Advertisement

The metabolic syndrome and chronic kidney disease

Published:December 09, 2016DOI:https://doi.org/10.1016/j.trsl.2016.12.004
      The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including insulin resistance (IR), dyslipidemia, and hypertension, which may also foster development of chronic kidney disease. The mechanisms of MetS-induced kidney disease are not fully understood. The purpose of this review is to summarize recent discoveries regarding the impact of MetS on the kidney, particularly on the renal microvasculature and cellular mitochondria. Fundamental manifestations of MetS include IR and adipose tissue expansion, the latter promoting chronic inflammation and oxidative stress that exacerbate IR. Those in turn can elicit various kidney injurious events through endothelial dysfunction, activation of the renin-angiotensin-aldosterone system, and adipokine imbalance. Inflammation and IR are also major contributors to microvascular remodeling and podocyte injury. Hence, these events may result in hypertension, albuminuria, and parenchymal damage. In addition, dyslipidemia and excessive nutrient availability may impair mitochondrial function and thereby promote progression of kidney cell damage. Elucidation of the link between MetS and kidney injury may help develop preventative measures and possibly novel therapeutic targets to alleviate and avert development of renal manifestations.

      Abbreviations:

      AGE (advanced glycation end products), AMPK (adenosine monophosphate-activated protein kinase), AngII (angiotensin II), CKD (chronic kidney disease), CRP (C-reactive protein), CT (computed tomography), DNA (deoxyribonucleic acid), ERS (extracellular-regulated protein kinase), FSGS (focal segmental glomerular sclerosis), GFR (glomerular filtration rate), HDL (high-density lipoproteins), IGF (insulin-like growth factor), LDL (low-density lipoprotein), IL (interleukin), IR (insulin resistance), IRS (insulin receptor substrate), Mets (metabolic syndrome), NO (nitric oxide), NOX (nicotinamide adenine dinucleotide phosphate-oxidase), ORG (obesity-related glomerulopathy), RBF (renal blood flow), RNA (ribonucleic acid), ROS (reactive oxygen species), TGF (tissue growth factor), TNF (tumor necrosis factor), TZD (thiazolidinediones), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grundy S.M.
        • Cleeman J.I.
        • Daniels S.R.
        • et al.
        Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement.
        Circulation. 2005; 112: 2735-2752
        • Alberti K.G.
        • Zimmet P.
        • Shaw J.
        Metabolic syndrome–a new world-wide definition. A consensus statement from the International Diabetes Federation.
        Diabet Med. 2006; 23: 469-480
        • Aguilar M.
        • Bhuket T.
        • Torres S.
        • Liu B.
        • Wong R.J.
        Prevalence of the metabolic syndrome in the United States, 2003-2012.
        JAMA. 2015; 313: 1973-1974
        • Luk A.O.
        • So W.Y.
        • Ma R.C.
        • et al.
        Metabolic syndrome predicts new onset of chronic kidney disease in 5,829 patients with type 2 diabetes: a 5-year prospective analysis of the Hong Kong Diabetes Registry.
        Diabetes Care. 2008; 31: 2357-2361
        • DeFina L.F.
        • Vega G.L.
        • Leonard D.
        • Grundy S.M.
        Fasting glucose, obesity, and metabolic syndrome as predictors of type 2 diabetes: the Cooper Center Longitudinal Study.
        J Investig Med. 2012; 60: 1164-1168
        • Hoehner C.M.
        • Greenlund K.J.
        • Rith-Najarian S.
        • Casper M.L.
        • McClellan W.M.
        Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans. The Inter-Tribal Heart Project.
        J Am Soc Nephrol. 2002; 13: 1626-1634
        • Locatelli F.
        • Pozzoni P.
        • Del Vecchio L.
        Renal manifestations in the metabolic syndrome.
        J Am Soc Nephrol. 2006; 17: S81-S85
        • Chen J.
        • Muntner P.
        • Hamm L.L.
        • et al.
        The metabolic syndrome and chronic kidney disease in U.S. adults.
