Advertisement

Insulin resistance in Alzheimer's disease

  • Thomas Diehl
    Affiliations
    Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
    Search for articles by this author
  • Roger Mullins
    Affiliations
    Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
    Search for articles by this author
  • Dimitrios Kapogiannis
    Correspondence
    Reprint requests: Dimitrios Kapogiannis, Laboratory of Neurosciences, National Institute on Aging, 3001 S. Hanover Street, NM531, Baltimore, MD, 21225
    Affiliations
    Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
    Search for articles by this author
Published:December 13, 2016DOI:https://doi.org/10.1016/j.trsl.2016.12.005
      The links between systemic insulin resistance (IR), brain-specific IR, and Alzheimer's disease (AD) have been an extremely productive area of current research. This review will cover the fundamentals and pathways leading to IR, its connection to AD via cellular mechanisms, the most prominent methods and models used to examine it, an introduction to the role of extracellular vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical studies on the subject. To provide additional context, we also present a novel analysis of the spatial correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. Ultimately, examining the relation between IR and AD can be seen as a means of advancing the understanding of both disease states, with IR being a promising target for therapeutic strategies in AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD and the main strategies to pursue this goal.

      Abbreviations:

      AD (Alzheimer's disease), IR (insulin resistance)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leney S.E.
        • Tavare J.M.
        The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets.
        J Endocrinol. 2009; 203: 1-18
        • Draznin B.
        Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin.
        Diabetes. 2006; 55: 2392-2397
        • Tzatsos A.
        Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of insulin receptor substrate-1 (IRS-1) and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR.
        J Biol Chem. 2009; 284: 22525-22534
        • Sarbassov D.D.
        • Guertin D.A.
        • Ali S.M.
        • Sabatini D.M.
        Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.
        Science. 2005; 307: 1098-1101
        • Zhang J.
        • Liu F.
        Tissue-specific insulin signaling in the regulation of metabolism and aging.
        IUBMB Life. 2014; 66: 485-495
        • Pessin J.E.
        • Saltiel A.R.
        Signaling pathways in insulin action: molecular targets of insulin resistance.
        J Clin Invest. 2000; 106: 165-169
        • Eguez L.
        • Lee A.
        • Chavez J.A.
        • et al.
        Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein.
        Cell Metab. 2005; 2: 263-272
        • Decker R.E.
        • Chalif D.J.
        Progressive coma after the transsphenoidal decompression of a pituitary adenoma with marked suprasellar extension: report of two cases.
        Neurosurgery. 1991; 28 (discussion 7–8): 154-157
        • Gonzalez E.
        • McGraw T.E.
        Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane.
        Mol Biol Cell. 2006; 17: 4484-4493
        • Sano H.
        • Eguez L.
        • Teruel M.N.
        • et al.
        Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane.
        Cell Metab. 2007; 5: 293-303
        • Saltiel A.R.
        • Pessin J.E.
        Insulin signaling in microdomains of the plasma membrane.
        Traffic. 2003; 4: 711-716
        • Mueckler M.
        • Thorens B.
        The SLC2 (GLUT) family of membrane transporters.
        Mol Aspects Med. 2013; 34: 121-138
        • Ebeling P.
        • Koistinen H.A.
        • Koivisto V.A.
        Insulin-independent glucose transport regulates insulin sensitivity.
        FEBS Lett. 1998; 436: 301-303
        • Leto D.
        • Saltiel A.R.
        Regulation of glucose transport by insulin: traffic control of GLUT4.
        Nat Rev Mol Cell Biol. 2012; 13: 383-396
        • Vannucci S.J.
        • Koehler-Stec E.M.
        • Li K.
        • Reynolds T.H.
        • Clark R.
        • Simpson I.A.
        GLUT4 glucose transporter expression in rodent brain: effect of diabetes.
        Brain Res. 1998; 797: 1-11
        • Maher F.
        • Davies-Hill T.M.
        • Lysko P.G.
        • Henneberry R.C.
        • Simpson I.A.
        Expression of two glucose transporters, GLUT1 and GLUT3, in cultured cerebellar neurons: evidence for neuron-specific expression of GLUT3.
        Mol Cell Neurosci. 1991; 2: 351-360
        • Simpson I.A.
        • Dwyer D.
        • Malide D.
        • Moley K.H.
        • Travis A.
        • Vannucci S.J.
        The facilitative glucose transporter GLUT3: 20 years of distinction.
        Am J Physiol Endocrinol Metab. 2008; 295: E242-E253
        • Duelli R.
        • Kuschinsky W.
        Brain glucose transporters: relationship to local energy demand.
        News Physiol Sci. 2001; 16: 71-76
        • Leybaert L.
        • De Bock M.
        • Van Moorhem M.
        • Decrock E.
        • De Vuyst E.
        Neurobarrier coupling in the brain: adjusting glucose entry with demand.
        J Neurosci Res. 2007; 85: 3213-3220
        • Cornford E.M.
        • Hyman S.
        Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy.
        NeuroRx. 2005; 2: 27-43
        • Schwartz M.W.
        • Figlewicz D.F.
        • Kahn S.E.
        • Baskin D.G.
        • Greenwood M.R.
        • Porte Jr., D.
        Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats.
        Peptides. 1990; 11: 467-472
        • Heni M.
        • Kullmann S.
        • Preissl H.
        • Fritsche A.
        • Haring H.U.
        Impaired insulin action in the human brain: causes and metabolic consequences.
        Nat Rev Endocrinol. 2015; 11: 701-711
        • Frolich L.
        • Blum-Degen D.
        • Bernstein H.G.
        • et al.
        Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease.
        J Neural Transm (Vienna). 1998; 105: 423-438
        • Morgello S.
        • Uson R.R.
        • Schwartz E.J.
        • Haber R.S.
