Advertisement

Cardiovascular consequences of metabolic syndrome

Published:January 09, 2017DOI:https://doi.org/10.1016/j.trsl.2017.01.001
      The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.

      Abbreviations:

      BMI (Body Mass Index), MetS (Metabolic Syndrome), NHANES (National Health and Nutritional Examination Survey), miR (microRNA), HDL (high-density lipoprotein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Enzi G.
        • Busetto L.
        • Inelmen E.M.
        • Coin A.
        • Sergi G.
        Historical perspective: visceral obesity and related comorbidity in Joannes Baptista Morgagni's ‘De sedibus et causis morborum per anatomen indagata’.
        Int J Obes Relat Metab Disord. 2003; 27: 534-535
        • Sarafidis P.A.
        • Nilsson P.M.
        The metabolic syndrome: a glance at its history.
        J Hypertens. 2006; 24: 621-626
        • Reaven G.M.
        Banting lecture 1988. Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Sperling L.S.
        • Mechanick J.I.
        • Neeland I.J.
        • et al.
        The CardioMetabolic health Alliance: working toward a new care model for the metabolic syndrome.
        J Am Coll Cardiol. 2015; 66: 1050-1067
        • Ervin R.B.
        Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006.
        Natl Health Stat Report. 2009; : 1-7
        • O'Neill S.
        • O'Driscoll L.
        Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies.
        Obes Rev. 2015; 16: 1-12
        • Berwick Z.C.
        • Dick G.M.
        • Tune J.D.
        Heart of the matter: coronary dysfunction in metabolic syndrome.
        J Mol Cell Cardiol. 2012; 52: 848-856
        • Lakka H.M.
        • Laaksonen D.E.
        • Lakka T.A.
        • et al.
        The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.
        JAMA. 2002; 288: 2709-2716
        • Knudson J.D.
        • Dincer U.D.
        • Bratz I.N.
        • Sturek M.
        • Dick G.M.
        • Tune J.D.
        Mechanisms of coronary dysfunction in obesity and insulin resistance.
        Microcirculation. 2007; 14: 317-338
        • Galassi A.
        • Reynolds K.
        • He J.
        Metabolic syndrome and risk of cardiovascular disease: a meta-analysis.
        Am J Med. 2006; 119: 812-819
        • Grundy S.M.
        • Cleeman J.I.
        • Daniels S.R.
        • et al.
        Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement.
        Curr Opin Cardiol. 2006; 21: 1-6
        • Hunt K.J.
        • Resendez R.G.
        • Williams K.
        • Haffner S.M.
        • Stern M.P.
        • San Antonio Heart Study
        National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study.
        Circulation. 2004; 110: 1251-1257
        • Ritchie S.A.
        • Connell J.M.
        The link between abdominal obesity, metabolic syndrome and cardiovascular disease.
        Nutr Metab Cardiovasc Dis. 2007; 17: 319-326
        • Abel E.D.
        • Litwin S.E.
        • Sweeney G.
        Cardiac remodeling in obesity.
        Physiol Rev. 2008; 88: 389-419
        • Poirier P.
        • Eckel R.H.
        Obesity and cardiovascular disease.
        Curr Atheroscler Rep. 2002; 4: 448-453
        • Jiamsripong P.
        • Mookadam M.
        • Alharthi M.S.
        • Khandheria B.K.
        • Mookadam F.
        The metabolic syndrome and cardiovascular disease: part 2.
        Prev Cardiol. 2008; 11: 223-229
        • Mottillo S.
        • Filion K.B.
        • Genest J.
        • et al.
        The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis.
        J Am Coll Cardiol. 2010; 56: 1113-1132
        • Bastien M.
        • Poirier P.
        • Lemieux I.
        • Despres J.P.
        Overview of epidemiology and contribution of obesity to cardiovascular disease.
        Prog Cardiovasc Dis. 2014; 56: 369-381
        • Grundy S.M.
        Metabolic syndrome update.
        Trends Cardiovasc Med. 2016; 26: 364-373
        • Alpert M.A.
        Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome.
        Am J Med Sci. 2001; 321: 225-236
        • Whaley-Connell A.
        • Pavey B.S.
        • Chaudhary K.
        • Saab G.
        • Sowers J.R.
        Renin-angiotensin-aldosterone system intervention in the cardiometabolic syndrome and cardio-renal protection.
        Ther Adv Cardiovasc Dis. 2007; 1: 27-35
        • Cooper S.A.
        • Whaley-Connell A.
        • Habibi J.
        • et al.
        Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance.
        Am J Physiol Heart Circ Physiol. 2007; 293: H2009-H2023
        • Shah R.V.
        • Abbasi S.A.
        • Heydari B.
        • et al.
        Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: MESA (Multi-Ethnic Study of Atherosclerosis).
        J Am Coll Cardiol. 2013; 61: 1698-1706
        • Knudson J.D.
        • Dick G.M.
        • Tune J.D.
        Adipokines and coronary vasomotor dysfunction.
        Exp Biol Med (Maywood). 2007; 232: 727-736
        • Tune J.D.
        • Considine R.V.
        Effects of leptin on cardiovascular physiology.
        J Am Soc Hypertens. 2007; 1: 231-241
        • Beltowski J.
        Central vs. peripheral leptin excess in the pathogenesis of obesity-associated hypertension.
        J Hypertens. 2008; 26: 827-828
        • Collins S.
        A heart-adipose tissue connection in the regulation of energy metabolism.
        Nat Rev Endocrinol. 2014; 10: 157-163
        • Keaney Jr., J.F.
        • Larson M.G.
        • Vasan R.S.
        • et al.
        Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study.
        Arterioscler Thromb Vasc Biol. 2003; 23: 434-439
        • Stapleton P.A.