        Ann Intern Med. 2004; 140: 167-174
        • Alexander M.P.
        • Patel T.V.
        • Farag Y.M.
        • Florez A.
        • Rennke H.G.
        • Singh A.K.
        Kidney pathological changes in metabolic syndrome: a cross-sectional study.
        Am J Kidney Dis. 2009; 53: 751-759
        • Porrini E.
        • Delgado P.
        • Bigo C.
        • et al.
        Impact of metabolic syndrome on graft function and survival after cadaveric renal transplantation.
        Am J Kidney Dis. 2006; 48: 134-142
        • de Vries A.P.
        • Bakker S.J.
        • van Son W.J.
        • et al.
        Metabolic syndrome is associated with impaired long-term renal allograft function; not all component criteria contribute equally.
        Am J Transplant. 2004; 4: 1675-1683
        • Danziger J.
        The bone-renal axis in early chronic kidney disease: an emerging paradigm.
        Nephrol Dial Transplant. 2008; 23: 2733-2737
        • Davies M.R.
        • Lund R.J.
        • Mathew S.
        • Hruska K.A.
        Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome.
        J Am Soc Nephrol. 2005; 16: 917-928
        • Lerman L.O.
        • Lerman A.
        Rev Esp Cardiol. 2011; 64: 358-360
        • Zhang X.
        • Li Z.L.
        • Woollard J.R.
        • et al.
        Obesity-metabolic derangement preserves hemodynamics but promotes intrarenal adiposity and macrophage infiltration in swine renovascular disease.
        Am J Physiol Renal Physiol. 2013; 305: F265-F276
        • Mostbeck G.H.
        • Kain R.
        • Mallek R.
        • et al.
        Duplex Doppler sonography in renal parenchymal disease. Histopathologic correlation.
        J Ultrasound Med. 1991; 10: 189-194
        • Buscemi S.
        • Verga S.
        • Batsis J.A.
        • et al.
        Intra-renal hemodynamics and carotid intima-media thickness in the metabolic syndrome.
        Diabetes Res Clin Pract. 2009; 86: 177-185
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Jimenez A.
        • et al.
        Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats.
        Am J Physiol Renal Physiol. 2007; 292: F423-F429
        • Nakagawa T.
        • Kang D.H.
        • Ohashi R.
        • et al.
        Tubulointerstitial disease: role of ischemia and microvascular disease.
        Curr Opin Nephrol Hypertens. 2003; 12: 233-241
        • Costa C.
        • Incio J.
        • Soares R.
        Angiogenesis and chronic inflammation: cause or consequence?.
        Angiogenesis. 2007; 10: 149-166
        • Chade A.R.
        • Hall J.E.
        Role of the renal microcirculation in progression of chronic kidney injury in obesity.
        Am J Nephrol. 2016; 44: 354-367
        • Li Z.
        • Woollard J.R.
        • Wang S.
        • et al.
        Increased glomerular filtration rate in early metabolic syndrome is associated with renal adiposity and microvascular proliferation.
        Am J Physiol Renal Physiol. 2011; 301: F1078-F1087
        • Li Z.L.
        • Woollard J.R.
        • Ebrahimi B.
        • et al.
        Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1132-1141
        • Kim Y.W.
        • Byzova T.V.
        Oxidative stress in angiogenesis and vascular disease.
        Blood. 2014; 123: 625-631
        • Hale L.J.
        • Hurcombe J.
        • Lay A.
        • et al.
        Insulin directly stimulates VEGF-A production in the glomerular podocyte.
        Am J Physiol Renal Physiol. 2013; 305: F182-F188
        • Hall J.E.
        • do Carmo J.M.
        • da Silva A.A.
        • Wang Z.
        • Hall M.E.
        Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.
        Circ Res. 2015; 116: 991-1006
        • Cohen A.J.
        • McCarthy D.M.
        • Stoff J.S.
        Direct hemodynamic effect of insulin in the isolated perfused kidney.