        The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes.
        Glia. 1995; 14: 43-54
        • Apelt J.
        • Mehlhorn G.
        • Schliebs R.
        Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain.
        J Neurosci Res. 1999; 57: 693-705
        • Lebovitz H.E.
        Insulin resistance: definition and consequences.
        Exp Clin Endocrinol Diabetes. 2001; 109: S135-S148
        • Leahy J.L.
        Pathogenesis of type 2 diabetes mellitus.
        Arch Med Res. 2005; 36: 197-209
        • Czech M.P.
        • Klarlund J.K.
        • Yagaloff K.A.
        • Bradford A.P.
        • Lewis R.E.
        Insulin receptor signaling. Activation of multiple serine kinases.
        J Biol Chem. 1988; 263: 11017-11020
        • Tanti J.F.
        • Gremeaux T.
        • van Obberghen E.
        • Le Marchand-Brustel Y.
        Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling.
        J Biol Chem. 1994; 269: 6051-6057
        • Singh T.J.
        Insulin receptor serine kinase activation by casein kinase 2 and a membrane tyrosine kinase.
        Mol Cell Biochem. 1993; 121: 167-174
        • Ryu J.
        • Galan A.K.
        • Xin X.
        • et al.
        APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.
        Cell Rep. 2014; 7: 1227-1238
        • Copps K.D.
        • White M.F.
        Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2.
        Diabetologia. 2012; 55: 2565-2582
        • Aguirre V.
        • Werner E.D.
        • Giraud J.
        • Lee Y.H.
        • Shoelson S.E.
        • White M.F.
        Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action.
        J Biol Chem. 2002; 277: 1531-1537
        • Boura-Halfon S.
        • Zick Y.
        Phosphorylation of IRS proteins, insulin action, and insulin resistance.
        Am J Physiol Endocrinol Metab. 2009; 296: E581-E591
        • Eldar-Finkelman H.
        • Krebs E.G.
        Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action.
        Proc Natl Acad Sci U S A. 1997; 94: 9660-9664
        • Sun X.J.
        • Goldberg J.L.
        • Qiao L.Y.
        • Mitchell J.J.
        Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway.
        Diabetes. 1999; 48: 1359-1364
        • Pederson T.M.
        • Kramer D.L.
        • Rondinone C.M.
        Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation.
        Diabetes. 2001; 50: 24-31
        • Le D.S.
        • Brookshire T.
        • Krakoff J.
        • Bunt J.C.
        Repeatability and reproducibility of the hyperinsulinemic-euglycemic clamp and the tracer dilution technique in a controlled inpatient setting.
        Metabolism. 2009; 58: 304-310
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • DeFronzo R.A.
        Pathogenesis of type 2 diabetes mellitus.
        Med Clin North Am. 2004; 88 (ix): 787-835
        • Hunter S.J.
        • Garvey W.T.
        Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system.
        Am J Med. 1998; 105: 331-345
        • Armoni M.
        • Harel C.
        • Bar-Yoseph F.
        • Milo S.
        • Karnieli E.
        Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements.
        J Biol Chem. 2005; 280: 34786-34795
        • Turcotte L.P.
        • Fisher J.S.
        Skeletal muscle insulin resistance: roles of fatty acid metabolism and exercise.
        Phys Ther. 2008; 88: 1279-1296
        • Pan D.A.
        • Lillioja S.
        • Kriketos A.D.
        • et al.
        Skeletal muscle triglyceride levels are inversely related to insulin action.
        Diabetes. 1997; 46: 983-988
        • Martins A.R.
        • Nachbar R.T.
        • Gorjao R.
        • et al.
        Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function.
        Lipids Health Dis. 2012; 11: 30
        • Shulman G.I.
        Cellular mechanisms of insulin resistance in humans.
        Am J Cardiol. 1999; 84: 3J-10J
        • Roden M.
        How free fatty acids inhibit glucose utilization in human skeletal muscle.
        News Physiol Sci. 2004; 19: 92-96
        • Roden M.
        • Price T.B.
        • Perseghin G.
        • et al.
        Mechanism of free fatty acid-induced insulin resistance in humans.
        J Clin Invest. 1996; 97: 2859-2865
        • Ma J.
        • Hart G.W.
        Protein O-GlcNAcylation in diabetes and diabetic complications.
        Expert Rev Proteomics. 2013; 10: 365-380
        • Ball L.E.
        • Berkaw M.N.
        • Buse M.G.
        Identification of the major site of O-linked beta-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1.
        Mol Cell Proteomics. 2006; 5: 313-323
        • Bugianesi E.
        • McCullough A.J.
        • Marchesini G.
        Insulin resistance: a metabolic pathway to chronic liver disease.
        Hepatology. 2005; 42: 987-1000
        • Bugianesi E.
        • Moscatiello S.
        • Ciaravella M.F.
        • Marchesini G.
        Insulin resistance in nonalcoholic fatty liver disease.
        Curr Pharm Des. 2010; 16: 1941-1951
        • Beck-Nielsen H.
        • Hother-Nielsen O.
        • Staehr P.
        Is hepatic glucose production increased in type 2 diabetes mellitus?.
        Curr Diab Rep. 2002; 2: 231-236
        • Chitturi S.
        • Abeygunasekera S.
        • Farrell G.C.
        • et al.
        NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome.
        Hepatology. 2002; 35: 373-379
        • Scheller J.
        • Chalaris A.
        • Schmidt-Arras D.
        • Rose-John S.
        The pro- and anti-inflammatory properties of the cytokine interleukin-6.
        Biochim Biophys Acta. 2011; 1813: 878-888
        • Senn J.J.
        • Klover P.J.
        • Nowak I.A.
        • Mooney R.A.
        Interleukin-6 induces cellular insulin resistance in hepatocytes.