        • James M.E.
        • Goodwill A.G.
        • Frisbee J.C.
        Obesity and vascular dysfunction.
        Pathophysiology. 2008; 15: 79-89
        • Reaven G.M.
        • Lithell H.
        • Landsberg L.
        Hypertension and associated metabolic abnormalities–the role of insulin resistance and the sympathoadrenal system.
        N Engl J Med. 1996; 334: 374-381
        • Grassi G.
        • Seravalle G.
        • Quarti-Trevano F.
        • et al.
        Excessive sympathetic activation in heart failure with obesity and metabolic syndrome: characteristics and mechanisms.
        Hypertension. 2007; 49: 535-541
        • Straznicky N.E.
        • Grima M.T.
        • Sari C.I.
        • et al.
        The relation of glucose metabolism to left ventricular mass and function and sympathetic nervous system activity in obese subjects with metabolic syndrome.
        J Clin Endocrinol Metab. 2013; 98: E227-E237
        • Ciccarelli M.
        • Santulli G.
        • Pascale V.
        • Trimarco B.
        • Iaccarino G.
        Adrenergic receptors and metabolism: role in development of cardiovascular disease.
        Front Physiol. 2013; 4: 265
        • Hall J.E.
        • do Carmo J.M.
        • da Silva A.A.
        • Wang Z.
        • Hall M.E.
        Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.
        Circ Res. 2015; 116: 991-1006
        • Laws A.
        • Reaven G.M.
        Insulin resistance and risk factors for coronary heart disease.
        Baillieres Clin Endocrinol Metab. 1993; 7: 1063-1078
        • Reaven G.
        Is insulin resistance: the link between TG-rich lipoproteins and excess death?.
        J Intern Med. 2011; 270 (author reply 2–3): 600-601
        • Reaven G.
        All obese individuals are not created equal: insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals.
        Diab Vasc Dis Res. 2005; 2: 105-112
        • Samuel V.T.
        • Shulman G.I.
        The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux.
        J Clin Invest. 2016; 126: 12-22
        • Randle P.J.
        • Garland P.B.
        • Hales C.N.
        • Newsholme E.A.
        The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.
        Lancet. 1963; 1: 785-789
        • McGarry J.D.
        What if Minkowski had been ageusic? An alternative angle on diabetes.
        Science. 1992; 258: 766-770
        • Turkbey E.B.
        • McClelland R.L.
        • Kronmal R.A.
        • et al.
        The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA).
        JACC Cardiovasc Imaging. 2010; 3: 266-274
        • Amad K.H.
        • Brennan J.C.
        • Alexander J.K.
        The cardiac pathology of chronic exogenous obesity.
        Circulation. 1965; 32: 740-745
        • Alexander J.K.
        Chronic heart disease due to obesity.
        J Chronic Dis. 1965; 18: 895-898
        • Litwin S.E.
        Cardiac remodeling in obesity: time for a new paradigm.
        JACC Cardiovasc Imaging. 2010; 3: 275-277
        • Avelar E.
        • Cloward T.V.
        • Walker J.M.
        • et al.
        Left ventricular hypertrophy in severe obesity - Interactions among blood pressure, nocturnal hypoxemia, and body mass.
        Hypertension. 2007; 49: 34-39
        • Peterson L.R.
        • Herrero P.
        • Schechtman K.B.
        • et al.
        Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women.
        Circulation. 2004; 109: 2191-2196
        • Peterson L.R.
        • Waggoner A.D.
        • Schechtman K.B.
        • et al.
        Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging.
        J Am Coll Cardiol. 2004; 43: 1399-1404
        • Wong C.Y.
        • O'Moore-Sullivan T.
        • Leano R.
        • Byrne N.
        • Beller E.
        • Marwick T.H.
        Alterations of left ventricular myocardial characteristics associated with obesity.
        Circulation. 2004; 110: 3081-3087
        • Sardu C.
        • Carreras G.
        • Katsanos S.
        • et al.
        Metabolic syndrome is associated with a poor outcome in patients affected by outflow tract premature ventricular contractions treated by catheter ablation.
        BMC Cardiovasc Disord. 2014; 14: 176
        • Aurigemma G.P.
        • Silver K.H.
        • Priest M.A.
        • Gaasch W.H.
        Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy.
        J Am Coll Cardiol. 1995; 26: 195-202
        • Almeida A.L.
        • Teixido-Tura G.
        • Choi E.Y.
        • et al.
        Metabolic syndrome, strain, and reduced myocardial function: multi-ethnic study of atherosclerosis.
        Arq Bras Cardiol. 2014; 102: 327-335
        • Sassoon D.J.
        • Goodwill A.G.
        • Noblet J.N.
        • et al.
        Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.
        Basic Res Cardiol. 2016; 111: 43
        • Bender S.B.
        • DeMarco V.G.
        • Padilla J.
        • et al.
        Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction.
        Hypertension. 2015; 65: 1082-1088
        • Zibadi S.
        • Vazquez R.
        • Moore D.
        • Larson D.F.
        • Watson R.R.
        Myocardial lysyl oxidase regulation of cardiac remodeling in a murine model of diet-induced metabolic syndrome.
        Am J Physiol Heart Circ Physiol. 2009; 297: H976-H982
        • Garavaglia G.E.
        • Messerli F.H.
        • Nunez B.D.
        • Schmieder R.E.
        • Grossman E.
        Myocardial contractility and left ventricular function in obese patients with essential hypertension.
        Am J Cardiol. 1988; 62: 594-597
        • Pinto T.E.
        • Gusso S.
        • Hofman P.L.
        • et al.
        Systolic and diastolic abnormalities reduce the cardiac response to exercise in adolescents with type 2 diabetes.
