Advertisement

Vascular precursor cells in tissue injury repair

Published:February 20, 2017DOI:https://doi.org/10.1016/j.trsl.2017.02.002
      Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell–based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell–based therapy remain major challenges in the field.

      Abbreviations:

      7AAD (7-aminoactinomycin D), αSMA (alpha smooth muscle actin), AKT (protein kinase B), ALK (activin receptor-like kinase), Ang (angiopoietin), Ang II (angiotensin II), BCRP1 (breakpoint cluster region pseudogene), bFGF (basic fibroblast growth factor), C1P (ceramide-1-phosphate), CA12 (carbonic anhydrase 12), CAC (circulating angiogenic cell), CAR (SDF-1–abundant reticular), CCR (CC receptor), CD (clusters of differentiation), CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), CEP (circulating endothelial precursor), c-kit (stem cell growth factor receptor), CLF (chemokine-like function), CPM (carboxypeptidase M), CSPG4 (chondroitin sulfate proteoglycan 4), CXCL12 (CXC motif chemokine 12), CXCL16 (CXC motif chemokine 16), CXCR (CXC receptor), DAMP (damage-associated molecular pattern ligand), DR3 (death domain–containing receptor 3), ECFC (endothelial colony-forming cell), eGFP (enhanced green fluorescent protein), EnMT (endothelial-to-mesenchymal transdifferentiation), eNOS (nitric oxide synthase), EPC (endothelial progenitor cell), ERK1/2 (extracellular-signal-regulated kinases 1/2), ESC (embryonic stem cell), FGF (fibroblast growth factor), Flk1 (fms-like tyrosine kinase-1), Flt3L (Flt3 ligand), G-CSF (granulocyte colony-stimulating factor), GFP (green-fluorescent protein), GM-CSF (granulocyte-macrophage colony-stimulating factor), GRO (human growth-regulated oncogene), HAEC (human aortic endothelial cell), HIF (hypoxia-inducible transcription factor), HLA-DR (human leukocyte antigen-antigen D related), HRE (hypoxia-response element), HSC (hematopoietic stem cell), HUVEC (human umbilical vein endothelial cell), ICAM-1 (intercellular adhesion molecule-1), IFNγ (interferon-gamma), IGF-1 (insulin-like growth factor-1), IL-1α (interleukin-1 alpha), IL-1β (interleukin-1 beta), IL-1R (interleukin-1 receptor), IL-3 (interleukin-3), IL-6 (interleukin-6), IL-6R (interleukin-6 receptor), IL-8 (interleukin-8), IL-10 (interleukin-10), IL-18 (interleukin-18), Jmjd6 (Jumonji domain–containing protein 6), KC (keratinocyte chemoattractant), KDR (kinase insert domain receptor), KGF (keratinocyte growth factor), kitL (kit ligand), LacZ (β-galactosidase), Lin (lineage), LRP1 (low-density lipoprotein receptor–related protein), MAPK (mitogen-activated protein kinase), MCP-1 (monocyte chemoattractant protein-1), M-CSF (macrophage colony-stimulating factor), MIF (macrophage migration inhibitory factor), MMP-2 (matrixmetalloproteinase-2), MMP-9 (matrixmetalloproteinase-9), MSC (mesenchymal stem cell), NAP-2 (neutrophil-activating peptide-2), NG2 (neural/glial antigen 2), Notch1 (Notch homolog 1), OCT4 (octamer-binding transcription factor 4), PAMP (pathogen-associated molecular pattern ligand), PBMC (peripheral blood mononuclear cell), PCG (polycaprolactone-gelatin), PDGF (platelet-derived growth factor), PDGFR (platelet-derived growth factor receptor), PEDF (pigment epithelium–derived factor), PGE2 (prostaglandin E2), PGF (placenta growth factor), PI3K (phosphatidylinositol-3 kinase), PKC (protein kinase C), PKD (protein kinase D), PLC-γ (phospholipase C-gamma), PRR (pattern recognition receptors), RAMP1 (receptor activity-modifying protein 1), RGS5 (regulator G-protein signaling 5), S1P (sphingosine-1-phosphate), Sca1 (stem cell antigen-1), SCF (stem cell growth factor), SDF-1 (stromal cell-derived factor-1), SLE (systemic lupus erythematosus), SM (smooth muscle), SM-22α (smooth muscle-22α), SMC (smooth muscle cell), SMemb (embryonic form smooth muscle myosin heavy chain), SMPC (smooth muscle progenitor cell), SP (side population), SPC (stem/progenitor cell), STAT (signal transducer and activator of transcription), TβR (transforming growth factor beta receptor), TGF-β (transforming growth factor-beta), TIE2 (receptor for angiopoietin), TNF (tumor necrosis factor), TNFSF15 (Tumor necrosis factor superfamily 15), UEA1 (Ulex europaeus agglutinin-1), VCAM-1 (vascular cell adhesion molecule-1), VEGF (vascular endothelial growth factor), VEGFR-1 (vascular endothelial growth factor receptor-1), VEGFR-2 (vascular endothelial growth factor receptor-2), VEGI (vascular endothelial growth inhibitor), vWF (von Willebrand factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Asahara T.
        • Murohara T.
        • Sullivan A.
        • et al.
        Isolation of putative progenitor endothelial cells for angiogenesis.
        Science. 1997; 275: 964-967
        • Peichev M.
        • Naiyer A.J.
        • Pereira D.
        • et al.
        Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors.
        Blood. 2000; 95: 952-958
        • Shi Q.
        • Rafii S.
        • Wu M.H.
        • et al.
        Evidence for circulating bone marrow-derived endothelial cells.
        Blood. 1998; 92: 362-367
        • Hur J.
        • Yoon C.H.
        • Kim H.S.
        • et al.
        Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.
        Arterioscler Thromb Vasc Biol. 2004; 24: 288-293
        • Van Craenenbroeck E.M.
        • Van Craenenbroeck A.H.
        • van Ierssel S.
        • et al.
        Quantification of circulating CD34+/KDR+/CD45dim endothelial progenitor cells: analytical considerations.
        Int J Cardiol. 2013; 167: 1688-1695
        • Medina R.J.
        • O'Neill C.L.
        • O'Doherty T.M.
        • et al.
        Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8.
        Mol Med. 2011; 17: 1045-1055
        • Lin Y.
        • Weisdorf D.J.
        • Solovey A.
        • Hebbel R.P.
        Origins of circulating endothelial cells and endothelial outgrowth from blood.
        J Clin Invest. 2000; 105: 71-77
        • Yoder M.C.
        Endothelial progenitor cell: a blood cell by many other names may serve similar functions.
        J Mol Med (Berl). 2013; 91: 285-295
        • Bollerot K.
        • Pouget C.
        • Jaffredo T.
        The embryonic origins of hematopoietic stem cells: a tale of hemangioblast and hemogenic endothelium.
        APMIS. 2005; 113: 790-803
        • Schatteman G.C.
        • Awad O.
        Hemangioblasts, angioblasts, and adult endothelial cell progenitors.
        Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 13-21
        • Park C.
        • Ma Y.D.
        • Choi K.
        Evidence for the hemangioblast.
        Exp Hematol. 2005; 33: 965-970
        • Ziegler B.L.
        • Valtieri M.
        • Porada G.A.
        • et al.
        KDR receptor: a key marker defining hematopoietic stem cells.
        Science. 1999; 285: 1553-1558
        • Russell J.S.
        • Brown J.M.
        Circulating mouse Flk1+/c-Kit+/CD45- cells function as endothelial progenitors cells (EPCs) and stimulate the growth of human tumor xenografts.