        Diabetes. 2002; 51: 3391-3399
        • Ringheim G.E.
        • Szczepanik A.M.
        • Petko W.
        • Burgher K.L.
        • Zhu S.Z.
        • Chao C.C.
        Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex.
        Brain Res Mol Brain Res. 1998; 55: 35-44
        • Bauer J.
        • Strauss S.
        • Schreiter-Gasser U.
        • et al.
        Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices.
        FEBS Lett. 1991; 285: 111-114
        • Erta M.
        • Quintana A.
        • Hidalgo J.
        Interleukin-6, a major cytokine in the central nervous system.
        Int J Biol Sci. 2012; 8: 1254-1266
        • Hotamisligil G.S.
        • Murray D.L.
        • Choy L.N.
        • Spiegelman B.M.
        Tumor necrosis factor alpha inhibits signaling from the insulin receptor.
        Proc Natl Acad Sci U S A. 1994; 91: 4854-4858
        • de la Monte S.M.
        Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease.
        Curr Alzheimer Res. 2012; 9: 35-66
        • Blazquez E.
        • Velazquez E.
        • Hurtado-Carneiro V.
        • Ruiz-Albusac J.M.
        Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease.
        Front Endocrinol (Lausanne). 2014; 5: 161
        • Havrankova J.
        • Schmechel D.
        • Roth J.
        • Brownstein M.
        Identification of insulin in rat brain.
        Proc Natl Acad Sci U S A. 1978; 75: 5737-5741
        • Gray S.M.
        • Meijer R.I.
        • Barrett E.J.
        Insulin regulates brain function, but how does it get there?.
        Diabetes. 2014; 63: 3992-3997
        • Seaquist E.R.
        • Damberg G.S.
        • Tkac I.
        • Gruetter R.
        The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans.
        Diabetes. 2001; 50: 2203-2209
        • Banks W.A.
        • Owen J.B.
        • Erickson M.A.
        Insulin in the brain: there and back again.
        Pharmacol Ther. 2012; 136: 82-93
        • Havrankova J.
        • Roth J.
        • Brownstein M.J.
        Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents.
        J Clin Invest. 1979; 64: 636-642
        • Pardridge W.M.
        • Eisenberg J.
        • Yang J.
        Human blood-brain barrier insulin receptor.
        J Neurochem. 1985; 44: 1771-1778
        • Mehran A.E.
        • Templeman N.M.
        • Brigidi G.S.
        • et al.
        Hyperinsulinemia drives diet-induced obesity independently of brain insulin production.
        Cell Metab. 2012; 16: 723-737
        • Devaskar S.U.
        • Giddings S.J.
        • Rajakumar P.A.
        • Carnaghi L.R.
        • Menon R.K.
        • Zahm D.S.
        Insulin gene expression and insulin synthesis in mammalian neuronal cells.
        J Biol Chem. 1994; 269: 8445-8454
        • Marks J.L.
        • King M.G.
        • Baskin D.G.
        Localization of insulin and type 1 IGF receptors in rat brain by in vitro autoradiography and in situ hybridization.
        Adv Exp Med Biol. 1991; 293: 459-470
        • Havrankova J.
        • Roth J.
        • Brownstein M.
        Insulin receptors are widely distributed in the central nervous system of the rat.
        Nature. 1978; 272: 827-829
        • Heidenreich K.A.
        • Gilmore P.R.
        Structural and functional characteristics of insulin receptors in rat neuroblastoma cells.
        J Neurochem. 1985; 45: 1642-1648
        • McNay E.C.
        • Recknagel A.K.
        Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes.
        Neurobiol Learn Mem. 2011; 96: 432-442
        • De Felice F.G.
        • Lourenco M.V.
        • Ferreira S.T.
        How does brain insulin resistance develop in Alzheimer's disease?.
        Alzheimers Dement. 2014; 10: S26-S32
        • van der Heide L.P.
        • Ramakers G.M.
        • Smidt M.P.
        Insulin signaling in the central nervous system: learning to survive.
        Prog Neurobiol. 2006; 79: 205-221
        • Linder K.
        • Schleger F.
        • Ketterer C.
        • et al.
        Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity.
        Diabetologia. 2014; 57: 1192-1198
        • Reitz C.
        • Tosto G.
        • Mayeux R.
        • Luchsinger J.A.
        • Group N-LNFS
        • Alzheimer's Disease Neuroimaging I
        Genetic variants in the Fat and Obesity Associated (FTO) gene and risk of Alzheimer's disease.
        PLoS One. 2012; 7: e50354
        • Keller L.
        • Xu W.
        • Wang H.X.
        • Winblad B.
        • Fratiglioni L.
        • Graff C.
        The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study.
        J Alzheimers Dis. 2011; 23: 461-469
        • Shen Y.
        • Fu W.Y.
        • Cheng E.Y.
        • Fu A.K.
        • Ip N.Y.
        Melanocortin-4 receptor regulates hippocampal synaptic plasticity through a protein kinase A-dependent mechanism.
        J Neurosci. 2013; 33: 464-472
        • Tschritter O.
        • Haupt A.
        • Preissl H.
        • et al.
        An obesity risk SNP (rs17782313) near the MC4R gene is associated with cerebrocortical insulin resistance in humans.
        J Obes. 2011; 2011: 283153
        • Nakano H.
        Signaling crosstalk between NF-kappaB and JNK.
        Trends Immunol. 2004; 25: 402-405
        • Sears B.
        • Perry M.
        The role of fatty acids in insulin resistance.
        Lipids Health Dis. 2015; 14: 121
        • Talbot K.
        • Wang H.Y.
        • Kazi H.
        • et al.
        Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline.
        J Clin Invest. 2012; 122: 1316-1338
        • Frojdo S.
        • Vidal H.