        Diabetes Care. 2014; 37: 1439-1446
        • Dincer U.D.
        • Araiza A.
        • Knudson J.D.
        • Shao C.H.
        • Bidasee K.R.
        • Tune J.D.
        Dysfunction of cardiac ryanodine receptors in the metabolic syndrome.
        J Mol Cell Cardiol. 2006; 41: 108-114
        • Milia R.
        • Velluzzi F.
        • Roberto S.
        • et al.
        Differences in hemodynamic response to metaboreflex activation between obese patients with metabolic syndrome and healthy subjects with obese phenotype.
        Am J Physiol Heart Circ Physiol. 2015; 309: H779-H789
        • Mozaffari M.S.
        • Schaffer S.W.
        Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome.
        Obesity (Silver Spring). 2008; 16: 2253-2258
        • Hoshida S.
        • Yamashita N.
        • Otsu K.
        • Kuzuya T.
        • Hori M.
        Cholesterol feeding exacerbates myocardial injury in Zucker diabetic fatty rats.
        Am J Physiol Heart Circ Physiol. 2000; 278: H256-H262
        • Thakker G.D.
        • Frangogiannis N.G.
        • Bujak M.
        • et al.
        Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction.
        Am J Physiol Heart Circ Physiol. 2006; 291: H2504-H2514
        • Moberly S.P.
        • Mather K.J.
        • Berwick Z.C.
        • et al.
        Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus.
        Basic Res Cardiol. 2013; 108: 365
        • Carroll J.F.
        • Jones A.E.
        • Hester R.L.
        • Reinhart G.A.
        • Cockrell K.
        • Mizelle H.L.
        Reduced cardiac contractile responsiveness to isoproterenol in obese rabbits.
        Hypertension. 1997; 30: 1376-1381
        • Okatan E.N.
        • Durak A.T.
        • Turan B.
        Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction.
        Can J Physiol Pharmacol. 2016; 94: 1064-1073
        • Santulli G.
        • Pagano G.
        • Sardu C.
        • et al.
        Calcium release channel RyR2 regulates insulin release and glucose homeostasis.
        J Clin Invest. 2015; 125: 1968-1978
        • Lavorato M.
        • Huang T.Q.
        • Iyer V.R.
        • Perni S.
        • Meissner G.
        • Franzini-Armstrong C.
        Dyad content is reduced in cardiac myocytes of mice with impaired calmodulin regulation of RyR2.
        J Muscle Res Cell Motil. 2015; 36: 205-214
        • Hamdani N.
        • Franssen C.
        • Lourenco A.
        • et al.
        Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model.
        Circ Heart Fail. 2013; 6: 1239-1249
        • Hamdani N.
        • Krysiak J.
        • Kreusser M.M.
        • et al.
        Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation.
        Circ Res. 2013; 112: 664-674
        • Hamdani N.
        • Bishu K.G.
        • von Frieling-Salewsky M.
        • Redfield M.M.
        • Linke W.A.
        Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction.
        Cardiovasc Res. 2013; 97: 464-471
        • Kruger M.
        • Linke W.A.
        The giant protein titin: a regulatory node that integrates myocyte signaling pathways.
        J Biol Chem. 2011; 286: 9905-9912
        • Zile M.R.
        • Baicu C.F.
        • Ikonomidis J.S.
        • et al.
        Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin.
        Circulation. 2015; 131: 1247-1259
        • Murthy V.L.
        • Naya M.
        • Foster C.R.
        • et al.
        Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus.
        Circulation. 2012; 126: 1858-1868
        • Laughlin M.H.
        • Davis M.J.
        • Secher N.H.
        • et al.
        Peripheral circulation.
        Compr Physiol. 2012; 2: 321-447
        • Prakash R.
        • Mintz J.D.
        • Stepp D.W.
        Impact of obesity on coronary microvascular function in the Zucker rat.
        Microcirculation. 2006; 13: 389-396
        • Di Carli M.F.
        • Charytan D.
        • McMahon G.T.
        • Ganz P.
        • Dorbala S.
        • Schelbert H.R.
        Coronary circulatory function in patients with the metabolic syndrome.
        J Nucl Med. 2011; 52: 1369-1377
        • Singh A.K.
        • Kari J.A.
        Metabolic syndrome and chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2013; 22: 198-203
        • Chantler P.D.
        • Shrader C.D.
        • Tabone L.E.
        • et al.
        Cerebral cortical microvascular rarefaction in metabolic syndrome is dependent on insulin resistance and loss of nitric oxide bioavailability.
        Microcirculation. 2015; 22: 435-445
        • Hodnett B.L.
        • Hester R.L.
        Regulation of muscle blood flow in obesity.
        Microcirculation. 2007; 14: 273-288
        • Frisbee J.C.
        Impaired skeletal muscle perfusion in obese Zucker rats.
        Am J Physiol Regul Integr Comp Physiol. 2003; 285: R1124-R1134
        • Pirat B.
        • Bozbas H.
        • Simsek V.
        • et al.
        Impaired coronary flow reserve in patients with metabolic syndrome.
        Atherosclerosis. 2008; 201: 112-116
        • Schindler T.H.
        • Cardenas J.
        • Prior J.O.
        • et al.
        Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function.
        J Am Coll Cardiol. 2006; 47: 1188-1195
        • Teragawa H.
        • Morita K.
        • Shishido H.
        • et al.
        Impaired myocardial blood flow reserve in subjects with metabolic syndrome analyzed using positron emission tomography and N-13 labeled ammonia.
        Eur J Nucl Med Mol Imaging. 2010; 37: 368-376
        • Berwick Z.C.
        • Dick G.M.
        • Moberly S.P.
        • Kohr M.C.
        • Sturek M.
        • Tune J.D.