        Mol Cancer. 2014; 13: 177
        • Balasubramaniam V.
        • Mervis C.F.
        • Maxey A.M.
        • Markham N.E.
        • Abman S.H.
        Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: L1073-L1084
        • Timmermans F.
        • Van Hauwermeiren F.
        • De Smedt M.
        • et al.
        Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors.
        Arterioscler Thromb Vasc Biol. 2007; 27: 1572-1579
        • Fina L.
        • Molgaard H.V.
        • Robertson D.
        • et al.
        Expression of the CD34 gene in vascular endothelial cells.
        Blood. 1990; 75: 2417-2426
        • Bailey A.S.
        • Jiang S.
        • Afentoulis M.
        • et al.
        Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells.
        Blood. 2004; 103: 13-19
        • Rafii S.
        • Lyden D.
        Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.
        Nat Med. 2003; 9: 702-712
        • Thomas R.A.
        • Pietrzak D.C.
        • Scicchitano M.S.
        • Thomas H.C.
        • McFarland D.C.
        • Frazier K.S.
        Detection and characterization of circulating endothelial progenitor cells in normal rat blood.
        J Pharmacol Toxicol Methods. 2009; 60: 263-274
        • Gao X.
        • Chen W.
        • Liang Z.
        • Chen L.
        Autotransplantation of circulating endothelial progenitor cells protects against lipopolysaccharide-induced acute lung injury in rabbit.
        Int Immunopharmacol. 2011; 11: 1584-1590
        • Favre J.
        • Terborg N.
        • Horrevoets A.J.
        The diverse identity of angiogenic monocytes.
        Eur J Clin Invest. 2013; 43: 100-107
        • Shantsila E.
        • Wrigley B.J.
        • Shantsila A.
        • Tapp L.D.
        • Gill P.S.
        • Lip G.Y.
        Monocyte-derived and CD34+/KDR+ endothelial progenitor cells in heart failure.
        J Thromb Haemost. 2012; 10: 1252-1261
        • Chambers S.E.
        • O'Neill C.L.
        • O'Doherty T.M.
        • Medina R.J.
        • Stitt A.W.
        The role of immune-related myeloid cells in angiogenesis.
        Immunobiology. 2013; 218: 1370-1375
        • Saiura A.
        • Sata M.
        • Hirata Y.
        • Nagai R.
        • Makuuchi M.
        Circulating smooth muscle progenitor cells contribute to atherosclerosis.
        Nat Med. 2001; 7: 382-383
        • Simper D.
        • Stalboerger P.G.
        • Panetta C.J.
        • Wang S.
        • Caplice N.M.
        Smooth muscle progenitor cells in human blood.
        Circulation. 2002; 106: 1199-1204
        • Daniel J.M.
        • Sedding D.G.
        Circulating smooth muscle progenitor cells in arterial remodeling.
        J Mol Cell Cardiol. 2011; 50: 273-279
        • Majesky M.W.
        • Dong X.R.
        • Regan J.N.
        • Hoglund V.J.
        Vascular smooth muscle progenitor cells: building and repairing blood vessels.
        Circ Res. 2011; 108: 365-377
        • Simper D.
        • Mayr U.
        • Urbich C.
        • et al.
        Comparative proteomics profiling reveals role of smooth muscle progenitors in extracellular matrix production.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1325-1332
        • Kashiwakura Y.
        • Katoh Y.
        • Tamayose K.
        • et al.
        Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow.
        Circulation. 2003; 107: 2078-2081
        • Lin C.
        • Yuan Y.
        • Courtman D.W.
        Differentiation of murine bone marrow-derived smooth muscle progenitor cells is regulated by PDGF-BB and collagen.
        PLoS One. 2016; 11: e0156935
        • Sata M.
        • Saiura A.
        • Kunisato A.
        • et al.
        Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis.
        Nat Med. 2002; 8: 403-409
        • Caplice N.M.
        • Bunch T.J.
        • Stalboerger P.G.
        • et al.
        Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation.
        Proc Natl Acad Sci U S A. 2003; 100: 4754-4759
        • Joo H.J.
        • Seo H.R.
        • Jeong H.E.
        • et al.
        Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells.
        Biochem Biophys Res Commun. 2014; 449: 405-411
        • Wang C.H.
        • Lee Y.S.
        • Lin S.J.
        • et al.
        Surface markers of heterogeneous peripheral blood-derived smooth muscle progenitor cells.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1875-1883
        • Ergun S.
        • Tilki D.
        • Klein D.
        Vascular wall as a reservoir for different types of stem and progenitor cells.
        Antioxid Redox Signal. 2011; 15: 981-995
        • Chen C.W.
        • Corselli M.
        • Peault B.
        • Huard J.
        Human blood-vessel-derived stem cells for tissue repair and regeneration.
        J Biomed Biotechnol. 2012; 2012: 597439
        • Torsney E.
        • Xu Q.
        Resident vascular progenitor cells.
        J Mol Cell Cardiol. 2011; 50: 304-311
        • Sainz J.
        • Al Haj Zen A.
        • Caligiuri G.
        • et al.
        Isolation of “side population” progenitor cells from healthy arteries of adult mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 281-286
        • Pasquinelli G.
        • Pacilli A.
        • Alviano F.
        • et al.
        Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics.
        Cytotherapy. 2010; 12: 275-287
        • Alessandri G.
        • Girelli M.
        • Taccagni G.
        • et al.
        Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors.
        Lab Invest. 2001; 81: 875-885
        • Majesky M.W.
        • Dong X.R.
        • Hoglund V.
        • Daum G.
        • Mahoney Jr., W.M.
        The adventitia: a progenitor cell niche for the vessel wall.
        Cells Tissues Organs. 2012; 195: 73-81
        • Ingram D.A.
        • Mead L.E.
        • Moore D.B.
        • Woodard W.
        • Fenoglio A.
        • Yoder M.C.
        Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells.
        Blood. 2005; 105: 2783-2786
        • Covas D.T.
        • Siufi J.L.
        • Silva A.R.
        • Orellana M.D.
        Isolation and culture of umbilical vein mesenchymal stem cells.
        Braz J Med Biol Res. 2003; 36: 1179-1183
        • Covas D.T.
        • Piccinato C.E.
        • Orellana M.D.
        • et al.
        Mesenchymal stem cells can be obtained from the human saphena vein.
        Exp Cell Res. 2005; 309: 340-344
        • Wanjare M.
        • Kusuma S.
        • Gerecht S.
        Perivascular cells in blood vessel regeneration.
        Biotechnol J. 2013; 8: 434-447
        • Ribatti D.
        • Nico B.
        • Crivellato E.
        The role of pericytes in angiogenesis.
        Int J Dev Biol. 2011; 55: 261-268
        • Andreeva E.R.
        • Pugach I.M.
        • Gordon D.
        • Orekhov A.N.
        Continuous subendothelial network formed by pericyte-like cells in human vascular bed.
        Tissue Cell. 1998; 30: 127-135
        • Kutcher M.E.
        • Kolyada A.Y.
        • Surks H.K.
        • Herman I.M.
        Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state.
        Am J Pathol. 2007; 171: 693-701
        • Yamashita J.
        • Itoh H.
        • Hirashima M.
        • et al.
        Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors.
        Nature. 2000; 408: 92-96
        • Marchand M.
        • Anderson E.K.
        • Phadnis S.M.
        • et al.
        Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
        Stem Cells Transl Med. 2014; 3: 91-97
        • Howson K.M.
        • Aplin A.C.
        • Gelati M.
        • Alessandri G.