        • Pirola L.
        Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans.
        Biochim Biophys Acta. 2009; 1792: 83-92
        • Copps K.D.
        • Hancer N.J.
        • Opare-Ado L.
        • Qiu W.
        • Walsh C.
        • White M.F.
        Irs1 serine 307 promotes insulin sensitivity in mice.
        Cell Metab. 2010; 11: 84-92
        • Buettner R.
        • Parhofer K.G.
        • Woenckhaus M.
        • et al.
        Defining high-fat-diet rat models: metabolic and molecular effects of different fat types.
        J Mol Endocrinol. 2006; 36: 485-501
        • Hiltunen M.
        • Khandelwal V.K.
        • Yaluri N.
        • et al.
        Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice.
        J Cell Mol Med. 2012; 16: 1206-1222
        • Julien C.
        • Tremblay C.
        • Phivilay A.
        • et al.
        High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model.
        Neurobiol Aging. 2010; 31: 1516-1531
        • Hoyer S.
        • Muller D.
        • Plaschke K.
        Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism.
        J Neural Transm Suppl. 1994; 44: 259-268
        • Plaschke K.
        • Kopitz J.
        • Siegelin M.
        • et al.
        Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice.
        J Alzheimers Dis. 2010; 19: 691-704
        • Wang X.
        • Zheng W.
        • Xie J.W.
        • et al.
        Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model.
        Mol Neurodegener. 2010; 5: 46
        • Szkudelski T.
        The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas.
        Physiol Res. 2001; 50: 537-546
        • Brant A.M.
        • Jess T.J.
        • Milligan G.
        • Brown C.M.
        • Gould G.W.
        Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system.
        Biochem Biophys Res Commun. 1993; 192: 1297-1302
        • Grieb P.
        Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism.
        Mol Neurobiol. 2016; 53: 1741-1752
        • Coleman D.L.
        Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice.
        Diabetologia. 1978; 14: 141-148
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue.
        Nature. 1994; 372: 425-432
        • Asakawa A.
        • Inui A.
        • Inui T.
        • Katsuura G.
        • Fujino M.A.
        • Kasuga M.
        Leptin treatment ameliorates anxiety in ob/ob obese mice.
        J Diabetes Complications. 2003; 17: 105-107
        • Kerouz N.J.
        • Horsch D.
        • Pons S.
        • Kahn C.R.
        Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse.
        J Clin Invest. 1997; 100: 3164-3172
        • Kim B.
        • Backus C.
        • Oh S.
        • Feldman E.L.
        Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer's disease.
        J Alzheimers Dis. 2013; 34: 727-739
        • Porter W.D.
        • Flatt P.R.
        • Holscher C.
        • Gault V.A.
        Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice.
        Int J Obes (Lond). 2013; 37: 678-684
        • Dinel A.L.
        • Andre C.
        • Aubert A.
        • Ferreira G.
        • Laye S.
        • Castanon N.
        Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome.
        PLoS One. 2011; 6: e24325
        • Sharma A.N.
        • Elased K.M.
        • Garrett T.L.
        • Lucot J.B.
        Neurobehavioral deficits in db/db diabetic mice.
        Physiol Behav. 2010; 101: 381-388
        • Kim B.
        • Backus C.
        • Oh S.
        • Hayes J.M.
        • Feldman E.L.
        Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes.
        Endocrinology. 2009; 150: 5294-5301
        • Lee S.
        • Tong M.
        • Hang S.
        • Deochand C.
        • de la Monte S.
        CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer's disease.
        J Alzheimers Dis Parkinsonism. 2013; 3: 128
        • de la Monte S.M.
        • Re E.
        • Longato L.
        • Tong M.
        Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer's disease.
        J Alzheimers Dis. 2012; 30: S217-S229
        • Betteridge D.J.
        What is oxidative stress?.
        Metabolism. 2000; 49: 3-8
        • Mattson M.P.
        • Chan S.L.
        • Duan W.
        Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior.
        Physiol Rev. 2002; 82: 637-672
        • Coyle J.T.
        • Puttfarcken P.
        Oxidative stress, glutamate, and neurodegenerative disorders.
        Science. 1993; 262: 689-695
        • Floyd R.A.
        • Hensley K.
        Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases.
        Neurobiol Aging. 2002; 23: 795-807
        • Nunomura A.
        • Castellani R.J.
        • Zhu X.
        • Moreira P.I.
        • Perry G.
        • Smith M.A.
        Involvement of oxidative stress in Alzheimer disease.
        J Neuropathol Exp Neurol. 2006; 65: 631-641
        • Gu F.
        • Zhu M.
        • Shi J.
        • Hu Y.
        • Zhao Z.
        Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice.
        Neurosci Lett. 2008; 440: 44-48
        • Duarte A.I.
        • Santos M.S.
        • Oliveira C.R.
        • Rego A.C.
        Insulin neuroprotection against oxidative stress in cortical neurons–involvement of uric acid and glutathione antioxidant defenses.
        Free Radic Biol Med. 2005; 39: 876-889
        • Yu X.R.
        • Jia G.R.
        • Gao G.D.
        • Wang S.H.
        • Han Y.
        • Cao W.
        Neuroprotection of insulin against oxidative stress-induced apoptosis in cultured retinal neurons: involvement of phosphoinositide 3-kinase/Akt signal pathway.
        Acta Biochim Biophys Sin (Shanghai). 2006; 38: 241-248
        • Park K.
        • Gross M.
        • Lee D.H.
        • et al.
        Oxidative stress and insulin resistance: the coronary artery risk development in young adults study.
        Diabetes Care. 2009; 32: 1302-1307
        • Evans J.L.
        • Maddux B.A.
        • Goldfine I.D.
        The molecular basis for oxidative stress-induced insulin resistance.