        Contribution of voltage-dependent K(+) channels to metabolic control of coronary blood flow.
        J Mol Cell Cardiol. 2012; 52: 912-919
        • Borbouse L.
        • Dick G.M.
        • Payne G.A.
        • et al.
        Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation.
        Am J Physiol Heart Circ Physiol. 2010; 298: H1182-H1189
        • Trask A.J.
        • Katz P.S.
        • Kelly A.P.
        • et al.
        Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome.
        J Appl Physiol (1985). 2012; 113: 1128-1140
        • Gong H.P.
        • Tan H.W.
        • Fang N.N.
        • et al.
        Impaired left ventricular systolic and diastolic function in patients with metabolic syndrome as assessed by strain and strain rate imaging.
        Diabetes Res Clin Pract. 2009; 83: 300-307
        • Wong C.Y.
        • O'Moore-Sullivan T.
        • Fang Z.Y.
        • Haluska B.
        • Leano R.
        • Marwick T.H.
        Myocardial and vascular dysfunction and exercise capacity in the metabolic syndrome.
        Am J Cardiol. 2005; 96: 1686-1691
        • Borbouse L.
        • Dick G.M.
        • Payne G.A.
        • et al.
        Contribution of BK(Ca) channels to local metabolic coronary vasodilation: effects of metabolic syndrome.
        Am J Physiol Heart Circ Physiol. 2010; 298: H966-H973
        • Owan T.
        • Litwin S.E.
        Is there a cardiomyopathy of obesity?.
        Curr Heart Fail Rep. 2007; 4: 221-228
        • Gami A.S.
        • Witt B.J.
        • Howard D.E.
        • et al.
        Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies.
        J Am Coll Cardiol. 2007; 49: 403-414
        • Isomaa B.
        • Almgren P.
        • Tuomi T.
        • et al.
        Cardiovascular morbidity and mortality associated with the metabolic syndrome.
        Diabetes Care. 2001; 24: 683-689
        • Stepp D.W.
        • Boesen E.I.
        • Sullivan J.C.
        • Mintz J.D.
        • Hair C.D.
        • Pollock D.M.
        Obesity augments vasoconstrictor reactivity to angiotensin II in the renal circulation of the Zucker rat.
        Am J Physiol Heart Circ Physiol. 2007; 293: H2537-H2542
        • Ahmed S.B.
        • Fisher N.D.
        • Stevanovic R.
        • Hollenberg N.K.
        Body mass index and angiotensin-dependent control of the renal circulation in healthy humans.
        Hypertension. 2005; 46: 1316-1320
        • Fujiwara K.
        • Hayashi K.
        • Matsuda H.
        • et al.
        Altered pressure-natriuresis in obese Zucker rats.
        Hypertension. 1999; 33: 1470-1475
        • Hayashi K.
        • Kanda T.
        • Homma K.
        • et al.
        Altered renal microvascular response in Zucker obese rats.
        Metabolism. 2002; 51: 1553-1561
        • Butcher J.T.
        • Goodwill A.G.
        • Stanley S.C.
        • Frisbee J.C.
        Differential impact of dilator stimuli on increased myogenic activation of cerebral and skeletal muscle resistance arterioles in obese zucker rats.
        Microcirculation. 2013; 20: 579-589
        • Frisbee J.C.
        • Butcher J.T.
        • Frisbee S.J.
        • et al.
        Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation.
        Am J Physiol Heart Circ Physiol. 2016; 310: H488-H504
        • Frisbee J.C.
        • Goodwill A.G.
        • Frisbee S.J.
        • Butcher J.T.
        • Wu F.
        • Chantler P.D.
        Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome.
        J Physiol. 2016; 594: 2233-2243
        • Butcher J.T.
        • Goodwill A.G.
        • Stanley S.C.
        • Frisbee J.C.
        Blunted temporal activity of microvascular perfusion heterogeneity in metabolic syndrome: a new attractor for peripheral vascular disease?.
        Am J Physiol Heart Circ Physiol. 2013; 304: H547-H558
        • Beltowski J.
        Role of leptin in blood pressure regulation and arterial hypertension.
        J Hypertens. 2006; 24: 789-801
        • Setty S.
        • Sun W.
        • Tune J.D.
        Coronary blood flow regulation in the prediabetic metabolic syndrome.
        Basic Res Cardiol. 2003; 98: 416-423
        • Ross R.
        • Glomset J.A.
        Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis.
        Science. 1973; 180: 1332-1339
        • Bender S.B.
        • Tune J.D.
        • Borbouse L.
        • Long X.
        • Sturek M.
        • Laughlin M.H.
        Altered mechanism of adenosine-induced coronary arteriolar dilation in early-stage metabolic syndrome.
        Exp Biol Med (Maywood). 2009; 234: 683-692
        • Borbouse L.
        • Dick G.M.
        • Asano S.
        • et al.
        Impaired function of coronary BK(Ca) channels in metabolic syndrome.
        Am J Physiol Heart Circ Physiol. 2009; 297: H1629-H1637
        • Lewandowski E.
        • Ingwall J.
        The physiological chemistry of energy production in the heart.
        in: Schlant R. Alexander R.W. O'Rourke R. Roberts R. Sonnenblick E. Hurst's The Heart. 8th ed. McGraw-Hill, Inc, New York, NY1994: 153-164
        • Iliadis F.
        • Kadoglou N.
        • Didangelos T.
        Insulin and the heart.
        Diabetes Res Clin Pract. 2011; 93 Suppl 1: S86-S91
        • Bhashyam S.
        • Fields A.V.
        • Patterson B.
        • et al.
        Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy.
        Circ Heart Fail. 2010; 3: 512-521
        • Zhao T.
        • Parikh P.
        • Bhashyam S.
        • et al.
        Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts.
        J Pharmacol Exp Ther. 2006; 317: 1106-1113
        • Lopaschuk G.D.
        • Folmes C.D.
        • Stanley W.C.
        Cardiac energy metabolism in obesity.
        Circ Res. 2007; 101: 335-347
        • Rider O.J.
        • Cox P.
        • Tyler D.
        • Clarke K.
        • Neubauer S.
        Myocardial substrate metabolism in obesity.
        Int J Obes (Lond). 2013; 37: 972-979
        • Carley A.N.
        • Atkinson L.L.
        • Bonen A.
        • et al.
        Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice.
        Arch Physiol Biochem. 2007; 113: 65-75
        • Coort S.L.
        • Bonen A.
        • van der Vusse G.J.
        • Glatz J.F.
        • Luiken J.J.
        Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters.
        Mol Cell Biochem. 2007; 299: 5-18
        • Oakes N.D.
        • Thalen P.
        • Aasum E.
        • et al.
        Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes.
        Am J Physiol Endocrinol Metab. 2006; 290: E870-E881
        • McGill J.B.
        • Peterson L.R.
        • Herrero P.
        • et al.
        Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance.
        J Nucl Cardiol. 2011; 18: 421-429
        • Peterson L.R.
        • Saeed I.M.
        • McGill J.B.
        • et al.
        Sex and type 2 diabetes: obesity-independent effects on left ventricular substrate metabolism and relaxation in humans.
        Obesity (Silver Spring). 2012; 20: 802-810
        • Mather K.J.
        • Hutchins G.D.
        • Perry K.
        • et al.
        Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.
        Am J Physiol Endocrinol Metab. 2016; 310: E452-E460
        • Toth P.P.
        • Raghavan V.A.
        Glucolipotoxicity and the heart.
        Heart Fail Clin. 2012; 8: xvii-xviii
        • Banke N.H.
        • Yan L.
        • Pound K.M.
        • et al.
        Sexual dimorphism in cardiac triacylglyceride dynamics in mice on long term caloric restriction.
        J Mol Cell Cardiol. 2012; 52: 733-740
        • Peterson L.R.
        • Herrero P.
        • Coggan A.R.
        • et al.
        Type 2 diabetes, obesity, and sex difference affect the fate of glucose in the human heart.
        Am J Physiol Heart Circ Physiol. 2015; 308: H1510-H1516
        • Taegtmeyer H.
        • Algahim M.F.
        Obesity and cardiac metabolism in women.
        JACC Cardiovasc Imaging. 2008; 1: 434-435
        • Coort S.L.
        • Luiken J.J.
        • van der Vusse G.J.
        • Bonen A.
        • Glatz J.F.
        Increased FAT (fatty acid translocase)/CD36-mediated long-chain fatty acid uptake in cardiac myocytes from obese Zucker rats.
        Biochem Soc Trans. 2004; 32: 83-85
        • Luiken J.J.
        • Arumugam Y.
        • Dyck D.J.
        • et al.
        Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats.
        J Biol Chem. 2001; 276: 40567-40573
        • Kim M.S.
        • Wang Y.
        • Rodrigues B.
        Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy.
        Biochim Biophys Acta. 2012; 1821: 800-808
        • Dirkx E.
        • Schwenk R.W.
        • Glatz J.F.
        • Luiken J.J.
        • van Eys G.J.
        High fat diet induced diabetic cardiomyopathy.
        Prostaglandins Leukot Essent Fatty Acids. 2011; 85: 219-225
        • Keung W.
        • Ussher J.R.
        • Jaswal J.S.
        • et al.
        Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.
        Diabetes. 2013; 62: 711-720
        • Luiken J.J.
        Sarcolemmal fatty acid uptake vs. mitochondrial beta-oxidation as target to regress cardiac insulin resistance.
        Appl Physiol Nutr Metab. 2009; 34: 473-480
        • Mazumder P.K.
        • O'Neill B.T.
        • Roberts M.W.
        • et al.
        Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts.
        Diabetes. 2004; 53: 2366-2374
        • Pulinilkunnil T.
        • Kienesberger P.C.
        • Nagendran J.
        • Sharma N.
        • Young M.E.
        • Dyck J.R.
        Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity.
        Int J Obes (Lond). 2014; 38: 205-215
        • Abel E.D.
        • O'Shea K.M.
        • Ramasamy R.
        Insulin resistance: metabolic mechanisms and consequences in the heart.
        Arterioscler Thromb Vasc Biol. 2012; 32: 2068-2076
        • Hafstad A.D.
        • Solevag G.H.
        • Severson D.L.
        • Larsen T.S.
        • Aasum E.
        Perfused hearts from type 2 diabetic (db/db) mice show metabolic responsiveness to insulin.
        Am J Physiol Heart Circ Physiol. 2006; 290: H1763-H1769
        • Mellor K.M.
        • Bell J.R.
        • Ritchie R.H.
        • Delbridge L.M.
        Myocardial insulin resistance, metabolic stress and autophagy in diabetes.
        Clin Exp Pharmacol Physiol. 2013; 40: 56-61
        • Yokoyama I.
        • Yonekura K.
        • Ohtake T.
        • et al.
        Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-insulin-dependent diabetes mellitus.
        J Nucl Cardiol. 2000; 7: 242-248
        • Montessuit C.
        • Lerch R.
        Regulation and dysregulation of glucose transport in cardiomyocytes.
        Biochim Biophys Acta. 2013; 1833: 848-856
        • Watanabe T.
        • Saotome M.
        • Nobuhara M.
        • et al.
        Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance.
        Exp Cell Res. 2014; 323: 314-325
        • Zhang L.
        • Keung W.
        • Samokhvalov V.
        • Wang W.
        • Lopaschuk G.D.
        Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle.
        Biochim Biophys Acta. 2010; 1801: 1-22
        • Lautamaki R.
        • Airaksinen K.E.
        • Seppanen M.
        • et al.
        Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study.
        Diabetes. 2005; 54: 2787-2794
        • Naoumova R.P.
        • Kindler H.
        • Leccisotti L.
        • et al.
        Pioglitazone improves myocardial blood flow and glucose utilization in nondiabetic patients with combined hyperlipidemia: a randomized, double-blind, placebo-controlled study.
        J Am Coll Cardiol. 2007; 50: 2051-2058
        • Pelzer T.
        • Jazbutyte V.
        • Arias-Loza P.A.
        • et al.
        Pioglitazone reverses down-regulation of cardiac PPARgamma expression in Zucker diabetic fatty rats.
        Biochem Biophys Res Commun. 2005; 329: 726-732
        • Berg G.
        • Schreier L.
        • Miksztowicz V.
        Circulating and adipose tissue matrix metalloproteinases in cardiometabolic risk environments: pathophysiological aspects.
        Horm Mol Biol Clin Investig. 2014; 17: 79-87
        • Mangge H.
        • Almer G.
        • Truschnig-Wilders M.
        • Schmidt A.
        • Gasser R.
        • Fuchs D.
        Inflammation, adiponectin, obesity and cardiovascular risk.
        Curr Med Chem. 2010; 17: 4511-4520
        • Nakamura K.
        • Fuster J.J.
        • Walsh K.
        Adipokines: a link between obesity and cardiovascular disease.
        J Cardiol. 2014; 63: 250-259
        • Maia-Fernandes T.
        • Roncon-Albuquerque Jr., R.
        • Leite-Moreira A.F.
        Cardiovascular actions of adiponectin: pathophysiologic implications.
        Rev Port Cardiol. 2008; 27: 1431-1449
        • Ren J.
        • Ma H.
        Impaired cardiac function in leptin-deficient mice.
        Curr Hypertens Rep. 2008; 10: 448-453
        • Sweeney G.
        Cardiovascular effects of leptin.
        Nat Rev Cardiol. 2010; 7: 22-29
        • Grundy S.M.
        Obesity, metabolic syndrome, and coronary atherosclerosis.
        Circulation. 2002; 105: 2696-2698
        • McGill Jr., H.C.
        • McMahan C.A.
        • Herderick E.E.
        • et al.
        Obesity accelerates the progression of coronary atherosclerosis in young men.
        Circulation. 2002; 105: 2712-2718
        • Hubert H.B.
        • Feinleib M.
        • McNamara P.M.
        • Castelli W.P.
        Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study.
        Circulation. 1983; 67: 968-977
        • Rimm E.B.
        • Stampfer M.J.
        • Giovannucci E.
        • et al.
        Body-size and fat distribution as predictors of coronary heart-disease among middle-aged and older US men.
        Am J Epidemiol. 1995; 141: 1117-1127
        • Olijhoek J.K.
        • van der Graaf Y.
        • Banga J.D.
        • et al.
        The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm.
        Eur Heart J. 2004; 25: 342-348
        • Ford E.S.
        Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence.
        Diabetes Care. 2005; 28: 1769-1778
        • Marso S.P.
        • Mercado N.
        • Maehara A.
        • et al.
        Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes.
        JACC Cardiovasc Imaging. 2012; 5: S42-S52
        • Wong N.D.
        • Nelson J.C.
        • Granston T.
        • et al.
        Metabolic syndrome, diabetes, and incidence and progression of coronary calcium: the Multiethnic Study of Atherosclerosis study.
        JACC Cardiovasc Imaging. 2012; 5: 358-366
        • Ellison R.C.
        • Zhang Y.
        • Wagenknecht L.E.
        • et al.
        Relation of the metabolic syndrome to calcified atherosclerotic plaque in the coronary arteries and aorta.
        Am J Cardiol. 2005; 95: 1180-1186
        • Yamazoe M.
        • Hisamatsu T.
        • Miura K.
        • et al.
        Relationship of insulin resistance to prevalence and progression of coronary artery calcification beyond metabolic syndrome components: Shiga epidemiological study of subclinical atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2016; 36: 1703-1708
        • Lau D.C.W.
        • Dhillon B.
        • Yan H.Y.
        • Szmitko P.E.
        • Verma S.
        Adipokines: molecular links between obesity and atheroslcerosis.
        Am J Physiol Heart Circ Physiol. 2005; 288: H2031-H2041
        • Payne G.A.
        • Kohr M.C.
        • Tune J.D.
        Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease.
        Br J Pharmacol. 2012; 165: 659-669
        • Knudson J.D.
        • Dincer U.D.
        • Zhang C.
        • et al.
        Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction.
        Am J Physiol Heart Circ Physiol. 2005; 289: H48-H56
        • Zhang H.
        • Park Y.
        • Wu J.
        • et al.
        Role of TNF-alpha in vascular dysfunction.
        Clin Sci (Lond). 2009; 116: 219-230
        • Gruen M.L.
        • Hao M.
        • Piston D.W.
        • Hasty A.H.
        Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis.
        Am J Physiol Cell Physiol. 2007; 293: C1481-C1488
        • Goralski K.B.
        • McCarthy T.C.
        • Hanniman E.A.
        • et al.
        Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism.
        J Biol Chem. 2007; 282: 28175-28188
        • Dick G.M.
        • Katz P.S.
        • Farias III, M.
        • et al.
        Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation.
        Am J Physiol Heart Circ Physiol. 2006; 291: H2997-H3002
        • Yamawaki H.
        • Hara N.
        • Okada M.
        • Hara Y.
        Visfatin causes endothelium-dependent relaxation in isolated blood vessels.