        • Parati E.A.
        • Nicosia R.F.
        The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture.
        Am J Physiol Cell Physiol. 2005; 289: C1396-C1407
        • Loibl M.
        • Binder A.
        • Herrmann M.
        • et al.
        Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro.
        Biomed Res Int. 2014; 2014: 395781
        • Nicosia R.F.
        • Villaschi S.
        Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro.
        Lab Invest. 1995; 73: 658-666
        • Rhodin J.A.
        • Fujita H.
        Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses.
        J Submicrosc Cytol Pathol. 1989; 21: 1-34
        • Diaz-Flores L.
        • Gutierrez R.
        • Madrid J.F.
        • et al.
        Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche.
        Histol Histopathol. 2009; 24: 909-969
        • Hirschi K.K.
        • D'Amore P.A.
        Pericytes in the microvasculature.
        Cardiovasc Res. 1996; 32: 687-698
        • Farrington-Rock C.
        • Crofts N.J.
        • Doherty M.J.
        • Ashton B.A.
        • Griffin-Jones C.
        • Canfield A.E.
        Chondrogenic and adipogenic potential of microvascular pericytes.
        Circulation. 2004; 110: 2226-2232
        • Doherty M.J.
        • Ashton B.A.
        • Walsh S.
        • Beresford J.N.
        • Grant M.E.
        • Canfield A.E.
        Vascular pericytes express osteogenic potential in vitro and in vivo.
        J Bone Miner Res. 1998; 13: 828-838
        • Diaz-Flores L.
        • Gutierrez R.
        • Lopez-Alonso A.
        • Gonzalez R.
        • Varela H.
        Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis.
        Clin Orthop Relat Res. 1992; : 280-286
        • Dore-Duffy P.
        • Katychev A.
        • Wang X.
        • Van Buren E.
        CNS microvascular pericytes exhibit multipotential stem cell activity.
        J Cereb Blood Flow Metab. 2006; 26: 613-624
        • Nehls V.
        • Denzer K.
        • Drenckhahn D.
        Pericyte involvement in capillary sprouting during angiogenesis in situ.
        Cell Tissue Res. 1992; 270: 469-474
        • Ozerdem U.
        • Stallcup W.B.
        Early contribution of pericytes to angiogenic sprouting and tube formation.
        Angiogenesis. 2003; 6: 241-249
        • Redmer D.A.
        • Doraiswamy V.
        • Bortnem B.J.
        • et al.
        Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum.
        Biol Reprod. 2001; 65: 879-889
        • Wu Q.
        • Jing Y.
        • Yuan X.
        • et al.
        The distinct abilities of tube-formation and migration between brain and spinal cord microvascular pericytes in rats.
        Clin Hemorheol Microcirc. 2015; 60: 231-240
        • Wakui S.
        • Yokoo K.
        • Muto T.
        • et al.
        Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis.
        Lab Invest. 2006; 86: 1172-1184
        • Guijarro-Munoz I.
        • Compte M.
        • Alvarez-Cienfuegos A.
        • Alvarez-Vallina L.
        • Sanz L.
        Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes.
        J Biol Chem. 2014; 289: 2457-2468
        • Hurtado-Alvarado G.
        • Cabanas-Morales A.M.
        • Gomez-Gonzalez B.
        Pericytes: brain-immune interface modulators.
        Front Integr Neurosci. 2014; 7: 80
        • Crisan M.
        • Yap S.
        • Casteilla L.
        • et al.
        A perivascular origin for mesenchymal stem cells in multiple human organs.
        Cell Stem Cell. 2008; 3: 301-313
        • Crisan M.
        • Corselli M.
        • Chen W.C.
        • Peault B.
        Perivascular cells for regenerative medicine.
        J Cell Mol Med. 2012; 16: 2851-2860
        • Chen W.C.
        • Park T.S.
        • Murray I.R.
        • et al.
        Cellular kinetics of perivascular MSC precursors.
        Stem Cells Int. 2013; 2013: 983059
        • Boroujerdi A.
        • Tigges U.
        • Welser-Alves J.V.
        • Milner R.
        Isolation and culture of primary pericytes from mouse brain.
        Methods Mol Biol. 2014; 1135: 383-392
        • Berger M.
        • Bergers G.
        • Arnold B.
        • Hammerling G.J.
        • Ganss R.
        Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization.
        Blood. 2005; 105: 1094-1101
        • Stapor P.C.
        • Sweat R.S.
        • Dashti D.C.
        • Betancourt A.M.
        • Murfee W.L.
        Pericyte dynamics during angiogenesis: new insights from new identities.
        J Vasc Res. 2014; 51: 163-174
        • Murfee W.L.
        • Rehorn M.R.
        • Peirce S.M.
        • Skalak T.C.
        Perivascular cells along venules upregulate NG2 expression during microvascular remodeling.
        Microcirculation. 2006; 13: 261-273
        • Pasquinelli G.
        • Tazzari P.L.
        • Vaselli C.
        • et al.
        Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells.
        Stem Cells. 2007; 25: 1627-1634
        • Hu Y.
        • Zhang Z.
        • Torsney E.
        • et al.
        Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice.
        J Clin Invest. 2004; 113: 1258-1265
        • Zengin E.
        • Chalajour F.
        • Gehling U.M.
        • et al.
        Vascular wall resident progenitor cells: a source for postnatal vasculogenesis.
        Development. 2006; 133: 1543-1551
        • Klein D.
        • Benchellal M.
        • Kleff V.
        • Jakob H.G.
        • Ergun S.
        Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells.
        Sci Rep. 2013; 3: 2178
        • Cordeiro-Spinetti E.
        • de Mello W.
        • Trindade L.S.
        • Taub D.D.
        • Taichman R.S.
        • Balduino A.
        Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation.
        Front Cell Dev Biol. 2014; 2: 7
        • Jones E.
        • McGonagle D.
        Human bone marrow mesenchymal stem cells in vivo.
        Rheumatology (Oxford). 2008; 47: 126-131
        • Mosna F.
        • Sensebe L.
        • Krampera M.
        Human bone marrow and adipose tissue mesenchymal stem cells: a user's guide.
        Stem Cells Dev. 2010; 19: 1449-1470
        • Corselli M.
        • Chen C.W.
        • Sun B.
        • Yap S.
        • Rubin J.P.
        • Peault B.
        The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells.
        Stem Cells Dev. 2012; 21: 1299-1308
        • Watt S.M.
        • Gullo F.
        • van der Garde M.
        • et al.
        The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential.
        Br Med Bull. 2013; 108: 25-53
        • Sousa B.R.
        • Parreira R.C.
        • Fonseca E.A.
        • et al.
        Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications.
        Cytometry A. 2014; 85: 43-77
        • Liu Z.J.
        • Zhuge Y.
        • Velazquez O.C.
        Trafficking and differentiation of mesenchymal stem cells.
        J Cell Biochem. 2009; 106: 984-991
        • Chong P.P.
        • Selvaratnam L.
        • Abbas A.A.
        • Kamarul T.
        Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells.
        J Orthop Res. 2012; 30: 634-642
        • Fu W.L.
        • Zhang J.Y.
        • Fu X.
        • et al.
        Comparative study of the biological characteristics of mesenchymal stem cells from bone marrow and peripheral blood of rats.
        Tissue Eng Part A. 2012; 18: 1793-1803
        • Nassiri S.M.
        • Rahbarghazi R.
        Interactions of mesenchymal stem cells with endothelial cells.
        Stem Cells Dev. 2014; 23: 319-332
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        • Imtiyaz H.Z.