        Am J Physiol. 1989; 257: F580-F585
        • Hayashi K.
        • Fujiwara K.
        • Oka K.
        • Nagahama T.
        • Matsuda H.
        • Saruta T.
        Effects of insulin on rat renal microvessels: studies in the isolated perfused hydronephrotic kidney.
        Kidney Int. 1997; 51: 1507-1513
        • Ter Maaten J.C.
        • Bakker S.J.
        • Serne E.H.
        • Moshage H.J.
        • Donker A.J.
        • Gans R.O.
        Insulin-mediated increases in renal plasma flow are impaired in insulin-resistant normal subjects.
        Eur J Clin Invest. 2000; 30: 1090-1098
        • Vicent D.
        • Ilany J.
        • Kondo T.
        • et al.
        The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance.
        J Clin Invest. 2003; 111: 1373-1380
        • Burlacu A.
        • Siriopol D.
        • Voroneanu L.
        • et al.
        Atherosclerotic renal artery stenosis prevalence and correlations in acute myocardial infarction patients undergoing primary percutaneous coronary interventions: data from nonrandomized single-center study (REN-ACS)-A single center, prospective, observational study.
        J Am Heart Assoc. 2015; 4: e002379
        • Wellen K.E.
        • Hotamisligil G.S.
        Inflammation, stress, and diabetes.
        J Clin Invest. 2005; 115: 1111-1119
        • Sur G.
        • Floca E.
        • Kudor-Szabadi L.
        • Sur M.L.
        • Sur D.
        • Samasca G.
        The relevance of inflammatory markers in metabolic syndrome.
        Maedica (Buchar). 2014; 9: 15-18
        • Hotamisligil G.S.
        Inflammation and metabolic disorders.
        Nature. 2006; 444: 860-867
        • Dominguez J.
        • Wu P.
        • Packer C.S.
        • Temm C.
        • Kelly K.J.
        Lipotoxic and inflammatory phenotypes in rats with uncontrolled metabolic syndrome and nephropathy.
        Am J Physiol Renal Physiol. 2007; 293: F670-F679
        • Al-Shanti N.
        • Stewart C.E.
        Inhibitory effects of IL-6 on IGF-1 activity in skeletal myoblasts could be mediated by the activation of SOCS-3.
        J Cell Biochem. 2012; 113: 923-933
        • De Benedetti F.
        • Meazza C.
        • Oliveri M.
        • et al.
        Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis.
        Endocrinology. 2001; 142: 4818-4826
        • Bahceci M.
        • Gokalp D.
        • Bahceci S.
        • Tuzcu A.
        • Atmaca S.
        • Arikan S.
        The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults?.
        J Endocrinol Invest. 2007; 30: 210-214
        • Ma S.
        • Zhu X.Y.
        • Eirin A.
        • et al.
        Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-alpha.
        J Urol. 2016; 195: 1152-1159
        • Forsythe L.K.
        • Wallace J.M.
        • Livingstone M.B.
        Obesity and inflammation: the effects of weight loss.
        Nutr Res Rev. 2008; 21: 117-133
        • Abd El-Kader M.S.
        • Al-Jiffri O.
        • Ashmawy E.M.
        Impact of weight loss on markers of systemic inflammation in obese Saudi children with asthma.
        Afr Health Sci. 2013; 13: 682-688
        • Friedman J.E.
        • Dohm G.L.
        • Elton C.W.
        • et al.
        Muscle insulin resistance in uremic humans: glucose transport, glucose transporters, and insulin receptors.
        Am J Physiol. 1991; 261: E87-E94
        • Zhou R.
        • Tardivel A.
        • Thorens B.
        • Choi I.
        • Tschopp J.
        Thioredoxin-interacting protein links oxidative stress to inflammasome activation.
        Nat Immunol. 2010; 11: 136-140
        • Goldfine A.B.
        • Fonseca V.
        • Jablonski K.A.
        • Pyle L.
        • Staten M.A.
        • Shoelson S.E.
        The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial.
