Advertisement

Chimeric antigen receptor T-cell therapy for glioblastoma

  • Analiz Rodriguez
    Correspondence
    Reprint requests: Dr Analiz Rodriguez, Department of Surgery, City of Hope National Medical Center, Duarte, CA
    Affiliations
    Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, Calif
    Search for articles by this author
  • Christine Brown
    Affiliations
    Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, Calif
    Search for articles by this author
  • Behnam Badie
    Affiliations
    Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, Calif

    Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, Calif
    Search for articles by this author
      Chimeric antigen receptor (CAR) T-cell therapy has shown great promise in the treatment of hematological disease, and its utility for treatment of solid tumors is beginning to unfold. Glioblastoma continues to portend a grim prognosis and immunotherapeutic approaches are being explored as a potential treatment strategy. Identification of appropriate glioma-associated antigens, barriers to cell delivery, and presence of an immunosuppressive microenvironment are factors that make CAR T-cell therapy for glioblastoma particularly challenging. However, insights gained from preclinical studies and ongoing clinical trials indicate that CAR T-cell therapy will continue to evolve and likely become integrated with current therapeutic strategies for malignant glioma.

      Abbreviations:

      BBB (blood brain barrier), CAR (chimeric antigen receptor), CNS (central nervous system), CRS (cytokine release syndrome), EGFR (epidermal growth factor receptor), EGFRvIII (variant 3 of epidermal growth factor receptor), epha2 (erythropoietin producing hepatocellular carcinoma 2), GBM (glioblastoma), IDH (isocitrate dehydrogenase type 1), MHC (major histocompatibility complex), STAT (signal transducer and activator of transcription), TAM (tumor associated macrophages/microglia)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ostrom Q.T.
        • Bauchet L.
        • Davis F.G.
        • et al.
        The epidemiology of glioma in adults: a “state of the science” review.
        Neuro Oncol. 2014; 16: 896-913
        • Tivnan A.
        • Heilinger T.
        • Lavelle E.C.
        • Prehn J.H.M.
        Advances in immunotherapy for the treatment of glioblastoma.
        J Neurooncol. 2017; 131: 1-9
        • Kamran N.
        • Calinescu A.
        • Candolfi M.
        • et al.
        Recent advances and future of immunotherapy for glioblastoma.
        Expert Opin Biol Ther. 2016; 16: 1245-1264
        • Eshhar Z.
        From the mouse cage to human therapy: a personal perspective of the emergence of T-bodies/chimeric antigen receptor T cells.
        Hum Gene Ther. 2014; 25: 773-778
        • Frey N.V.
        • Porter D.L.
        The promise of chimeric antigen receptor T-cell therapy.
        Oncology (Williston Park). 2016; 30: 880-890
        • Gross G.
        • Waks T.
        • Eshhar Z.
        Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity.
        Proc Natl Acad Sci U S A. 1989; 86: 10024-10028
        • Maude S.L.
        • Teachey D.T.
        • Porter D.L.
        • Grupp S.A.
        CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia.
        Blood. 2015; 125: 4017-4023
        • Finney H.M.
        • Lawson A.D.
        • Bebbington C.R.
        • Weir A.N.
        Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product.
        J Immunol. 1998; 161: 2791-2797
        • Tammana S.
        • Huang X.
        • Wong M.
        • et al.
        4-1BB and CD28 signaling plays a Synergistic role in redirecting Umbilical Cord blood T cells against B-Cell malignancies.
        Hum Gene Ther. 2010; 21: 75-86
        • van der Stegen S.J.C.
        • Hamieh M.
        • Sadelain M.
        The pharmacology of second-generation chimeric antigen receptors.
        Nat Rev Drug Discov. 2015; 14: 499-509
        • Reiniš M.
        Immunotherapy of MHC class I-deficient tumors.
        Future Oncol. 2010; 6: 1577-1589
        • Leone P.
        • Shin E.-C.
        • Perosa F.
        • Vacca A.
        • Dammacco F.
        • Racanelli V.
        MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells.
        J Natl Cancer Inst. 2013; 105: 1172-1187
        • Zeng D.-Q.