        • Simon M.C.
        Hypoxia-inducible factors as essential regulators of inflammation.
        Curr Top Microbiol Immunol. 2010; 345: 105-120
        • Cribbs S.K.
        • Martin G.S.
        • Rojas M.
        Monitoring of endothelial dysfunction in critically ill patients: the role of endothelial progenitor cells.
        Curr Opin Crit Care. 2008; 14: 354-360
        • Elks P.M.
        • Renshaw S.A.
        • Meijer A.H.
        • Walmsley S.R.
        • van Eeden F.J.
        Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models.
        Dis Model Mech. 2015; 8: 1349-1360
        • Mole D.R.
        • Maxwell P.H.
        • Pugh C.W.
        • Ratcliffe P.J.
        Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing.
        IUBMB Life. 2001; 52: 43-47
        • Gorlach A.
        • Bonello S.
        The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison.
        Biochem J. 2008; 412: e17-e19
        • Semenza G.L.
        Targeting HIF-1 for cancer therapy.
        Nat Rev Cancer. 2003; 3: 721-732
        • Gerig J.T.
        • Reinheimer J.D.
        • Robinson R.H.
        Modification of human serum albumin with N-(2,5-dinitro-4-fluorophenyl)-4-amino-2,2,6,6-tetramethyl-piperidinooxy radical.
        Biochim Biophys Acta. 1979; 579: 409-420
        • Forsythe J.A.
        • Jiang B.H.
        • Iyer N.V.
        • et al.
        Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.
        Mol Cell Biol. 1996; 16: 4604-4613
        • Ahluwalia A.
        • Narula J.
        • Jones M.K.
        • Deng X.
        • Tarnawski A.S.
        Impaired angiogenesis in aging myocardial microvascular endothelial cells is associated with reduced importin alpha and decreased nuclear transport of HIF1 alpha: mechanistic implications.
        J Physiol Pharmacol. 2010; 61: 133-139
        • Szabo I.L.
        • Kawanaka H.
        • Jones M.K.
        • et al.
        Activation of hypoxia inducible factor-1alpha in gastric mucosa in response to ethanol injury: a trigger for angiogenesis?.
        Life Sci. 2001; 69: 3035-3044
        • Aranha A.M.
        • Zhang Z.
        • Neiva K.G.
        • Costa C.A.
        • Hebling J.
        • Nor J.E.
        Hypoxia enhances the angiogenic potential of human dental pulp cells.
        J Endod. 2010; 36: 1633-1637
        • Xie K.
        • Wei D.
        • Shi Q.
        • Huang S.
        Constitutive and inducible expression and regulation of vascular endothelial growth factor.
        Cytokine Growth Factor Rev. 2004; 15: 297-324
        • Ferrara N.
        Vascular endothelial growth factor.
        Arterioscler Thromb Vasc Biol. 2009; 29: 789-791
        • Ramakrishnan S.
        • Anand V.
        • Roy S.
        Vascular endothelial growth factor signaling in hypoxia and inflammation.
        J Neuroimmune Pharmacol. 2014; 9: 142-160
        • Shibuya M.
        Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases.
        J Biochem. 2013; 153: 13-19
        • Fox A.
        • Smythe J.
        • Fisher N.
        • et al.
        Mobilization of endothelial progenitor cells into the circulation in burned patients.
        Br J Surg. 2008; 95: 244-251
        • Svensen C.H.
        Vascular endothelial growth factor (VEGF) in plasma increases after hip surgery.
        J Clin Anesth. 2004; 16: 435-439
        • Futami R.
        • Miyashita M.
        • Nomura T.
        • et al.
        Increased serum vascular endothelial growth factor following major surgical injury.
        J Nippon Med Sch. 2007; 74: 223-229
        • Ferrara N.
        • Henzel W.J.
        Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.
        Biochem Biophys Res Commun. 1989; 161: 851-858
        • Shibuya M.
        Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis.
        J Biochem Mol Biol. 2006; 39: 469-478
        • Rahimi N.
        Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials.
        Exp Eye Res. 2006; 83: 1005-1016
        • Ha C.H.
        • Jin Z.G.
        Protein kinase D1, a new molecular player in VEGF signaling and angiogenesis.
        Mol Cells. 2009; 28: 1-5
        • Sandra F.
        • Oktaviono Y.H.
        • Widodo M.A.
        • Dirgantara Y.
        • Chouw A.
        • Sargowo D.
        Endothelial progenitor cells proliferated via MEK-dependent p42 MAPK signaling pathway.
        Mol Cell Biochem. 2015; 400: 201-206
        • Yu D.
        • Chen W.
        • Ren J.
        • et al.
        VEGF-PKD1-HDAC7 signaling promotes endothelial progenitor cell migration and tube formation.
        Microvasc Res. 2014; 91: 66-72
        • Zhang X.
        • Mao H.
        • Chen J.Y.
        • et al.
        Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway.
        Biochem Biophys Res Commun. 2013; 431: 404-408
        • Kim J.W.
        • Jung S.Y.
        • Kwon Y.H.
        • et al.
        Ginsenoside Rg3 inhibits endothelial progenitor cell differentiation through attenuation of VEGF-dependent Akt/eNOS signaling.
        Phytother Res. 2012; 26: 1286-1293
        • Gill K.A.
        • Brindle N.P.
        Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium.
        Biochem Biophys Res Commun. 2005; 336: 392-396
        • Ceradini D.J.
        • Kulkarni A.R.
        • Callaghan M.J.
        • et al.
        Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.
        Nat Med. 2004; 10: 858-864
        • Li B.
        • Bai W.
        • Sun P.
        • Zhou B.
        • Hu B.
        • Ying J.
        The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage.
        J Interferon Cytokine Res. 2015; 35: 23-31
        • Kanzler I.
        • Tuchscheerer N.
        • Steffens G.
        • et al.
        Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis.
        Basic Res Cardiol. 2013; 108: 310
        • Bhakta S.
        • Hong P.
        • Koc O.
        The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation.
        Cardiovasc Revasc Med. 2006; 7: 19-24
        • Hill W.D.
        • Hess D.C.
        • Martin-Studdard A.
        • et al.
        SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury.
        J Neuropathol Exp Neurol. 2004; 63: 84-96
        • Asare Y.
        • Schmitt M.
        • Bernhagen J.
        The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis.
        Thromb Haemost. 2013; 109: 391-398
        • Simons D.
        • Grieb G.
        • Hristov M.
        • et al.
        Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment.
        J Cell Mol Med. 2011; 15: 668-678
        • Fu H.
        • Luo F.
        • Yang L.
        • Wu W.
        • Liu X.
        Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1alpha dependent pathway.
        BMC Cell Biol. 2010; 11: 66
        • Leng L.
        • Metz C.N.
        • Fang Y.
        • et al.
        MIF signal transduction initiated by binding to CD74.
        J Exp Med. 2003; 197: 1467-1476
        • Bernhagen J.
        • Krohn R.
        • Lue H.
        • et al.
        MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.
        Nat Med. 2007; 13: 587-596
        • Schwartz V.
        • Lue H.
        • Kraemer S.
        • et al.
        A functional heteromeric MIF receptor formed by CD74 and CXCR4.
        FEBS Lett. 2009; 583: 2749-2757
        • Amin M.A.
        • Volpert O.V.
        • Woods J.M.
        • Kumar P.
        • Harlow L.A.
        • Koch A.E.
        Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase.
        Circ Res. 2003; 93: 321-329
        • Grieb G.
        • Piatkowski A.
        • Simons D.
        • et al.