        Ann Intern Med. 2010; 152: 346-357
        • Goldfine A.B.
        • Silver R.
        • Aldhahi W.
        • et al.
        Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes.
        Clin Transl Sci. 2008; 1: 36-43
        • Stanley T.L.
        • Zanni M.V.
        • Johnsen S.
        • et al.
        TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome.
        J Clin Endocrinol Metab. 2011; 96: E146-E150
        • De Cosmo S.
        • Menzaghi C.
        • Prudente S.
        • Trischitta V.
        Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence.
        Nephrol Dial Transplant. 2013; 28: 29-36
        • Kurella M.
        • Lo J.C.
        • Chertow G.M.
        Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults.
        J Am Soc Nephrol. 2005; 16: 2134-2140
        • Chen J.
        • Muntner P.
        • Hamm L.L.
        • et al.
        Insulin resistance and risk of chronic kidney disease in nondiabetic US adults.
        J Am Soc Nephrol. 2003; 14: 469-477
        • Groop P.H.
        • Forsblom C.
        • Thomas M.C.
        Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes.
        Nat Clin Pract Endocrinol Metab. 2005; 1: 100-110
        • Nestler J.E.
        • Barlascini C.O.
        • Tetrault G.A.
        • Fratkin M.J.
        • Clore J.N.
        • Blackard W.G.
        Increased transcapillary escape rate of albumin in nondiabetic men in response to hyperinsulinemia.
        Diabetes. 1990; 39: 1212-1217
        • Jheng H.F.
        • Tsai P.J.
        • Chuang Y.L.
        • et al.
        Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy.
        Dis Model Mech. 2015; 8: 1311-1321
        • Butlen D.
        • Vadrot S.
        • Roseau S.
        • Morel F.
        Insulin receptors along the rat nephron: [125I] insulin binding in microdissected glomeruli and tubules.
        Pflugers Arch. 1988; 412: 604-612
        • Nakamura R.
        • Emmanouel D.S.
        • Katz A.I.
        Insulin binding sites in various segments of the rabbit nephron.
        J Clin Invest. 1983; 72: 388-392
        • Mima A.
        • Ohshiro Y.
        • Kitada M.
        • et al.
        Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity.
        Kidney Int. 2011; 79: 883-896
        • Kim E.Y.
        • Dryer S.E.
        Effects of insulin and high glucose on mobilization of slo1 BKCa channels in podocytes.
        J Cell Physiol. 2011; 226: 2307-2315
        • Kim E.Y.
        • Anderson M.
        • Dryer S.E.
        Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species.
        Am J Physiol Renal Physiol. 2012; 302: F298-F307
        • Wang S.
        • Denichilo M.
        • Brubaker C.
        • Hirschberg R.
        Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy.
        Kidney Int. 2001; 60: 96-105
        • Namikoshi T.
        • Tomita N.
        • Satoh M.
        • et al.
        Pioglitazone enhances the antihypertensive and renoprotective effects of candesartan in Zucker obese rats fed a high-protein diet.
        Hypertens Res. 2008; 31: 745-755
        • Busch M.
        • Franke S.
        • Ruster C.
        • Wolf G.
        Advanced glycation end-products and the kidney.
        Eur J Clin Invest. 2010; 40: 742-755
        • Ruster C.
        • Wolf G.
        Adipokines promote chronic kidney disease.
        Nephrol Dial Transplant. 2013; 28 Suppl 4: iv8-iv14
        • Miyamoto S.
        • Sharma K.
        Adipokines protecting CKD.
        Nephrol Dial Transplant. 2013; 28 Suppl 4: iv15-iv22
        • Sharma K.
        The link between obesity and albuminuria: adiponectin and podocyte dysfunction.
        Kidney Int. 2009; 76: 145-148
        • Sharma K.
        • Ramachandrarao S.
        • Qiu G.
        • et al.
        Adiponectin regulates albuminuria and podocyte function in mice.
        J Clin Invest. 2008; 118: 1645-1656
        • Rutkowski J.M.