        • Yu Y.-F.
        • Ou Q.-Y.
        • et al.
        Prognostic and predictive value of tumor-infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer.
        Oncotarget. 2016; 7: 13765-13781
        • Pagès F.
        • Galon J.
        • Dieu-Nosjean M.-C.
        • Tartour E.
        • Sautès-Fridman C.
        • Fridman W.-H.
        Immune infiltration in human tumors: a prognostic factor that should not be ignored.
        Oncogene. 2010; 29: 1093-1102
        • Galon J.
        • Costes A.
        • Sanchez-Cabo F.
        • et al.
        Type, Density, and Location of immune cells within human Colorectal tumors Predict clinical outcome.
        Science. 2006; 313: 1960-1964
        • Pagès F.
        • Berger A.
        • Camus M.
        • et al.
        Effector memory T cells, early metastasis, and survival in Colorectal cancer.
        N Engl J Med. 2005; 353: 2654-2666
        • Haabeth O.A.W.
        • Tveita A.A.
        • Fauskanger M.
        • et al.
        How Do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?.
        Front Immunol. 2014; 5: 174
        • Zhao Z.
        • Condomines M.
        • van der Stegen S.J.C.
        • et al.
        Structural design of engineered costimulation determines tumor Rejection kinetics and persistence of CAR T cells.
        Cancer Cell. 2015; 28: 415-428
        • Davenport A.J.
        • Jenkins M.R.
        • Cross R.S.
        • et al.
        CAR-t cells Inflict Sequential killing of multiple tumor target cells.
        Cancer Immunol Res. 2015; 3: 483-494
        • Davenport A.J.
        • Jenkins M.R.
        • Ritchie D.S.
        • et al.
        CAR-T cells are serial killers.
        Oncoimmunology. 2015; 4: e1053684
        • Morgan R.A.
        • Chinnasamy N.
        • Abate-Daga D.
        • et al.
        Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy.
        J Immunother. 2013; 36: 133-151
        • Morgan R.A.
        • Yang J.C.
        • Kitano M.
        • Dudley M.E.
        • Laurencot C.M.
        • Rosenberg S.A.
        Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.
        Mol Ther. 2010; 18: 843-851
        • Linette G.P.
        • Stadtmauer E.A.
        • Maus M.V.
        • et al.
        Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma.
        Blood. 2013; 122: 863-871
        • Ge L.
        • Cornforth A.N.
        • Hoa N.T.
        • et al.
        Differential glioma-associated tumor antigen expression profiles of human glioma cells Grown in hypoxia.
        PLoS One. 2012; 7: e42661
        • Prins R.M.
        • Wang X.
        • Soto H.
        • et al.
        Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients.
        J Immunother. 2013; 36: 152-157
        • Debinski W.
        • Gibo D.M.
        • Slagle B.
        • Powers S.K.
        • Gillespie G.Y.
        Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme.
        Int J Oncol. 1999; 15: 481-486
        • Debinski W.
        • Gibo D.M.
        Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen.
        Mol Med. 2000; 6: 440-449
        • Thaci B.
        • Brown C.E.
        • Binello E.
        • Werbaneth K.
        • Sampath P.
        • Sengupta S.
        Significance of interleukin-13 receptor alpha 2-targeted Glioblastoma therapy.
        Neuro Oncol. 2014; 16: 1304-1312
        • Fujisawa T.
        • Nakashima H.
        • Nakajima A.
        • Joshi B.H.
        • Puri R.K.
        Targeting IL-13Rα2 in human pancreatic ductal adenocarcinoma with combination therapy of IL-13-PE and gemcitabine.
        Int J Cancer. 2011; 128: 1221-1231
        • Bartolomé R.A.
        • García-Palmero I.
        • Torres S.
        • López-Lucendo M.
        • Balyasnikova I.V.
        • Casal J.I.
        IL13 receptor α2 signaling requires a Scaffold protein, FAM120A, to activate the FAK and PI3K pathways in Colon cancer metastasis.
        Cancer Res. 2015; 75: 2434-2444
        • Brown C.E.