        Macrophage migration inhibitory factor is a potential inducer of endothelial progenitor cell mobilization after flap operation.
        Surgery. 2012; 151: 268-277.e1
        • Skuli N.
        • Liu L.
        • Runge A.
        • et al.
        Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis.
        Blood. 2009; 114: 469-477
        • Hubbard N.E.
        • Lim D.
        • Mukutmoni M.
        • Cai A.
        • Erickson K.L.
        Expression and regulation of murine macrophage angiopoietin-2.
        Cell Immunol. 2005; 234: 102-109
        • Maisonpierre P.C.
        • Suri C.
        • Jones P.F.
        • et al.
        Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
        Science. 1997; 277: 55-60
        • Park Y.S.
        • Kim N.H.
        • Jo I.
        Hypoxia and vascular endothelial growth factor acutely up-regulate angiopoietin-1 and Tie2 mRNA in bovine retinal pericytes.
        Microvasc Res. 2003; 65: 125-131
        • Rosell A.
        • Arai K.
        • Lok J.
        • et al.
        Interleukin-1beta augments angiogenic responses of murine endothelial progenitor cells in vitro.
        J Cereb Blood Flow Metab. 2009; 29: 933-943
        • Yang L.
        • Guo X.G.
        • Du C.Q.
        • et al.
        Interleukin-1 beta increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway.
        Inflammation. 2012; 35: 1242-1250
        • Carmi Y.
        • Voronov E.
        • Dotan S.
        • et al.
        The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis.
        J Immunol. 2009; 183: 4705-4714
        • Salven P.
        • Hattori K.
        • Heissig B.
        • Rafii S.
        Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion.
        FASEB J. 2002; 16: 1471-1473
        • Fan Y.
        • Ye J.
        • Shen F.
        • et al.
        Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro.
        J Cereb Blood Flow Metab. 2008; 28: 90-98
        • Gleadle J.M.
        • Ebert B.L.
        • Firth J.D.
        • Ratcliffe P.J.
        Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents.
        Am J Physiol. 1995; 268: C1362-C1368
        • Kuwabara K.
        • Ogawa S.
        • Matsumoto M.
        • et al.
        Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells.
        Proc Natl Acad Sci U S A. 1995; 92: 4606-4610
        • Yoshida D.
        • Kim K.
        • Noha M.
        • Teramoto A.
        Hypoxia inducible factor 1-alpha regulates of platelet derived growth factor-B in human glioblastoma cells.
        J Neurooncol. 2006; 76: 13-21
        • Schito L.
        • Rey S.
        • Tafani M.
        • et al.
        Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells.
        Proc Natl Acad Sci U S A. 2012; 109: E2707-E2716
        • Heldin C.H.
        • Westermark B.
        Mechanism of action and in vivo role of platelet-derived growth factor.
        Physiol Rev. 1999; 79: 1283-1316
        • Andrae J.
        • Gallini R.
        • Betsholtz C.
        Role of platelet-derived growth factors in physiology and medicine.
        Genes Dev. 2008; 22: 1276-1312
        • Heldin C.H.
        • Johnsson A.
        • Ek B.
        • et al.
        Purification of human platelet-derived growth factor.
        Methods Enzymol. 1987; 147: 3-13
        • Alvarez R.H.
        • Kantarjian H.M.
        • Cortes J.E.
        Biology of platelet-derived growth factor and its involvement in disease.
        Mayo Clin Proc. 2006; 81: 1241-1257
        • Raz O.
        • Lev D.L.
        • Battler A.
        • Lev E.I.
        Pathways mediating the interaction between endothelial progenitor cells (EPCs) and platelets.
        PLoS One. 2014; 9: e95156
        • Sufen G.
        • Xianghong Y.
        • Yongxia C.
        • Qian P.
        bFGF and PDGF-BB have a synergistic effect on the proliferation, migration and VEGF release of endothelial progenitor cells.
        Cell Biol Int. 2011; 35: 545-551
        • Hellberg C.
        • Ostman A.
        • Heldin C.H.
        PDGF and vessel maturation.
        Recent Results Cancer Res. 2010; 180: 103-114
        • Kajdaniuk D.
        • Marek B.
        • Borgiel-Marek H.
        • Kos-Kudla B.
        Transforming growth factor beta1 (TGFbeta1) in physiology and pathology.
        Endokrynol Pol. 2013; 64: 384-396
        • Bertolino P.
        • Deckers M.
        • Lebrin F.
        • ten Dijke P.
        Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders.
        Chest. 2005; 128: 585S-590S
        • Goumans M.J.
        • Liu Z.
        • ten Dijke P.
        TGF-beta signaling in vascular biology and dysfunction.
        Cell Res. 2009; 19: 116-127
        • Orlova V.V.
        • Liu Z.
        • Goumans M.J.
        • ten Dijke P.
        Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways.
        Histol Histopathol. 2011; 26: 1219-1230
        • ten Dijke P.
        • Goumans M.J.
        • Pardali E.
        Endoglin in angiogenesis and vascular diseases.
        Angiogenesis. 2008; 11: 79-89
        • Shimmi O.
        • Newfeld S.J.
        New insights into extracellular and post-translational regulation of TGF-beta family signalling pathways.
        J Biochem. 2013; 154: 11-19
        • ten Dijke P.
        • Hill C.S.
        New insights into TGF-beta-Smad signalling.
        Trends Biochem Sci. 2004; 29: 265-273
        • Pardali E.
        • Goumans M.J.
        • ten Dijke P.
        Signaling by members of the TGF-beta family in vascular morphogenesis and disease.
        Trends Cell Biol. 2010; 20: 556-567
        • Evrard S.M.
        • d'Audigier C.
        • Mauge L.
        • et al.
        The profibrotic cytokine transforming growth factor-beta1 increases endothelial progenitor cell angiogenic properties.
        J Thromb Haemost. 2012; 10: 670-679
        • Bai H.
        • Xie Y.L.
        • Gao Y.X.
        • Cheng T.
        • Wang Z.Z.
        The balance of positive and negative effects of TGF-beta signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells.
        Stem Cells Dev. 2013; 22: 2765-2776
        • Ross J.J.
        • Hong Z.
        • Willenbring B.
        • et al.
        Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.
        J Clin Invest. 2006; 116: 3139-3149
        • Narita Y.
        • Yamawaki A.
        • Kagami H.
        • Ueda M.
        • Ueda Y.
        Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage.
        Cell Tissue Res. 2008; 333: 449-459
        • Liang M.S.
        • Andreadis S.T.
        Engineering fibrin-binding TGF-beta1 for sustained signaling and contractile function of MSC based vascular constructs.
        Biomaterials. 2011; 32: 8684-8693
        • Rozen-Zvi B.
        • Hayashida T.
        • Hubchak S.C.
        • Hanna C.
        • Platanias L.C.
        • Schnaper H.W.
        TGF-beta/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1alpha expression.
        Am J Physiol Renal Physiol. 2013; 305: F485-F494
        • McMahon S.
        • Charbonneau M.
        • Grandmont S.
        • Richard D.E.
        • Dubois C.M.
        Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression.
        J Biol Chem. 2006; 281: 24171-24181
        • Shih S.C.
        • Claffey K.P.
        Role of AP-1 and HIF-1 transcription factors in TGF-beta activation of VEGF expression.
        Growth Factors. 2001; 19: 19-34
        • Duan L.
        • Yang G.
        • Zhang R.
        • Feng L.
        • Xu C.
        Advancement in the research on vascular endothelial growth inhibitor (VEGI).
        Target Oncol. 2012; 7: 87-90
        • Metheny-Barlow L.J.