        • Wang Z.V.
        • Park A.S.
        • et al.
        Adiponectin promotes functional recovery after podocyte ablation.
        J Am Soc Nephrol. 2013; 24: 268-282
        • Lee M.P.
        • Orlov D.
        • Sweeney G.
        Leptin induces rat glomerular mesangial cell hypertrophy, but does not regulate hyperplasia or apoptosis.
        Int J Obes (Lond). 2005; 29: 1395-1401
        • Chen K.H.
        • Hung C.C.
        • Hsu H.H.
        • Jing Y.H.
        • Yang C.W.
        • Chen J.K.
        Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-beta/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats.
        Chem Biol Interact. 2011; 190: 45-53
        • Kumpers P.
        • Gueler F.
        • Rong S.
        • et al.
        Leptin is a coactivator of TGF-beta in unilateral ureteral obstructive kidney disease.
        Am J Physiol Renal Physiol. 2007; 293: F1355-F1362
        • Kusminski C.M.
        • McTernan P.G.
        • Kumar S.
        Role of resistin in obesity, insulin resistance and Type II diabetes.
        Clin Sci (Lond). 2005; 109: 243-256
        • Menzaghi C.
        • Salvemini L.
        • Fini G.
        • et al.
        Serum resistin and kidney function: a family-based study in non-diabetic, untreated individuals.
        PLoS One. 2012; 7: e38414
        • Axelsson J.
        • Bergsten A.
        • Qureshi A.R.
        • et al.
        Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance.
        Kidney Int. 2006; 69: 596-604
        • Habeeballah H.
        • Alsuhaymi N.
        • Stebbing M.J.
        • Jenkins T.A.
        • Badoer E.
        Central leptin and resistin combined elicit enhanced central effects on renal sympathetic nerve activity.
        Exp Physiol. 2016; 101: 791-800
        • Kosari S.
        • Rathner J.A.
        • Badoer E.
        Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal-regulated kinase 1/2.
        J Neuroendocrinol. 2012; 24: 1432-1439
        • Hall J.E.
        • Brands M.W.
        • Dixon W.N.
        • Smith Jr., M.J.
        Obesity-induced hypertension. Renal function and systemic hemodynamics.
        Hypertension. 1993; 22: 292-299
        • Briones A.M.
        • Nguyen Dinh Cat A.
        • Callera G.E.
        • et al.
        Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction.
        Hypertension. 2012; 59: 1069-1078
        • Fujita T.
        Aldosterone in salt-sensitive hypertension and metabolic syndrome.
        J Mol Med (Berl). 2008; 86: 729-734
        • Kriz W.
        • Elger M.
        • Mundel P.
        • Lemley K.V.
        Structure-stabilizing forces in the glomerular tuft.
        J Am Soc Nephrol. 1995; 5: 1731-1739
        • Chen H.M.
        • Liu Z.H.
        • Zeng C.H.
        • Li S.J.
        • Wang Q.W.
        • Li L.S.
        Podocyte lesions in patients with obesity-related glomerulopathy.
        Am J Kidney Dis. 2006; 48: 772-779
        • Wiggins J.E.
        • Goyal M.
        • Sanden S.K.
        • et al.
        Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction.
        J Am Soc Nephrol. 2005; 16: 2953-2966
        • Kriz W.
        • Hosser H.
        • Hahnel B.
        • Gretz N.
        • Provoost A.P.
        From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies.
        Nephrol Dial Transplant. 1998; 13: 2781-2798
        • Fukuda A.
        • Chowdhury M.A.
        • Venkatareddy M.P.
        • et al.
        Growth-dependent podocyte failure causes glomerulosclerosis.
        J Am Soc Nephrol. 2012; 23: 1351-1363
        • Kambham N.
        • Markowitz G.S.
        • Valeri A.M.
        • Lin J.
        • D'Agati V.D.
        Obesity-related glomerulopathy: an emerging epidemic.
        Kidney Int. 2001; 59: 1498-1509
        • D'Agati V.D.