        Biochem Biophys Res Commun. 2009; 383: 503-508
        • Noblet J.N.
        • Goodwill A.G.
        • Sassoon D.J.
        • Kiel A.M.
        • Tune J.D.
        Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway.
        Basic Res Cardiol. 2016; 111: 25
        • Ding J.
        • Hsu F.C.
        • Harris T.B.
        • et al.
        The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA).
        Am J Clin Nutr. 2009; 90: 499-504
        • Greif M.
        • Becker A.
        • von Ziegler F.
        • et al.
        Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2009; 29: 781-786
        • Owen M.K.
        • Noblet J.N.
        • Sassoon D.J.
        • Conteh A.M.
        • Goodwill A.G.
        • Tune J.D.
        Perivascular adipose tissue and coronary vascular disease.
        Arterioscler Thromb Vasc Biol. 2014; 34: 1643-1649
        • Cheng K.H.
        • Chu C.S.
        • Lee K.T.
        • et al.
        Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease.
        Int J Obes (Lond). 2008; 32: 268-274
        • McKenney M.L.
        • Schultz K.A.
        • Boyd J.H.
        • et al.
        Epicardial adipose excision slows the progression of porcine coronary atherosclerosis.
        J Cardiothorac Surg. 2014; 9: 2
        • Chatterjee T.K.
        • Aronow B.J.
        • Tong W.S.
        • et al.
        Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis.
        Physiol Genomics. 2013; 45: 697-709
        • Noblet J.N.
        • Owen M.K.
        • Goodwill A.G.
        • Sassoon D.J.
        • Tune J.D.
        Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels.
        Arterioscler Thromb Vasc Biol. 2015; 35: 1393-1400
        • Alpert M.A.
        • Hashimi M.W.
        Obesity and the heart.
        Am J Med Sci. 1993; 306: 117-123
        • Kunju S.U.
        • Badarudeen S.
        • Schwarz E.R.
        Impact of obesity in patients with congestive heart failure.
        Rev Cardiovasc Med. 2009; 10: 142-151
        • Chess D.J.
        • Stanley W.C.
        Role of diet and fuel overabundance in the development and progression of heart failure.
        Cardiovasc Res. 2008; 79: 269-278
        • Khan R.S.
        • Chokshi A.
        • Drosatos K.
        • et al.
        Fish oil selectively improves heart function in a mouse model of lipid-induced cardiomyopathy.
        J Cardiovasc Pharmacol. 2013; 61: 345-354
        • Kolwicz Jr., S.C.
        • Purohit S.
        • Tian R.
        Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
        Circ Res. 2013; 113: 603-616
        • Liu L.
        • Trent C.M.
        • Fang X.
        • et al.
        Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure.
        J Biol Chem. 2014; 289: 29881-29891
        • Bahrami H.
        • Bluemke D.A.
        • Kronmal R.
        • et al.
        Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study.
        J Am Coll Cardiol. 2008; 51: 1775-1783
        • Ingelsson E.
        • Sundstrom J.
        • Arnlov J.
        • Zethelius B.
        • Lind L.
        Insulin resistance and risk of congestive heart failure.
        JAMA. 2005; 294: 334-341
        • Li C.
        • Ford E.S.
        • McGuire L.C.
        • Mokdad A.H.
        Association of metabolic syndrome and insulin resistance with congestive heart failure: findings from the Third National Health and Nutrition Examination Survey.
        J Epidemiol Community Health. 2007; 61: 67-73
        • Nishimura M.
        • Murase M.
        • Hashimoto T.
        • et al.
        Insulin resistance and impaired myocardial fatty acid metabolism in dialysis patients with normal coronary arteries.
        Kidney Int. 2006; 69: 553-559
        • Paternostro G.
        • Pagano D.
        • Gnecchi-Ruscone T.
        • Bonser R.S.
        • Camici P.G.
        Insulin resistance in patients with cardiac hypertrophy.
        Cardiovasc Res. 1999; 42: 246-253
        • Tuunanen H.
        • Engblom E.
        • Naum A.
        • et al.
        Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction.
        J Card Fail. 2006; 12: 644-652
        • Gejl M.
        • Sondergaard H.M.
        • Stecher C.
        • et al.
        Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes.
        J Clin Endocrinol Metab. 2012; 97: E1165-E1169
        • Nikolaidis L.A.
        • Mankad S.
        • Sokos G.G.
        • et al.
        Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion.
        Circulation. 2004; 109: 962-965
        • Vest A.R.
        Incretin-related drug therapy in heart failure.
        Curr Heart Fail Rep. 2015; 12: 24-32
        • Wing R.
        • Bolin P.
        • Brancati F.L.
        • et al.
        Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes.
        N Engl J Med. 2013; 369: 145-154
        • James W.P.
        • Caterson I.D.
        • Coutinho W.
        • et al.
        Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects.
        N Engl J Med. 2010; 363: 905-917
        • Comerma-Steffensen S.
        • Grann M.
        • Andersen C.U.
        • Rungby J.
        • Simonsen U.
        Cardiovascular effects of current and future anti-obesity drugs.
        Curr Vasc Pharmacol. 2014; 12: 493-504
        • Lavie C.J.
        • Milani R.V.
        • Artham S.M.
        • Patel D.A.
        • Ventura H.O.
        The obesity paradox, weight loss, and coronary disease.
        Am J Med. 2009; 122: 1106-1114
        • Sjostrom L.
        • Peltonen M.
        • Jacobson P.
        • et al.
        Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications.
        JAMA. 2014; 311: 2297-2304
        • Busetto L.
        • De Stefano F.
        • Pigozzo S.
        • Segato G.
        • De Luca M.
        • Favretti F.
        Long-term cardiovascular risk and coronary events in morbidly obese patients treated with laparoscopic gastric banding.