        • Warden C.D.
        • Starr R.
        • et al.
        Glioma IL13Rα2 is associated with Mesenchymal Signature gene expression and poor patient prognosis.
        PLoS One. 2013; 8: e77769
        • Nakashima H.
        • Terabe M.
        • Berzofsky J.A.
        • Husain S.R.
        • Puri R.K.
        A novel combination immunotherapy for cancer by IL-13Rα2-targeted DNA vaccine and immunotoxin in murine tumor models.
        J Immunol. 2011; 187: 4935-4946
        • Eguchi J.
        • Hatano M.
        • Nishimura F.
        • et al.
        Identification of interleukin-13 receptor alpha2 peptide analogues capable of inducing improved antiglioma CTL responses.
        Cancer Res. 2006; 66: 5883-5891
        • Balyasnikova I.V.
        • Wainwright D.A.
        • Solomaha E.
        • et al.
        Characterization and immunotherapeutic implications for a novel antibody targeting interleukin (IL)-13 Receptor α2.
        J Biol Chem. 2012; 287: 30215-30227
        • Brown C.E.
        • Starr R.
        • Aguilar B.
        • et al.
        Stem-like tumor-initiating cells Isolated from IL13R 2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T cells.
        Clin Cancer Res. 2012; 18: 2199-2209
        • Brown C.E.
        • Badie B.
        • Barish M.E.
        • et al.
        Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma.
        Clin Cancer Res. 2015; 21: 4062-4072
        • Brown C.E.
        • Alizadeh D.
        • Starr R.
        • et al.
        Regression of glioblastoma after chimeric antigen receptor T-cell therapy.
        N Engl J Med. 2016; 375: 2561-2569
        • Ferluga S.
        • Hantgan R.
        • Goldgur Y.
        • Himanen J.P.
        • Nikolov D.B.
        • Debinski W.
        Biological and structural characterization of glycosylation on ephrin-A1, a preferred ligand for EphA2 receptor tyrosine kinase.
        J Biol Chem. 2013; 288: 18448-18457
        • Day B.W.
        • Stringer B.W.
        • Boyd A.W.
        Eph receptors as therapeutic targets in glioblastoma.
        Br J Cancer. 2014; 111: 1255-1261
        • Ferluga S.
        • Tomé C.M.L.
        • Herpai D.M.
        • D'Agostino R.
        • Debinski W.
        Simultaneous targeting of Eph receptors in glioblastoma.
        Oncotarget. 2016; 7: 59860-59876
        • Chow K.K.H.
        • Naik S.
        • Kakarla S.
        • et al.
        T cells redirected to EphA2 for the immunotherapy of glioblastoma.
        Mol Ther. 2013; 21: 629-637
        • Hicks M.J.
        • Chiuchiolo M.J.
        • Ballon D.
        • et al.
        Anti-epidermal growth factor receptor gene therapy for glioblastoma.
        PLoS One. 2016; 11: e0162978
        • Tini P.
        • Pastina P.
        • Nardone V.
        • et al.
        The combined EGFR protein expression analysis refines the prognostic value of the MGMT promoter methylation status in glioblastoma.
        Clin Neurol Neurosurg. 2016; 149: 15-21
        • Maus M.V.
        Designing CAR T cells for glioblastoma.
        Oncoimmunology. 2015; 4: e1048956
        • Caruso H.G.
        • Hurton L.V.
        • Najjar A.
        • et al.
        Tuning Sensitivity of CAR to EGFR Density Limits recognition of normal tissue while maintaining potent antitumor activity.
        Cancer Res. 2015; 75: 3505-3518
        • Caruso H.G.
        • Torikai H.
        • Zhang L.
        • et al.
        Redirecting T-cell specificity to EGFR using mRNA to self-limit expression of chimeric antigen receptor.
        J Immunother. 2016; 39: 205-217
        • Han X.
        • Bryson P.D.
        • Zhao Y.
        • et al.
        Masked chimeric antigen receptor for tumor-specific activation.
        Mol Ther. 2017; 25: 274-284
        • Choi B.D.