        • Chagnac A.
        • de Vries A.P.
        • et al.
        Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis.
        Nat Rev Nephrol. 2016; 12: 453-471
        • Fortuno A.
        • San Jose G.
        • Moreno M.U.
        • Beloqui O.
        • Diez J.
        • Zalba G.
        Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome.
        Diabetes. 2006; 55: 209-215
        • Huang P.L.
        Unraveling the links between diabetes, obesity, and cardiovascular disease.
        Circ Res. 2005; 96: 1129-1131
        • Furukawa S.
        • Fujita T.
        • Shimabukuro M.
        • et al.
        Increased oxidative stress in obesity and its impact on metabolic syndrome.
        J Clin Invest. 2004; 114: 1752-1761
        • Geiszt M.
        • Kopp J.B.
        • Varnai P.
        • Leto T.L.
        Identification of renox, an NAD(P)H oxidase in kidney.
        Proc Natl Acad Sci U S A. 2000; 97: 8010-8014
        • Eid A.A.
        • Gorin Y.
        • Fagg B.M.
        • et al.
        Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases.
        Diabetes. 2009; 58: 1201-1211
        • Whaley-Connell A.
        • Habibi J.
        • Nistala R.
        • et al.
        Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment.
        Hypertension. 2008; 51: 474-480
        • Block K.
        • Eid A.
        • Griendling K.K.
        • Lee D.Y.
        • Wittrant Y.
        • Gorin Y.
        Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression.
        J Biol Chem. 2008; 283: 24061-24076
        • Block K.
        • Gorin Y.
        • Abboud H.E.
        Subcellular localization of Nox4 and regulation in diabetes.
        Proc Natl Acad Sci U S A. 2009; 106: 14385-14390
        • Wingler K.
        • Wunsch S.
        • Kreutz R.
        • Rothermund L.
        • Paul M.
        • Schmidt H.H.
        Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo.
        Free Radic Biol Med. 2001; 31: 1456-1464
        • Bondi C.D.
        • Manickam N.
        • Lee D.Y.
        • et al.
        NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts.
        J Am Soc Nephrol. 2010; 21: 93-102
        • Nunnari J.
        • Suomalainen A.
        Mitochondria: in sickness and in health.
        Cell. 2012; 148: 1145-1159
        • Wallace D.C.
        • Fan W.
        • Procaccio V.
        Mitochondrial energetics and therapeutics.
        Annu Rev Pathol. 2010; 5: 297-348
        • Duchen M.R.
        • Szabadkai G.
        Roles of mitochondria in human disease.
        Essays Biochem. 2010; 47: 115-137
        • Brand M.D.
        • Murphy M.P.
        Control of electron flux through the respiratory chain in mitochondria and cells.
        Biol Rev Camb Philos Soc. 1987; 62: 141-193
        • Brown G.C.
        Control of respiration and ATP synthesis in mammalian mitochondria and cells.
        Biochem J. 1992; 284: 1-13
        • Eirin A.
        • Lerman A.
        • Lerman L.O.
        The emerging role of mitochondrial targeting in kidney disease.
        Handb Exp Pharmacol. 2016; ([Epub ahead of print])
        • Eirin A.
        • Lerman A.
        • Lerman L.O.
        Mitochondria: a pathogenic paradigm in hypertensive renal disease.
        Hypertension. 2015; 65: 264-270
        • Granata S.
        • Dalla Gassa A.
        • Tomei P.
        • Lupo A.
        • Zaza G.
        Mitochondria: a new therapeutic target in chronic kidney disease.
        Nutr Metab (Lond). 2015; 12: 49
        • Lovisa S.
        • Zeisberg M.
        • Kalluri R.
        Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis.
        Trends Endocrinol Metab. 2016; 27: 681-695
        • Bonnard C.
        • Durand A.
        • Peyrol S.
        • et al.
        Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
        J Clin Invest. 2008; 118: 789-800
        • Takabe W.
        • Li R.
        • Ai L.