        Surg Obes Relat Dis. 2014; 10: 112-120
        • Shin S.H.
        • Lee Y.J.
        • Heo Y.S.
        • et al.
        Beneficial effects of bariatric surgery on cardiac structure and function in obesity.
        Obes Surg. 2016; ([Epub ahead of print])
        • Valenta I.
        • Dilsizian V.
        • Quercioli A.
        • et al.
        Impact of obesity and bariatric surgery on metabolism and coronary circulatory function.
        Curr Cardiol Rep. 2014; 16: 433
        • Jay M.A.
        • Ren J.
        Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus.
        Curr Diabetes Rev. 2007; 3: 33-39
        • Chen W.R.
        • Hu S.Y.
        • Chen Y.D.
        • et al.
        Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.
        Am Heart J. 2015; 170: 845-854
        • Lonborg J.
        • Vejlstrup N.
        • Kelbaek H.
        • et al.
        Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction.
        Eur Heart J. 2012; 33: 1491-1499
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322
        • Santulli G.
        • Iaccarino G.
        • De Luca N.
        • Trimarco B.
        • Condorelli G.
        Atrial fibrillation and microRNAs.
        Front Physiol. 2014; 5: 15
        • Volny O.
        • Kasickova L.
        • Coufalova D.
        • Cimflova P.
        • Novak J.
        microRNAs in cerebrovascular disease.
        Adv Exp Med Biol. 2015; 888: 155-195
        • Novak J.
        • Olejnickova V.
        • Tkacova N.
        • Santulli G.
        Mechanistic role of microRNAs in coupling lipid metabolism and atherosclerosis.
        Adv Exp Med Biol. 2015; 887: 79-100
        • Santulli G.
        MicroRNAs and endothelial (dys) function.
        J Cell Physiol. 2016; 231: 1638-1644
        • Wronska A.
        • Kurkowska-Jastrzebska I.
        • Santulli G.
        Application of microRNAs in diagnosis and treatment of cardiovascular disease.
        Acta Physiol (Oxf). 2015; 213: 60-83
        • Philip-Couderc P.
        • Smih F.
        • Hall J.E.
        • et al.
        Kinetic analysis of cardiac transcriptome regulation during chronic high-fat diet in dogs.
        Physiol Genomics. 2004; 19: 32-40
        • Ortega F.J.
        • Mercader J.M.
        • Moreno-Navarrete J.M.
        • et al.
        Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization.
        Diabetes Care. 2014; 37: 1375-1383
        • Fernandez-Hernando C.
        • Ramirez C.M.
        • Goedeke L.
        • Suarez Y.
        MicroRNAs in metabolic disease.
        Arterioscler Thromb Vasc Biol. 2013; 33: 178-185
        • Grueter C.E.
        • van Rooij E.
        • Johnson B.A.
        • et al.
        A cardiac microRNA governs systemic energy homeostasis by regulation of MED13.
        Cell. 2012; 149: 671-683
        • Hinkel R.
        • Penzkofer D.
        • Zuhlke S.
        • et al.
        Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model.
        Circulation. 2013; 128: 1066-1075
        • Ganesan J.
        • Ramanujam D.
        • Sassi Y.
        • et al.
        MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors.
        Circulation. 2013; 127: 2097-2106
        • Fiedler J.
        • Thum T.
        MicroRNAs in myocardial infarction.
        Arterioscler Thromb Vasc Biol. 2013; 33: 201-205
        • Thome J.G.
        • Mendoza M.R.
        • Cheuiche A.V.
        • et al.
        Circulating microRNAs in obese and lean heart failure patients: a case-control study with computational target prediction analysis.
        Gene. 2015; 574: 1-10
        • Wende A.R.
        Post-translational modifications of the cardiac proteome in diabetes and heart failure.
        Proteomics Clin Appl. 2016; 10: 25-38
        • de Weger R.A.
        • Schipper M.E.
        • Siera-de Koning E.
        • et al.
        Proteomic profiling of the human failing heart after left ventricular assist device support.
        J Heart Lung Transplant. 2011; 30: 497-506
        • Chugh S.
        • Suen C.
        • Gramolini A.
        Proteomics and mass spectrometry: what have we learned about the heart?.
        Curr Cardiol Rev. 2010; 6: 124-133
        • Cieniewski-Bernard C.
        • Mulder P.
        • Henry J.P.
        • et al.
        Proteomic analysis of left ventricular remodeling in an experimental model of heart failure.
        J Proteome Res. 2008; 7: 5004-5016
        • Arab S.
        • Gramolini A.O.
        • Ping P.
        • et al.
        Cardiovascular proteomics: tools to develop novel biomarkers and potential applications.
        J Am Coll Cardiol. 2006; 48: 1733-1741
        • Barallobre-Barreiro J.
        • Didangelos A.
        • Schoendube F.A.
        • et al.
        Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury.
        Circulation. 2012; 125: 789-802
        • Liu T.
        • Chen L.
        • Kim E.
        • Tran D.
        • Phinney B.S.
        • Knowlton A.A.
        Mitochondrial proteome remodeling in ischemic heart failure.
        Life Sci. 2014; 101: 27-36
        • Littlejohns B.
        • Heesom K.
        • Angelini G.D.
        • Suleiman M.S.
        The effect of disease on human cardiac protein expression profiles in paired samples from right and left ventricles.
        Clin Proteomics. 2014; 11: 34
        • Mitra A.
        • Basak T.
        • Ahmad S.
        • et al.
        Comparative proteome profiling during cardiac hypertrophy and myocardial infarction reveals altered glucose oxidation by differential activation of pyruvate dehydrogenase E1 component subunit beta.
        J Mol Biol. 2015; 427: 2104-2120