        Antioxid Redox Signal. 2005; 7: 1040-1052
        • Grunblatt E.
        • Salkovic-Petrisic M.
        • Osmanovic J.
        • Riederer P.
        • Hoyer S.
        Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein.
        J Neurochem. 2007; 101: 757-770
        • Chen G.J.
        • Xu J.
        • Lahousse S.A.
        • Caggiano N.L.
        • de la Monte S.M.
        Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection.
        J Alzheimers Dis. 2003; 5: 209-228
        • Davi G.
        • Guagnano M.T.
        • Ciabattoni G.
        • et al.
        Platelet activation in obese women: role of inflammation and oxidant stress.
        JAMA. 2002; 288: 2008-2014
        • Engelhart M.J.
        • Geerlings M.I.
        • Ruitenberg A.
        • et al.
        Dietary intake of antioxidants and risk of Alzheimer disease.
        JAMA. 2002; 287: 3223-3229
        • Tang M.X.
        • Jacobs D.
        • Stern Y.
        • et al.
        Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease.
        Lancet. 1996; 348: 429-432
        • Morris M.C.
        • Evans D.A.
        • Bienias J.L.
        • et al.
        Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease.
        Arch Neurol. 2003; 60: 940-946
        • Stoll L.L.
        • McCormick M.L.
        • Denning G.M.
        • Weintraub N.L.
        Antioxidant effects of statins.
        Timely Top Med Cardiovasc Dis. 2005; 9: E1
        • Mattson M.P.
        • Duan W.
        • Guo Z.
        Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms.
        J Neurochem. 2003; 84: 417-431
        • Ott A.
        • Slooter A.J.
        • Hofman A.
        • et al.
        Smoking and risk of dementia and Alzheimer's disease in a population-based cohort study: the Rotterdam Study.
        Lancet. 1998; 351: 1840-1843
        • Luchsinger J.A.
        • Tang M.X.
        • Shea S.
        • Mayeux R.
        Caloric intake and the risk of Alzheimer disease.
        Arch Neurol. 2002; 59: 1258-1263
        • Greenwald J.
        • Riek R.
        Biology of amyloid: structure, function, and regulation.
        Structure. 2010; 18: 1244-1260
        • Blennow K.
        Cerebrospinal fluid protein biomarkers for Alzheimer's disease.
        NeuroRx. 2004; 1: 213-225
        • Pearson H.A.
        • Peers C.
        Physiological roles for amyloid beta peptides.
        J Physiol. 2006; 575: 5-10
        • Hardy J.
        • Selkoe D.J.
        The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.
        Science. 2002; 297: 353-356
        • Tanzi R.E.
        • Moir R.D.
        • Wagner S.L.
        Clearance of Alzheimer's Abeta peptide: the many roads to perdition.
        Neuron. 2004; 43: 605-608
        • Deane R.
        • Bell R.D.
        • Sagare A.
        • Zlokovic B.V.
        Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease.
        CNS Neurol Disord Drug Targets. 2009; 8: 16-30
        • Watson G.S.
        • Peskind E.R.
        • Asthana S.
        • et al.
        Insulin increases CSF Abeta42 levels in normal older adults.
        Neurology. 2003; 60: 1899-1903
        • Yoon S.O.
        • Park D.J.
        • Ryu J.C.
        • et al.
        JNK3 perpetuates metabolic stress induced by Abeta peptides.
        Neuron. 2012; 75: 824-837
        • De Felice F.G.
        • Vieira M.N.
        • Bomfim T.R.
        • et al.
        Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers.
        Proc Natl Acad Sci U S A. 2009; 106: 1971-1976
        • Xie L.
        • Helmerhorst E.
        • Taddei K.
        • Plewright B.
        • Van Bronswijk W.
        • Martins R.
        Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor.
        J Neurosci. 2002; 22: RC221
        • Zhao W.Q.
        • De Felice F.G.
        • Fernandez S.
        • et al.
        Amyloid beta oligomers induce impairment of neuronal insulin receptors.
        FASEB J. 2008; 22: 246-260
        • Saido T.
        • Leissring M.A.
        Proteolytic degradation of amyloid beta-protein.
        Cold Spring Harb Perspect Med. 2012; 2: a006379
        • Wang D.S.
        • Dickson D.W.
        • Malter J.S.
        beta-Amyloid degradation and Alzheimer's disease.
        J Biomed Biotechnol. 2006; 2006: 58406
        • Qiu W.Q.
        • Folstein M.F.
        Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis.
        Neurobiol Aging. 2006; 27: 190-198
        • Authier F.
        • Posner B.I.
        • Bergeron J.J.
        Insulin-degrading enzyme.
        Clin Invest Med. 1996; 19: 149-160
        • Hulse R.E.
        • Ralat L.A.
        • Wei-Jen T.
        Structure, function, and regulation of insulin-degrading enzyme.
        Vitam Horm. 2009; 80: 635-648
        • Ho L.
        • Qin W.
        • Pompl P.N.
        • et al.
        Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease.
        FASEB J. 2004; 18: 902-904
        • Starks E.J.
        • Patrick O'Grady J.
        • Hoscheidt S.M.
        • et al.
        Insulin resistance is associated with higher cerebrospinal fluid tau levels in asymptomatic APOEvarepsilon4 carriers.
        J Alzheimers Dis. 2015; 46: 525-533
        • Edland S.D.
        Insulin-degrading enzyme, apolipoprotein E, and Alzheimer's disease.
        J Mol Neurosci. 2004; 23: 213-217
        • Brandt R.
        • Leschik J.
        Functional interactions of tau and their relevance for Alzheimer's disease.
        Curr Alzheimer Res. 2004; 1: 255-269
        • Lesort M.
        • Jope R.S.
        • Johnson G.V.
        Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase.