        • Yu F.
        • Berliner J.A.
        • Hsiai T.K.
        Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis.
        Arterioscler Thromb Vasc Biol. 2010; 30: 436-441
        • Pandey D.
        • Bhunia A.
        • Oh Y.J.
        • et al.
        OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase.
        Circ Res. 2014; 115: 450-459
        • Sharma K.
        • Karl B.
        • Mathew A.V.
        • et al.
        Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease.
        J Am Soc Nephrol. 2013; 24: 1901-1912
        • Koziel R.
        • Pircher H.
        • Kratochwil M.
        • et al.
        Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4.
        Biochem J. 2013; 452: 231-239
        • Papadimitriou A.
        • Peixoto E.B.
        • Silva K.C.
        • Lopes de Faria J.M.
        • Lopes de Faria J.B.
        Inactivation of AMPK mediates high phosphate-induced extracellular matrix accumulation via NOX4/TGFss-1 signaling in human mesangial cells.
        Cell Physiol Biochem. 2014; 34: 1260-1272
        • Eid A.A.
        • Lee D.Y.
        • Roman L.J.
        • Khazim K.
        • Gorin Y.
        Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression.
        Mol Cell Biol. 2013; 33: 3439-3460
        • Dugan L.L.
        • You Y.H.
        • Ali S.S.
        • et al.
        AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.
        J Clin Invest. 2013; 123: 4888-4899
        • Eid A.A.
        • Ford B.M.
        • Bhandary B.
        • et al.
        Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury.
        Diabetes. 2013; 62: 2935-2947
        • Eid A.A.
        • Ford B.M.
        • Block K.
        • et al.
        AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes.
        J Biol Chem. 2010; 285: 37503-37512
        • Godel M.
        • Hartleben B.
        • Herbach N.
        • et al.
        Role of mTOR in podocyte function and diabetic nephropathy in humans and mice.
        J Clin Invest. 2011; 121: 2197-2209
        • Sharma K.
        Obesity, oxidative stress, and fibrosis in chronic kidney disease.
        Kidney Int Suppl (2011). 2014; 4: 113-117
        • Dikalov S.I.
        • Nazarewicz R.R.
        Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease.
        Antioxid Redox Signal. 2013; 19: 1085-1094
        • Mitsuishi M.
        • Miyashita K.
        • Muraki A.
        • Itoh H.
        Angiotensin II reduces mitochondrial content in skeletal muscle and affects glycemic control.
        Diabetes. 2009; 58: 710-717
        • Abadir P.M.
        • Foster D.B.
        • Crow M.
        • et al.
        Identification and characterization of a functional mitochondrial angiotensin system.
        Proc Natl Acad Sci U S A. 2011; 108: 14849-14854
        • Hoehn K.L.
        • Salmon A.B.
        • Hohnen-Behrens C.
        • et al.
        Insulin resistance is a cellular antioxidant defense mechanism.
        Proc Natl Acad Sci U S A. 2009; 106: 17787-17792
        • Lee H.K.
        • Song J.H.
        • Shin C.S.
        • et al.
        Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus.
        Diabetes Res Clin Pract. 1998; 42: 161-167
        • Fuku N.
        • Park K.S.
        • Yamada Y.
        • et al.
        Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians.
        Am J Hum Genet. 2007; 80: 407-415
        • Zhu C.
        • Huang S.
        • Yuan Y.
        • et al.
        Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARgamma.
        Am J Pathol. 2011; 178: 2020-2031
        • Eirin A.
        • Ebrahimi B.
        • Kwon S.H.
        • et al.
        Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension.
        J Am Heart Assoc. 2016; 5
        • Cushman W.C.
        • Ford C.E.
        • Cutler J.A.
        • et al.
        Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT).
        J Clin Hypertens (Greenwich). 2002; 4: 393-404
        • Armitage J.A.
        • Burke S.L.
        • Prior L.J.
        • et al.
        Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet.
        Hypertension. 2012; 60: 163-171
        • Yvan-Charvet L.