        • Suryadevara C.M.
        • Gedeon P.C.
        • et al.
        Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma.
        J Clin Neurosci. 2014; 21: 189-190
        • Sampson J.H.
        • Choi B.D.
        • Sanchez-Perez L.
        • et al.
        EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.
        Clin Cancer Res. 2014; 20: 972-984
        • Johnson L.A.
        • Scholler J.
        • Ohkuri T.
        • et al.
        Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.
        Sci Transl Med. 2015; 7: 275ra22
        • Harari D.
        • Yarden Y.
        Molecular mechanisms underlying ErbB2/HER2 action in breast cancer.
        Oncogene. 2000; 19: 6102-6114
        • Ahmed N.
        • Ratnayake M.
        • Savoldo B.
        • et al.
        Regression of experimental medulloblastoma following transfer of HER2-specific T cells.
        Cancer Res. 2007; 67: 5957-5964
        • Zhang C.
        • Burger M.C.
        • Jennewein L.
        • et al.
        ErbB2/HER2-Specific NK cells for targeted therapy of glioblastoma.
        J Natl Cancer Inst. 2016; 108: 1-12
        • Falahat R.
        • Wiranowska M.
        • Gallant N.D.
        • Toomey R.
        • Hill R.
        • Alcantar N.
        A Cell ELISA for the quantification of MUC1 mucin (CD227) expressed by cancer cells of epithelial and neuroectodermal origin.
        Cell Immunol. 2015; 298: 96-103
        • Platten M.
        • Bunse L.
        • Wick W.
        • Bunse T.
        Concepts in glioma immunotherapy.
        Cancer Immunol Immunother. 2016; 65: 1269-1275
        • Mellai M.
        • Caldera V.
        • Patrucco A.
        • Annovazzi L.
        • Schiffer D.
        Survivin expression in glioblastomas correlates with proliferation, but not with apoptosis.
        Anticancer Res. 2008; 28: 109-118
        • Liu Y.
        • Miao C.
        • Wang Z.
        • He X.
        • Shen W.
        Survivin small interfering RNA suppresses glioblastoma growth by inducing cellular apoptosis.
        Neural Regen Res. 2012; 7: 924-931
        • Pollack I.F.
        • Jakacki R.I.
        • Butterfield L.H.
        • et al.
        Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study.
        J Neurooncol. 2016; 130: 517-527
        • van Tellingen O.
        • Yetkin-Arik B.
        • de Gooijer M.C.
        • Wesseling P.
        • Wurdinger T.
        • de Vries H.E.
        Overcoming the blood-brain tumor barrier for effective glioblastoma treatment.
        Drug Resist Updat. 2015; 19: 1-12
        • Andre J.B.
        • Nagpal S.
        • Hippe D.S.
        • et al.
        Cerebral blood flow changes in glioblastoma patients Undergoing bevacizumab treatment are seen in both tumor and normal brain.
        Neuroradiol J. 2015; 28: 112-119
        • Petr J.
        • Platzek I.
        • Seidlitz A.
        • et al.
        Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI.
        Radiother Oncol. 2016; 118: 24-28
        • Dudley M.E.
        • Gross C.A.
        • Langhan M.M.
        • et al.
        CD8+ enriched “Young” tumor infiltrating lymphocytes can mediate regression of Metastatic melanoma.
        Clin Cancer Res. 2010; 16: 6122-6131
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Rodriguez A.
        • Tatter S.B.
        • Debinski W.
        Neurosurgical techniques for disruption of the blood-brain barrier for glioblastoma treatment.
        Pharmaceutics. 2015; 7: 175-187
        • Keu K.V.
        • Witney T.H.
        • Yaghoubi S.
        • et al.
        Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma.
        Sci Transl Med. 2017; 9 (eaag2196)
        • Charles N.A.
        • Holland E.C.
        • Gilbertson R.
        • Glass R.
        • Kettenmann H.
        The brain tumor microenvironment.
        Glia. 2011; 59: 1169-1180
        • da Fonseca A.C.C.
        • Badie B.
        Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies.