        J Neurochem. 1999; 72: 576-584
        • Lesort M.
        • Johnson G.V.
        Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons.
        Neuroscience. 2000; 99: 305-316
        • Planel E.
        • Sun X.Y.
        • Takashima A.
        Role of GSK-3 beta in Alzheimer's disease pathology.
        Drug Dev Res. 2002; 56: 491-510
        • Llorens-Martin M.
        • Jurado J.
        • Hernandez F.
        • Avila J.
        GSK-3beta, a pivotal kinase in Alzheimer disease.
        Front Mol Neurosci. 2014; 7: 46
        • Welsh G.I.
        • Proud C.G.
        Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B.
        Biochem J. 1993; 294: 625-629
        • Hong M.
        • Lee V.M.
        Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons.
        J Biol Chem. 1997; 272: 19547-19553
        • Ksiezak-Reding H.
        • Pyo H.K.
        • Feinstein B.
        • Pasinetti G.M.
        Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro.
        Biochim Biophys Acta. 2003; 1639: 159-168
        • Zhou X.W.
        • Winblad B.
        • Guan Z.
        • Pei J.J.
        Interactions between glycogen synthase kinase 3beta, protein kinase B, and protein phosphatase 2A in tau phosphorylation in mouse N2a neuroblastoma cells.
        J Alzheimers Dis. 2009; 17: 929-937
        • Gong C.X.
        • Shaikh S.
        • Wang J.Z.
        • Zaidi T.
        • Grundke-Iqbal I.
        • Iqbal K.
        Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain.
        J Neurochem. 1995; 65: 732-738
        • Vogelsberg-Ragaglia V.
        • Schuck T.
        • Trojanowski J.Q.
        • Lee V.M.
        PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus.
        Exp Neurol. 2001; 168: 402-412
        • Papon M.A.
        • El Khoury N.B.
        • Marcouiller F.
        • et al.
        Deregulation of protein phosphatase 2A and hyperphosphorylation of tau protein following onset of diabetes in NOD mice.
        Diabetes. 2013; 62: 609-617
        • Kins S.
        • Crameri A.
        • Evans D.R.
        • Hemmings B.A.
        • Nitsch R.M.
        • Gotz J.
        Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice.
        J Biol Chem. 2001; 276: 38193-38200
        • Clodfelder-Miller B.J.
        • Zmijewska A.A.
        • Johnson G.V.
        • Jope R.S.
        Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency.
        Diabetes. 2006; 55: 3320-3325
        • Moloney A.M.
        • Griffin R.J.
        • Timmons S.
        • O'Connor R.
        • Ravid R.
        • O'Neill C.
        Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling.
        Neurobiol Aging. 2010; 31: 224-243
        • Hawrylycz M.J.
        • Lein E.S.
        • Guillozet-Bongaarts A.L.
        • et al.
        An anatomically comprehensive atlas of the adult human brain transcriptome.
        Nature. 2012; 489: 391-399
        • Hawrylycz M.
        • Ng L.
        • Page D.
        • et al.
        Multi-scale correlation structure of gene expression in the brain.
        Neural Netw. 2011; 24: 933-942
        • Friedland R.P.
        • Jagust W.J.
        • Huesman R.H.
        • et al.
        Regional cerebral glucose transport and utilization in Alzheimer's disease.
        Neurology. 1989; 39: 1427-1434
        • Herholz K.
        • Salmon E.
        • Perani D.
        • et al.
        Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET.
        Neuroimage. 2002; 17: 302-316
        • Langbaum J.B.
        • Chen K.
        • Lee W.
        • et al.
        Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
        Neuroimage. 2009; 45: 1107-1116
        • Baker L.D.
        • Cross D.J.
        • Minoshima S.
        • Belongia D.
        • Watson G.S.
        • Craft S.
        Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes.
        Arch Neurol. 2011; 68: 51-57
        • Willette A.A.
        • Bendlin B.B.
        • Starks E.J.
        • et al.
        Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease.
        JAMA Neurol. 2015; 72: 1013-1020
        • Willette A.A.
        • Modanlo N.
        • Kapogiannis D.
        • Alzheimer's Disease Neuroimaging I
        Insulin resistance predicts medial temporal hypermetabolism in mild cognitive impairment conversion to Alzheimer disease.
        Diabetes. 2015; 64: 1933-1940
        • Klunk W.E.
        • Engler H.
        • Nordberg A.
        • et al.
        Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.
        Ann Neurol. 2004; 55: 306-319
        • Johnson K.A.
        • Sperling R.A.
        • Gidicsin C.M.
        • et al.
        Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer's disease dementia, mild cognitive impairment, and normal aging.
        Alzheimers Dement. 2013; 9: S72-S83
        • Thambisetty M.
        • Jeffrey Metter E.
        • Yang A.
        • et al.
        Glucose intolerance, insulin resistance, and pathological features of Alzheimer disease in the Baltimore Longitudinal Study of Aging.
        JAMA Neurol. 2013; 70: 1167-1172
        • Edison P.
        • Archer H.A.
        • Hinz R.
        • et al.
        Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study.
        Neurology. 2007; 68: 501-508
        • Willette A.A.
        • Johnson S.C.
        • Birdsill A.C.
        • et al.
        Insulin resistance predicts brain amyloid deposition in late middle-aged adults.
        Alzheimers Dement. 2015; 11: 504-510.e1
        • Sarazin M.
        • Lagarde J.
        • Bottlaender M.
        Distinct tau PET imaging patterns in typical and atypical Alzheimer's disease.
        Brain. 2016; 139: 1321-1324
        • Thal D.R.
        • Vandenberghe R.
        Monitoring the progression of Alzheimer's disease with tau-PET.
        Brain. 2016; 139: 1318-1320
        • Korf E.S.
        • White L.R.
        • Scheltens P.
