        Eur Neuropsychopharmacol. 2011; 2: 584-599
        • Nigg J.T.
        • Lewis K.
        • Edinger T.
        • Falk M.
        Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives.
        J Am Acad Child Adolesc Psychiatry. 2012; 51: 86-97
        • Arnold L.E.
        Alternative treatments for adults with attention-deficit hyperactivity disorder (ADHD).
        Ann N Y Acad Sci. 2001; 931: 310-341
        • Sonuga-Barke E.J.
        • Brandeis D.
        • Cortese S.
        • et al.
        • European ADHD Guidelines Group
        Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments.
        Am J Psychiatry. 2013; 170: 275-289
        • Bloch M.H.
        • Qawasmi A.
        Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 991-1000
        • Pelsser L.M.
        • Frankena K.
        • Toorman J.
        • et al.
        Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): a randomised controlled trial.
        Lancet. 2011; 377: 494-503
        • Zheng P.
        • Zeng B.
        • Zhou C.
        • et al.
        Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism.
        Mol Psychiatry. 2016; 21: 786-796
        • Aizawa E.
        • Tsuji H.
        • Asahara T.
        • et al.
        Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder.
        J Affect Disord. 2016; 202: 254-257
        • Bradley K.A.
        • Case J.A.
        • Khan O.
        • et al.
        The role of the kynurenine pathway in suicidality in adolescent major depressive disorder.
        Psychiatry Res. 2015; 227: 206-212
        • Kennedy P.J.
        • Cryan J.F.
        • Dinan T.G.
        • Clarke G.
        Kynurenine pathway metabolism and the microbiota-gut-brain axis.
        Neuropharmacology. 2016; : 1-48
        • Romani L.
        • Zelante T.
        • De Luca A.
        • et al.
        Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi.
        Eur J Immunol. 2014; 44: 3192-3200
        • Zelante T.
        • Iannitti R.G.
        • Cunha C.
        • et al.
        Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.
        Immunity. 2013; 39: 372-385
        • Zelante T.
        • Iannitti R.G.
        • Fallarino F.
        • et al.
        Tryptophan feeding of the IDO1-AhR axis in host-microbial symbiosis.
        Front Immunol. 2014; 5: 640
        • Miller A.H.
        Depression and immunity: a role for T cells?.
        Brain Behav Immun. 2010; 24: 1-8
        • Pifferi F.
        • Roux F.
        • Langelier B.
        • et al.
        (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats.
        J Nutr. 2005; 135: 2241-2246
        • Makrides M.
        • Crowther C.A.
        • Gibson R.A.
        • Gibson R.S.
        • Skeaff C.M.
        Docosahexaenoic acid and post-partum depression – is there a link?.
        Asia Pac J Clin Nutr. 2003; 12: S37
        • Liperoti R.
        • Landi F.
        • Fusco O.
        • Bernabei R.
        • Onder G.
        Omega-3 polyunsaturated fatty acids and depression: a review of the evidence.
        Curr Pharm Des. 2009; 15: 4165-4172
        • Sublette M.E.
        • Ellis S.P.
        • Geant A.L.
        • Mann J.J.
        Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression.
        J Clin Psychiatry. 2011; 72: 1577-1584
        • Young S.N.
        Fish oils for depression?.
        J Psychiatry Neurosci. 2008; 33: 80
        • Hibbeln J.R.
        Fish consumption and major depression.
        Lancet. 1998; 351: 1213
        • Hibbeln J.R.
        Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis.
        J Affect Disord. 2002; 69: 15-29
        • Bourre J.M.
        Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.
        J Nutr Health Aging. 2004; 8: 163
        • Otto S.J.
        • de Groot R.H.
        • Hornstra G.
        Increased risk of postpartum depressive symptoms is associated with slower normalization after pregnancy of the functional docosahexaenoic acid status.
        Prostaglandins Leukot Essent Fatty Acids. 2003; 69: 237-243
        • Desbonnet L.
        • Garrett L.
        • Clarke G.
        • Bienenstock J.
        • Dinan T.G.
        The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat.
        J Psychiatr Res. 2008; 43: 164-174
        • Desbonnet L.
        • Garrett L.
        • Clarke G.
        • Kiely B.
        • Cryan J.F.
        • Dinan T.G.
        Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression.
        Neuroscience. 2010; 170: 1179-1188
        • Wang S.
        • Blazer D.G.
        Depression and cognition in the elderly.
        Annu Rev Clin Psychol. 2015; 11: 331-360
        • Steenbergen L.
        • Sellaro R.
        • van Hemert S.
        • Bosch J.A.
        • Colzato L.S.
        A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood.
        Brain Behav Immun. 2015; 48: 258-264
        • Savignac H.M.
        • Kiely B.
        • Dinan T.G.
        • Cryan J.F.
        Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice.
        Neurogastroenterol Motil. 2014; 26: 1615-1627
        • Gagliano H.
        • Delgado-Morales R.
        • Sanz-Garcia A.
        • Armario A.
        High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response.
        Neuropharmacology. 2014; 79: 75-82
        • McKnight P.E.
        • Monfort S.S.
        • Kashdan T.B.
        • Blalock D.V.
        • Calton J.M.
        Anxiety symptoms and functional impairment: a systematic review of the correlation between the two measures.
        Clin Psychol Rev. 2016; 45: 115-130
        • Koen N.
        • Stein D.J.
        Pharmacotherapy of anxiety disorders: a critical review.
        Dialogues Clin Neurosci. 2011; 13: 423-437
        • Suliman S.
        • Hemmings S.M.
        • Seedat S.
        Brain-derived neurotrophic factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis.
        Front Integr Neurosci. 2013; 7: 55
        • Su K.P.
        • Matsuoka Y.
        • Pae C.U.
        Omega-3 polyunsaturated fatty acids in prevention of mood and anxiety disorders.
        Clin Psychopharmacol Neurosci. 2015; 13: 129-137
        • Balanzá-Martínez V.
        • Fries G.R.
        • Colpo G.D.
        • et al.
        Therapeutic use of omega-3 fatty acids in bipolar disorder.
        Expert Rev Neurother. 2011; 11: 1029-1047
        • Buydens-Branchey L.
        • Branchey M.
        • Hibbeln J.R.
        Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers.
        Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 568-575
        • Dinan T.G.
        • Cryan J.F.
        Microbes, immunity, and behavior: Psychoneuroimmunology Meets the microbiome.
        Neuropsychopharmacology. 2016; : 1-15