        • Li L.Y.
        Vascular endothelial growth inhibitor (VEGI), an endogenous negative regulator of angiogenesis.
        Semin Ophthalmol. 2006; 21: 49-58
        • Tian F.
        • Liang P.H.
        • Li L.Y.
        Inhibition of endothelial progenitor cell differentiation by VEGI.
        Blood. 2009; 113: 5352-5360
        • Qi J.W.
        • Qin T.T.
        • Xu L.X.
        • et al.
        TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1.
        Proc Natl Acad Sci U S A. 2013; 110: 13863-13868
        • Xu L.X.
        • Grimaldo S.
        • Qi J.W.
        • et al.
        Death receptor 3 mediates TNFSF15- and TNFα-induced endothelial cell apoptosis.
        Int J Biochem Cell Biol. 2014; 55: 109-118
        • Conway K.P.
        • Price P.
        • Harding K.G.
        • Jiang W.G.
        The role of vascular endothelial growth inhibitor in wound healing.
        Int Wound J. 2007; 4: 55-64
        • Dawson D.W.
        • Volpert O.V.
        • Gillis P.
        • et al.
        Pigment epithelium-derived factor: a potent inhibitor of angiogenesis.
        Science. 1999; 285: 245-248
        • Bouck N.
        PEDF: anti-angiogenic guardian of ocular function.
        Trends Mol Med. 2002; 8: 330-334
        • Alberdi E.
        • Aymerich M.S.
        • Becerra S.P.
        Binding of pigment epithelium-derived factor (PEDF) to retinoblastoma cells and cerebellar granule neurons. Evidence for a PEDF receptor.
        J Biol Chem. 1999; 274: 31605-31612
        • Zhang S.X.
        • Wang J.J.
        • Gao G.
        • Parke K.
        • Ma J.X.
        Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy.
        J Mol Endocrinol. 2006; 37: 1-12
        • Yafai Y.
        • Lange J.
        • Wiedemann P.
        • Reichenbach A.
        • Eichler W.
        Pigment epithelium-derived factor acts as an opponent of growth-stimulatory factors in retinal glial-endothelial cell interactions.
        Glia. 2007; 55: 642-651
        • Qi W.
        • Yang C.
        • Dai Z.
        • et al.
        High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling.
        Diabetes. 2015; 64: 1407-1419
        • Cates A.M.
        • Holden V.I.
        • Myers E.M.
        • Smith C.K.
        • Kaplan M.J.
        • Kahlenberg J.M.
        Interleukin 10 hampers endothelial cell differentiation and enhances the effects of interferon α on lupus endothelial cell progenitors.
        Rheumatology (Oxford). 2015; 54: 1114-1123
        • Kahlenberg J.M.
        • Thacker S.G.
        • Berthier C.C.
        • Cohen C.D.
        • Kretzler M.
        • Kaplan M.J.
        Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus.
        J Immunol. 2011; 187: 6143-6156
        • Imanishi T.
        • Hano T.
        • Nishio I.
        Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells.
        Hypertens Res. 2005; 28: 263-271
        • Imanishi T.
        • Hano T.
        • Nishio I.
        Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress.
        J Hypertens. 2005; 23: 97-104
        • Valluru M.
        • Staton C.A.
        • Reed M.W.
        • Brown N.J.
        Transforming growth factor-beta and endoglin signaling orchestrate wound healing.
        Front Physiol. 2011; 2: 89
        • Takeuchi O.
        • Akira S.
        Pattern recognition receptors and inflammation.
        Cell. 2010; 140: 805-820
        • Gill M.
        • Dias S.
        • Hattori K.
        • et al.
        Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells.
        Circ Res. 2001; 88: 167-174
        • Silberstein L.E.
        • Lin C.P.
        A new image of the hematopoietic stem cell vascular niche.
        Cell Stem Cell. 2013; 13: 514-516
        • Anthony B.A.
        • Link D.C.
        Regulation of hematopoietic stem cells by bone marrow stromal cells.
        Trends Immunol. 2014; 35: 32-37
        • Heissig B.
        • Hattori K.
        • Dias S.
        • et al.
        Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand.
        Cell. 2002; 109: 625-637
        • Kunisaki Y.
        • Bruns I.
        • Scheiermann C.
        • et al.
        Arteriolar niches maintain haematopoietic stem cell quiescence.
        Nature. 2013; 502: 637-643
        • Ratajczak M.Z.
        A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking.
        Leukemia. 2015; 29: 776-782
        • Janowska-Wieczorek A.
        • Marquez L.A.
        • Nabholtz J.M.
        • et al.
        Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane.
        Blood. 1999; 93: 3379-3390
        • Tanaka A.
        • Yamane Y.
        • Matsuda H.
        Mast cell MMP-9 production enhanced by bacterial lipopolysaccharide.
        J Vet Med Sci. 2001; 63: 811-813
        • Hattori K.
        • Heissig B.
        • Rafii S.
        The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1.
        Leuk Lymphoma. 2003; 44: 575-582
        • Levesque J.P.
        • Hendy J.
        • Winkler I.G.
        • Takamatsu Y.
        • Simmons P.J.
        Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells.
        Exp Hematol. 2003; 31: 109-117
        • Morrison S.J.
        • Scadden D.T.
        The bone marrow niche for haematopoietic stem cells.
        Nature. 2014; 505: 327-334
        • Van Overstraeten-Schlogel N.
        • Beguin Y.
        • Gothot A.
        Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells.
        Eur J Haematol. 2006; 76: 488-493
        • Mohty M.
        • Ho A.D.
        In and out of the niche: perspectives in mobilization of hematopoietic stem cells.
        Exp Hematol. 2011; 39: 723-729
        • Semerad C.L.
        • Christopher M.J.
        • Liu F.
        • et al.
        G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow.
        Blood. 2005; 106: 3020-3027
        • Christopher M.J.
        • Liu F.
        • Hilton M.J.
        • Long F.
        • Link D.C.
        Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization.
        Blood. 2009; 114: 1331-1339
        • Jin F.
        • Zhai Q.
        • Qiu L.
        • et al.
        Degradation of BM SDF-1 by MMP-9: the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization.
        Bone Marrow Transplant. 2008; 42: 581-588
        • Petit I.
        • Szyper-Kravitz M.
        • Nagler A.
        • et al.
        G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4.
        Nat Immunol. 2002; 3: 687-694
        • Mohle R.
        • Bautz F.
        • Rafii S.
        • Moore M.A.
        • Brugger W.
        • Kanz L.
        The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1.
        Blood. 1998; 91: 4523-4530
        • Levesque J.P.
        • Helwani F.M.
        • Winkler I.G.
        The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization.
        Leukemia. 2010; 24: 1979-1992
        • Levesque J.P.
        • Takamatsu Y.
        • Nilsson S.K.
        • Haylock D.N.
        • Simmons P.J.
        Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor.
        Blood. 2001; 98: 1289-1297
        • Lapid K.
        • Glait-Santar C.
        • Gur-Cohen S.
        • Canaani J.
        • Kollet O.
        • Lapidot T.
        Egress and Mobilization of Hematopoietic Stem and Progenitor Cells: A Dynamic Multi-facet Process. StemBook [Internet].
        Harvard Stem Cell Institute, Cambridge (MA)2008-2012
        • Alvarez P.
        • Carrillo E.
        • Velez C.
        • et al.
        Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing.
        Biomed Res Int. 2013; 2013: 312656
        • Liu L.
        • Yu Q.
        • Lin J.
        • et al.
        Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood.
        Stem Cells Dev. 2011; 20: 1961-1971
        • Yokoi H.