        • Launer L.J.
        Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study.
        Diabetes Care. 2006; 29: 2268-2274
        • Willette A.A.
        • Xu G.
        • Johnson S.C.
        • et al.
        Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults.
        Diabetes Care. 2013; 36: 443-449
        • Blasco G.
        • Puig J.
        • Daunis I.E.J.
        • et al.
        Brain iron overload, insulin resistance, and cognitive performance in obese subjects: a preliminary MRI case-control study.
        Diabetes Care. 2014; 37: 3076-3083
        • Thomas M.A.
        • Hattori N.
        • Umeda M.
        • Sawada T.
        • Naruse S.
        Evaluation of two-dimensional L-COSY and JPRESS using a 3 T MRI scanner: from phantoms to human brain in vivo.
        NMR Biomed. 2003; 16: 245-251
        • Weston P.S.
        • Simpson I.J.
        • Ryan N.S.
        • Ourselin S.
        • Fox N.C.
        Diffusion imaging changes in grey matter in Alzheimer's disease: a potential marker of early neurodegeneration.
        Alzheimers Res Ther. 2015; 7: 47
        • Molinuevo J.L.
        • Ripolles P.
        • Simo M.
        • et al.
        White matter changes in preclinical Alzheimer's disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid beta protein 42 levels.
        Neurobiol Aging. 2014; 35: 2671-2680
        • Meng J.Z.
        • Guo L.W.
        • Cheng H.
        • et al.
        Correlation between cognitive function and the association fibers in patients with Alzheimer's disease using diffusion tensor imaging.
        J Clin Neurosci. 2012; 19: 1659-1663
        • Hong Y.J.
        • Yoon B.
        • Lim S.C.
        • et al.
        Microstructural changes in the hippocampus and posterior cingulate in mild cognitive impairment and Alzheimer's disease: a diffusion tensor imaging study.
        Neurol Sci. 2013; 34: 1215-1221
        • Hsu J.L.
        • Chen Y.L.
        • Leu J.G.
        • et al.
        Microstructural white matter abnormalities in type 2 diabetes mellitus: a diffusion tensor imaging study.
        Neuroimage. 2012; 59: 1098-1105
        • Reijmer Y.D.
        • Brundel M.
        • de Bresser J.
        • et al.
        Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes: a diffusion tensor imaging study.
        Diabetes Care. 2013; 36: 137-144
        • Xiong Y.
        • Sui Y.
        • Xu Z.
        • et al.
        A diffusion tensor imaging study on white matter abnormalities in patients with type 2 diabetes using tract-based spatial Statistics.
        AJNR Am J Neuroradiol. 2016; 37: 1462-1469
        • Zhao W.Q.
        • Townsend M.
        Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease.
        Biochim Biophys Acta. 2009; 1792: 482-496
        • Chen Y.C.
        • Jiao Y.
        • Cui Y.
        • et al.
        Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: a resting-state fMRI study.
        Diabetes Care. 2014; 37: 1689-1696
        • Musen G.
        • Jacobson A.M.
        • Bolo N.R.
        • et al.
        Resting-state brain functional connectivity is altered in type 2 diabetes.
        Diabetes. 2012; 61: 2375-2379
        • Burns J.M.
        • Honea R.A.
        • Vidoni E.D.
        • Hutfles L.J.
        • Brooks W.M.
        • Swerdlow R.H.
        Insulin is differentially related to cognitive decline and atrophy in Alzheimer's disease and aging.
        Biochim Biophys Acta. 2012; 1822: 333-339
        • Kapogiannis D.
        • Boxer A.
        • Schwartz J.B.
        • et al.
        Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer's disease.
        FASEB J. 2015; 29: 589-596
        • Woods S.C.
        • Porte Jr., D.
        Relationship between plasma and cerebrospinal fluid insulin levels of dogs.
        Am J Physiol. 1977; 233: E331-E334
        • Wallum B.J.
        • Taborsky Jr., G.J.
        • Porte Jr., D.
        • et al.
        Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man.
        J Clin Endocrinol Metab. 1987; 64: 190-194
        • Caro J.F.
        • Kolaczynski J.W.
        • Nyce M.R.
        • et al.
        Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance.
        Lancet. 1996; 348: 159-161
        • Kos K.
        • Harte A.L.
        • da Silva N.F.
        • et al.
        Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus.
        J Clin Endocrinol Metab. 2007; 92: 1129-1136
        • Hoscheidt S.M.
        • Starks E.J.
        • Oh J.M.
        • et al.
        Insulin resistance is associated with increased levels of cerebrospinal fluid biomarkers of Alzheimer's disease and reduced memory function in at-risk healthy middle-aged adults.
        J Alzheimers Dis. 2016; 52: 1373-1383
        • Duarte A.I.
        • Moreira P.I.
        • Oliveira C.R.
        Insulin in central nervous system: more than just a peripheral hormone.
        J Aging Res. 2012; 2012: 384017
        • Bellingham S.A.
        • Guo B.B.
        • Coleman B.M.
        • Hill A.F.
        Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?.
        Front Physiol. 2012; 3: 124
        • Perez-Gonzalez R.
        • Gauthier S.A.
        • Kumar A.
        • Levy E.
        The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space.
        J Biol Chem. 2012; 287: 43108-43115
        • Rajendran L.
        • Honsho M.
        • Zahn T.R.
        • et al.
        Alzheimer's disease beta-amyloid peptides are released in association with exosomes.
        Proc Natl Acad Sci U S A. 2006; 103: 11172-11177
        • Wang G.
        • Dinkins M.
        • He Q.
        • et al.
        Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD).
        J Biol Chem. 2012; 287: 21384-21395
        • Saman S.
        • Lee N.C.
        • Inoyo I.
        • et al.