        Clin Dev Immunol. 2013; 2013: 264124
        • Hussain S.F.
        • Yang D.
        • Suki D.
        • Aldape K.
        • Grimm E.
        • Heimberger A.B.
        The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses.
        Neuro Oncol. 2006; 8: 261-279
        • Kamran N.
        • Kadiyala P.
        • Saxena M.
        • et al.
        Immunosuppressive myeloid cells' blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy.
        Mol Ther. 2017; 25: 232-248
        • Wu A.
        • Wei J.
        • Kong L.-Y.
        • et al.
        Glioma cancer stem cells induce immunosuppressive macrophages/microglia.
        Neuro Oncol. 2010; 12: 1113-1125
        • Sundar S.J.
        • Hsieh J.K.
        • Manjila S.
        • Lathia J.D.
        • Sloan A.
        The role of cancer stem cells in glioblastoma.
        Neurosurg Focus. 2014; 37: E6
        • Jin C.
        • Yu D.
        • Essand M.
        Prospects to improve chimeric antigen receptor T-cell therapy for solid tumors.
        Immunotherapy. 2016; 8: 1355-1361
        • Schlößer H.A.
        • Theurich S.
        • Shimabukuro-Vornhagen A.
        • Holtick U.
        • Stippel D.L.
        Bergwelt-Baildon M von. Overcoming tumor-mediated immunosuppression.
        Immunotherapy. 2014; 6: 973-988
        • Zhang X.
        • Zhu S.
        • Li T.
        • et al.
        Targeting immune checkpoints in malignant glioma.
        Oncotarget. 2015; 8: 7157-7174
        • Wainwright D.A.
        • Lesniak M.S.
        Ménage à trois: sustained therapeutic anti-tumor immunity requires multiple partners in malignant glioma.
        Oncoimmunology. 2014; 3: e28927
        • Mathios D.
        • Kim J.E.
        • Mangraviti A.
        • et al.
        Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM.
        Sci Transl Med. 2016; 8: 370ra180
        • Spear P.
        • Barber A.
        • Rynda-Apple A.
        • Sentman C.L.
        Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF.
        J Immunol. 2012; 188: 6389-6398
        • Frey N.V.
        • Porter D.L.
        Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia.
        Hematology. 2016; 2016: 567-572
        • Hu Y.
        • Sun J.
        • Wu Z.
        • et al.
        Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy.
        J Hematol Oncol. 2016; 9: 70
        • Davila M.L.
        • Riviere I.
        • Wang X.
        • et al.
        Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.
        Sci Transl Med. 2014; 6: 224ra25
        • Bonifant C.L.
        • Jackson H.J.
        • Brentjens R.J.
        • Curran K.J.
        Toxicity and management in CAR T-cell therapy.
        Mol Ther Oncolytics. 2016; 3: 16011
        • Eisele S.C.
        • Wen P.Y.
        • Lee E.Q.
        Assessment of brain tumor response: RANO and its Offspring.
        Curr Treat Options Oncol. 2016; 17: 35
        • Reardon D.A.
        • Okada H.
        Re-defining response and treatment effects for neuro-oncology immunotherapy clinical trials.
        J Neurooncol. 2015; 123: 339-346
        • Preusser M.
        Neuro-oncology: a step towards clinical blood biomarkers of glioblastoma.
        Nat Rev Neurol. 2014; 10: 681-682
        • Gattinoni L.
        • Powell D.J.
        • Rosenberg S.A.
        • Restifo N.P.
        • Restifo N.P.
        Adoptive immunotherapy for cancer: building on success.
        Nat Rev Immunol. 2006; 6: 383-393
        • Kuramitsu S.
        • Ohno M.
        • Ohka F.
        • et al.
        Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses.
        Cancer Gene Ther. 2015; 22: 1-9
        • Hegde M.
        • Mukherjee M.
        • Grada Z.
        • et al.
        Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.
        J Clin Invest. 2016; 126: 3036-3052
        • Han J.
        • Chu J.
        • Keung Chan W.
        • et al.
        CAR-engineered NK cells targeting Wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells.
        Sci Rep. 2015; 5: 11483