        • Yamada H.
        • Tsubakimoto Y.
        • et al.
        Bone marrow AT1 augments neointima formation by promoting mobilization of smooth muscle progenitors via platelet-derived SDF-1{alpha}.
        Arterioscler Thromb Vasc Biol. 2010; 30: 60-67
        • Pitchford S.C.
        • Furze R.C.
        • Jones C.P.
        • Wengner A.M.
        • Rankin S.M.
        Differential mobilization of subsets of progenitor cells from the bone marrow.
        Cell Stem Cell. 2009; 4: 62-72
        • Hristov M.
        • Weber C.
        Endothelial progenitor cells in vascular repair and remodeling.
        Pharmacol Res. 2008; 58: 148-151
        • Cheng M.
        • Huang K.
        • Zhou J.
        • et al.
        A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart.
        J Mol Cell Cardiol. 2015; 81: 49-53
        • Hristov M.
        • Zernecke A.
        • Bidzhekov K.
        • et al.
        Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury.
        Circ Res. 2007; 100: 590-597
        • Fujiyama S.
        • Amano K.
        • Uehira K.
        • et al.
        Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells.
        Circ Res. 2003; 93: 980-989
        • Hristov M.
        • Zernecke A.
        • Liehn E.A.
        • Weber C.
        Regulation of endothelial progenitor cell homing after arterial injury.
        Thromb Haemost. 2007; 98: 274-277
        • Ishida Y.
        • Kimura A.
        • Kuninaka Y.
        • et al.
        Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing.
        J Clin Invest. 2012; 122: 711-721
        • Oh I.Y.
        • Yoon C.H.
        • Hur J.
        • et al.
        Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle.
        Blood. 2007; 110: 3891-3899
        • Biancone L.
        • Cantaluppi V.
        • Duo D.
        • Deregibus M.C.
        • Torre C.
        • Camussi G.
        Role of L-selectin in the vascular homing of peripheral blood-derived endothelial progenitor cells.
        J Immunol. 2004; 173: 5268-5274
        • Lev E.I.
        • Estrov Z.
        • Aboulfatova K.
        • et al.
        Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix.
        Thromb Haemost. 2006; 96: 498-504
        • Caiado F.
        • Dias S.
        Endothelial progenitor cells and integrins: adhesive needs.
        Fibrogenesis Tissue Repair. 2012; 5: 4
        • Hur J.
        • Yoon C.H.
        • Lee C.S.
        • et al.
        Akt is a key modulator of endothelial progenitor cell trafficking in ischemic muscle.
        Stem Cells. 2007; 25: 1769-1778
        • Langer H.F.
        • Stellos K.
        • Steingen C.
        • et al.
        Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro.
        J Mol Cell Cardiol. 2009; 47: 315-325
        • Wang Y.
        • Deng Y.
        • Zhou G.Q.
        SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model.
        Brain Res. 2008; 1195: 104-112
        • Ponte A.L.
        • Marais E.
        • Gallay N.
        • et al.
        The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities.
        Stem Cells. 2007; 25: 1737-1745
        • Balaji S.
        • King A.
        • Crombleholme T.M.
        • Keswani S.G.
        The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing.
        Adv Wound Care (New Rochelle). 2013; 2: 283-295
        • Ozerdem U.
        • Alitalo K.
        • Salven P.
        • Li A.
        Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis.
        Invest Ophthalmol Vis Sci. 2005; 46: 3502-3506
        • Hirschi K.K.
        • Majesky M.W.
        Smooth muscle stem cells.
        Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 22-33
        • Diez M.
        • Musri M.M.
        • Ferrer E.
        • Barbera J.A.
        • Peinado V.I.
        Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI.
        Cardiovasc Res. 2010; 88: 502-511
        • Yoshida M.
        • Okubo N.
        • Chosa N.
        • et al.
        TGF-beta-operated growth inhibition and translineage commitment into smooth muscle cells of periodontal ligament-derived endothelial progenitor cells through Smad- and p38 MAPK-dependent signals.
        Int J Biol Sci. 2012; 8: 1062-1074
        • Sasaki M.
        • Abe R.
        • Fujita Y.
        • Ando S.
        • Inokuma D.
        • Shimizu H.
        Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type.
        J Immunol. 2008; 180: 2581-2587
        • Zaniboni A.
        • Bernardini C.
        • Bertocchi M.
        • et al.
        In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.
        Am J Physiol Cell Physiol. 2015; 309: C320-C331
        • Hegner B.
        • Lange M.
        • Kusch A.
        • et al.
        mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors.
        Arterioscler Thromb Vasc Biol. 2009; 29: 232-238
        • Zhang M.
        • Malik A.B.
        • Rehman J.
        Endothelial progenitor cells and vascular repair.
        Curr Opin Hematol. 2014; 21: 224-228
        • Kim S.W.
        • Jin H.L.
        • Kang S.M.
        • et al.
        Therapeutic effects of late outgrowth endothelial progenitor cells or mesenchymal stem cells derived from human umbilical cord blood on infarct repair.
        Int J Cardiol. 2016; 203: 498-507
        • Shen W.C.
        • Liang C.J.
        • Wu V.C.
        • et al.
        Endothelial progenitor cells derived from Wharton's jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF-1alpha/IL-8 expression.
        Stem Cells Dev. 2013; 22: 1408-1418
        • Caiado F.
        • Carvalho T.
        • Silva F.
        • et al.
        The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing.
        Biomaterials. 2011; 32: 7096-7105
        • Kim J.Y.
        • Song S.H.
        • Kim K.L.
        • et al.
        Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing.
        Cell Transplant. 2010; 19: 1635-1644
        • Barcelos L.S.
        • Duplaa C.
        • Krankel N.
        • et al.
        Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling.
        Circ Res. 2009; 104: 1095-1102
        • Urbich C.
        • Aicher A.
        • Heeschen C.
        • et al.
        Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells.
        J Mol Cell Cardiol. 2005; 39: 733-742
        • Deregibus M.C.
        • Cantaluppi V.
        • Calogero R.
        • et al.
        Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.
        Blood. 2007; 110: 2440-2448
        • Ranghino A.
        • Cantaluppi V.
        • Grange C.
        • et al.
        Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia.
        Int J Immunopathol Pharmacol. 2012; 25: 75-85
        • Li X.
        • Chen C.
        • Wei L.
        • et al.
        Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function.
        Cytotherapy. 2016; 18: 253-262
        • Li X.
        • Jiang C.
        • Zhao J.
        Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function.
        J Diabetes Complications. 2016; 30: 986-992
        • Darland D.C.
        • Massingham L.J.
        • Smith S.R.
        • Piek E.
        • Saint-Geniez M.
        • D'Amore P.A.
        Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival.
        Dev Biol. 2003; 264: 275-288
        • Boomsma R.A.
        • Geenen D.L.
        Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis.
        PLoS One. 2012; 7: e35685
        • Kawai T.
        • Katagiri W.
        • Osugi M.
        • Sugimura Y.
        • Hibi H.
        • Ueda M.
        Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration.
        Cytotherapy. 2015; 17: 369-381
        • Yang Y.
        • Chen Q.H.
        • Liu A.R.
        • Xu X.P.
        • Han J.B.
        • Qiu H.B.
        Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway.
        Stem Cell Res Ther. 2015; 6: 250
        • Lin X.
        • Robinson M.
        • Petrie T.
        • Spandler V.
        • Boyd W.D.
        • Sondergaard C.S.
        Small intestinal submucosa-derived extracellular matrix bioscaffold significantly enhances angiogenic factor secretion from human mesenchymal stromal cells.