        Proteins recruited to exosomes by tau overexpression implicate novel cellular mechanisms linking tau secretion with Alzheimer's disease.
        J Alzheimers Dis. 2014; 40: S47-S70
        • Bulloj A.
        • Leal M.C.
        • Xu H.
        • Castano E.M.
        • Morelli L.
        Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-beta degrading protease.
        J Alzheimers Dis. 2010; 19: 79-95
        • Gupta A.
        • Pulliam L.
        Exosomes as mediators of neuroinflammation.
        J Neuroinflammation. 2014; 11: 68
        • Van Giau V.
        • An S.S.
        Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's disease.
        J Neurol Sci. 2016; 360: 141-152
        • Goetzl E.J.
        • Boxer A.
        • Schwartz J.B.
        • et al.
        Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease.
        Neurology. 2015; 85: 40-47
        • Goetzl E.J.
        • Boxer A.
        • Schwartz J.B.
        • et al.
        Low neural exosomal levels of cellular survival factors in Alzheimer's disease.
        Ann Clin Transl Neurol. 2015; 2: 769-773
        • Fiandaca M.S.
        • Kapogiannis D.
        • Mapstone M.
        • et al.
        Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study.
        Alzheimers Dement. 2015; 11: 600-607.e1
        • Born J.
        • Lange T.
        • Kern W.
        • McGregor G.P.
        • Bickel U.
        • Fehm H.L.
        Sniffing neuropeptides: a transnasal approach to the human brain.
        Nat Neurosci. 2002; 5: 514-516
        • Craft S.
        • Baker L.D.
        • Montine T.J.
        • et al.
        Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial.
        Arch Neurol. 2012; 69: 29-38
        • Reger M.A.
        • Watson G.S.
        • Green P.S.
        • et al.
        Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults.
        J Alzheimers Dis. 2008; 13: 323-331
        • Claxton A.
        • Baker L.D.
        • Wilkinson C.W.
        • et al.
        Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer's disease.
        J Alzheimers Dis. 2013; 35: 789-797
        • Claxton A.
        • Baker L.D.
        • Hanson A.
        • et al.
        Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia.
        J Alzheimers Dis. 2015; 44: 897-906
        • Hauner H.
        The mode of action of thiazolidinediones.
        Diabetes Metab Res Rev. 2002; 18: S10-S15
        • Miller B.W.
        • Willett K.C.
        • Desilets A.R.
        Rosiglitazone and pioglitazone for the treatment of Alzheimer's disease.
        Ann Pharmacother. 2011; 45: 1416-1424
        • Landreth G.
        • Jiang Q.
        • Mandrekar S.
        • Heneka M.
        PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease.
        Neurotherapeutics. 2008; 5: 481-489
        • Remels A.H.
        • Langen R.C.
        • Gosker H.R.
        • et al.
        PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle.
        Am J Physiol Endocrinol Metab. 2009; 297: E174-E183
        • Searcy J.L.
        • Phelps J.T.
        • Pancani T.
        • et al.
        Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease.
        J Alzheimers Dis. 2012; 30: 943-961
        • Heneka M.T.
        • Fink A.
        • Doblhammer G.
        Effect of pioglitazone medication on the incidence of dementia.
        Ann Neurol. 2015; 78: 284-294
        • Campbell J.E.
        • Drucker D.J.
        Pharmacology, physiology, and mechanisms of incretin hormone action.
        Cell Metab. 2013; 17: 819-837
        • Trujillo J.M.
        • Nuffer W.
        • Ellis S.L.
        GLP-1 receptor agonists: a review of head-to-head clinical studies.
        Ther Adv Endocrinol Metab. 2015; 6: 19-28
        • Perry T.
        • Haughey N.J.
        • Mattson M.P.
        • Egan J.M.
        • Greig N.H.
        Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4.
        J Pharmacol Exp Ther. 2002; 302: 881-888
        • Perry T.
        • Holloway H.W.
        • Weerasuriya A.
        • et al.
        Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy.
        Exp Neurol. 2007; 203: 293-301
        • Bomfim T.R.
        • Forny-Germano L.
        • Sathler L.B.
        • et al.
        An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease- associated Abeta oligomers.
        J Clin Invest. 2012; 122: 1339-1353
        • Talbot K.
        • Wang H.Y.
        The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer's disease.
        Alzheimers Dement. 2014; 10: S12-S25
        • Li Y.
        • Duffy K.B.
        • Ottinger M.A.
        • et al.
        GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease.
        J Alzheimers Dis. 2010; 19: 1205-1219
        • McClean P.L.
        • Parthsarathy V.
        • Faivre E.
        • Holscher C.
        The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease.
        J Neurosci. 2011; 31: 6587-6594
        • Xu W.
        • Yang Y.
        • Yuan G.
        • Zhu W.
        • Ma D.
        • Hu S.
        Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes.
        J Investig Med. 2015; 63: 267-272
        • Malhotra R.
        • Singh L.
        • Eng J.
        • Raufman J.P.
        Exendin-4, a new peptide from Heloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini.
        Regul Pept. 1992; 41: 149-156
        • Tweedie D.
        • Rachmany L.
        • Rubovitch V.
        • et al.
        Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice.
        Exp Neurol. 2012; 239C: 170-182
        • Martin B.
        • Golden E.
        • Carlson O.D.
        • et al.
        Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies and extends survival in a mouse model of Huntington's disease.
        Diabetes. 2009; 58: 318-328
        • Li Y.
        • Perry T.
        • Kindy M.S.
        • et al.
        GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.
        Proc Natl Acad Sci U S A. 2009; 106: 1285-1290
        • Aviles-Olmos I.
        • Dickson J.
        • Kefalopoulou Z.
        • et al.
        Exenatide and the treatment of patients with Parkinson's disease.
        J Clin Invest. 2013; 123: 2730-2736