        • Quignard-Boulange A.
        Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity.
        Kidney Int. 2011; 79: 162-168
        • Buglioni A.
        • Cannone V.
        • Cataliotti A.
        • et al.
        Circulating aldosterone and natriuretic peptides in the general community: relationship to cardiorenal and metabolic disease.
        Hypertension. 2015; 65: 45-53
        • Engeli S.
        • Bohnke J.
        • Gorzelniak K.
        • et al.
        Weight loss and the renin-angiotensin-aldosterone system.
        Hypertension. 2005; 45: 356-362
        • Sugerman H.
        • Windsor A.
        • Bessos M.
        • Wolfe L.
        Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity.
        J Intern Med. 1997; 241: 71-79
        • Cobb W.S.
        • Burns J.M.
        • Kercher K.W.
        • Matthews B.D.
        • James Norton H.
        • Todd Heniford B.
        Normal intra-abdominal pressure in healthy adults.
        J Surg Res. 2005; 129: 231-235
        • Hall M.E.
        • do Carmo J.M.
        • da Silva A.A.
        • Juncos L.A.
        • Wang Z.
        • Hall J.E.
        Obesity, hypertension, and chronic kidney disease.
        Int J Nephrol Renovasc Dis. 2014; 7: 75-88
        • Sarafidis P.A.
        • Bakris G.L.
        Review: insulin and endothelin: an interplay contributing to hypertension development?.
        J Clin Endocrinol Metab. 2007; 92: 379-385
        • Miller A.W.
        • Tulbert C.
        • Puskar M.
        • Busija D.W.
        Enhanced endothelin activity prevents vasodilation to insulin in insulin resistance.
        Hypertension. 2002; 40: 78-82
        • Brands M.W.
        • Manhiani M.M.
        Sodium-retaining effect of insulin in diabetes.
        Am J Physiol Regul Integr Comp Physiol. 2012; 303: R1101-R1109
        • Tobar A.
        • Ori Y.
        • Benchetrit S.
        • et al.
        Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria.
        PLoS One. 2013; 8: e75547
        • Ohashi K.
        • Kihara S.
        • Ouchi N.
        • et al.
        Adiponectin replenishment ameliorates obesity-related hypertension.
        Hypertension. 2006; 47: 1108-1116
        • Carlyle M.
        • Jones O.B.
        • Kuo J.J.
        • Hall J.E.
        Chronic cardiovascular and renal actions of leptin: role of adrenergic activity.
        Hypertension. 2002; 39: 496-501
        • Choi H.K.
        • Ford E.S.
        Prevalence of the metabolic syndrome in individuals with hyperuricemia.
        Am J Med. 2007; 120: 442-447
        • Yoo T.W.
        • Sung K.C.
        • Shin H.S.
        • et al.
        Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome.
        Circ J. 2005; 69: 928-933
        • Li L.
        • Yang C.
        • Zhao Y.
        • Zeng X.
        • Liu F.
        • Fu P.
        Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies.
        BMC Nephrol. 2014; 15: 122
        • Nakagawa T.
        • Hu H.
        • Zharikov S.
        • et al.
        A causal role for uric acid in fructose-induced metabolic syndrome.
        Am J Physiol Renal Physiol. 2006; 290: F625-F631
        • Baldwin W.
        • McRae S.
        • Marek G.
        • et al.
        Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome.
        Diabetes. 2011; 60: 1258-1269
        • Zhi L.
        • Yuzhang Z.
        • Tianliang H.
        • Hisatome I.
        • Yamamoto T.
        • Jidong C.
        High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo.
        PLoS One. 2016; 11: e0147737
        • Mazzali M.
        • Hughes J.
        • Kim Y.G.
        • et al.
        Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism.
        Hypertension. 2001; 38: 1101-1106
        • Khosla U.M.
        • Zharikov S.
        • Finch J.L.
        • et al.
        Hyperuricemia induces endothelial dysfunction.
        Kidney Int. 2005; 67: 1739-1742