        Stem Cell Res Ther. 2015; 6: 164
        • Hou Y.
        • Ryu C.H.
        • Jun J.A.
        • Kim S.M.
        • Jeong C.H.
        • Jeun S.S.
        IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor.
        Cell Biol Int. 2014; 38: 1050-1059
        • Herrmann J.L.
        • Weil B.R.
        • Abarbanell A.M.
        • et al.
        IL-6 and TGF-alpha costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-, JNK-, and PI3K-mediated mechanisms.
        Shock. 2011; 35: 512-516
        • Wang Y.
        • Crisostomo P.R.
        • Wang M.
        • Markel T.A.
        • Novotny N.M.
        • Meldrum D.R.
        TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms.
        Am J Physiol Regul Integr Comp Physiol. 2008; 295: R1115-R1123
        • Crisostomo P.R.
        • Wang Y.
        • Markel T.A.
        • Wang M.
        • Lahm T.
        • Meldrum D.R.
        Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism.
        Am J Physiol Cell Physiol. 2008; 294: C675-C682
        • Beltramo E.
        • Lopatina T.
        • Berrone E.
        • et al.
        Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro.
        Acta Diabetol. 2014; 51: 1055-1064
        • Burlacu A.
        • Grigorescu G.
        • Rosca A.M.
        • Preda M.B.
        • Simionescu M.
        Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro.
        Stem Cells Dev. 2013; 22: 643-653
        • Merino-González C.
        • Zuñiga F.A.
        • Escudero C.
        • et al.
        Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application.
        Front Physiol. 2016; 7: 24
        • Rüder C.
        • Haase T.
        • Krost A.
        • et al.
        Combinatorial G-CSF/AMD3100 treatment in cardiac repair after myocardial infarction.
        PLoS One. 2014; 9: e104644
        • Liu Z.J.
        • Velazquez O.C.
        Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing.
        Antioxid Redox Signal. 2008; 10: 1869-1882
        • Drela E.
        • Stankowska K.
        • Kulwas A.
        • Rosc D.
        Endothelial progenitor cells in diabetic foot syndrome.
        Adv Clin Exp Med. 2012; 21: 249-254
        • Kim K.A.
        • Shin Y.J.
        • Kim J.H.
        • et al.
        Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms.
        Arch Pharm Res. 2012; 35: 223-234
        • Gough A.
        • Clapperton M.
        • Rolando N.
        • Foster A.V.
        • Philpott-Howard J.
        • Edmonds M.E.
        Randomised placebo-controlled trial of granulocyte-colony stimulating factor in diabetic foot infection.
        Lancet. 1997; 350: 855-859
        • Cruciani M.
        • Lipsky B.A.
        • Mengoli C.
        • de Lalla F.
        Granulocyte-colony stimulating factors as adjunctive therapy for diabetic foot infections.
        Cochrane Database Syst Rev. 2009; : CD006810
        • Balaji S.
        • Han N.
        • Moles C.
        • et al.
        Angiopoietin-1 improves endothelial progenitor cell-dependent neovascularization in diabetic wounds.
        Surgery. 2015; 158: 846-856
        • Allen Jr., R.J.
        • Soares M.A.
        • Haberman I.D.
        • et al.
        Combination therapy accelerates diabetic wound closure.
        PLoS One. 2014; 9: e92667
        • Tanaka R.
        • Masuda H.
        • Kato S.
        • et al.
        Autologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcer.
        Cell Transplant. 2014; 23: 167-179
        • Asai J.
        • Takenaka H.
        • Ii M.
        • et al.
        Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice.
        Int Wound J. 2013; 10: 527-533
        • Ackermann M.
        • Pabst A.M.
        • Houdek J.P.
        • Ziebart T.
        • Konerding M.A.
        Priming with proangiogenic growth factors and endothelial progenitor cells improves revascularization in linear diabetic wounds.
        Int J Mol Med. 2014; 33: 833-839
        • Kanitkar M.
        • Jaiswal A.
        • Deshpande R.
        • Bellare J.
        • Kale V.P.
        Enhanced growth of endothelial precursor cells on PCG-matrix facilitates accelerated, fibrosis-free, wound healing: a diabetic mouse model.
        PLoS One. 2013; 8: e69960
        • Sorrell J.M.
        • Caplan A.I.
        Topical delivery of mesenchymal stem cells and their function in wounds.
        Stem Cell Res Ther. 2010; 1: 30
        • Egana J.T.
        • Fierro F.A.
        • Kruger S.
        • et al.
        Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration.
        Tissue Eng Part A. 2009; 15: 1191-1200
        • Herrmann M.
        • Verrier S.
        • Alini M.
        Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair.
        Front Bioeng Biotechnol. 2015; 3: 79
        • Tarkka T.
        • Sipola A.
        • Jamsa T.
        • et al.
        Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues.
        J Gene Med. 2003; 5: 560-566
        • Li R.
        • Stewart D.J.
        • von Schroeder H.P.
        • Mackinnon E.S.
        • Schemitsch E.H.
        Effect of cell-based VEGF gene therapy on healing of a segmental bone defect.
        J Orthop Res. 2009; 27: 8-14
        • Li R.
        • Nauth A.
        • Li C.
        • Qamirani E.
        • Atesok K.
        • Schemitsch E.H.
        Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs.
        J Orthop Trauma. 2012; 26: 689-692
        • Li R.
        • Atesok K.
        • Nauth A.
        • et al.
        Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis.
        J Orthop Trauma. 2011; 25: 467-471
        • Mercado-Pagan A.E.
        • Stahl A.M.
        • Shanjani Y.
        • Yang Y.
        Vascularization in bone tissue engineering constructs.
        Ann Biomed Eng. 2015; 43: 718-729
        • Massa M.
        • Rosti V.
        • Ferrario M.
        • et al.
        Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction.
        Blood. 2005; 105: 199-206
        • Kawamoto A.
        • Gwon H.C.
        • Iwaguro H.
        • et al.
        Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia.
        Circulation. 2001; 103: 634-637
        • Aicher A.
        • Brenner W.
        • Zuhayra M.
        • et al.
        Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling.
        Circulation. 2003; 107: 2134-2139
        • Misao Y.
        • Takemura G.
        • Arai M.
        • et al.
        Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF.
        Cardiovasc Res. 2006; 71: 455-465
        • Zhao Q.
        • Sun C.
        • Xu X.
        • et al.
        Early use of granulocyte colony stimulating factor improves survival in a rabbit model of chronic myocardial ischemia.
        J Cardiol. 2013; 61: 87-94
        • Sato T.
        • Suzuki H.
        • Kusuyama T.
        • et al.
        G-CSF after myocardial infarction accelerates angiogenesis and reduces fibrosis in swine.
        Int J Cardiol. 2008; 127: 166-173
        • Toyama T.
        • Hoshizaki H.
        • Kasama S.
        • et al.
        Low-dose and long-term G-CSF treatment can improve severe myocardial ischemia in patients with severe coronary artery disease.
        J Nucl Cardiol. 2011; 18: 463-471
        • Kang S.
        • Yang Y.
        • Li C.J.
        • Gao R.
        Effectiveness and tolerability of administration of granulocyte colony-stimulating factor on left ventricular function in patients with myocardial infarction: a meta-analysis of randomized controlled trials.
        Clin Ther. 2007; 29: 2406-2418
        • Zohlnhofer D.
        • Ott I.
        • Mehilli J.
        • et al.
        Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial.
        JAMA. 2006; 295: 1003-1010
        • Zohlnhofer D.
        • Kastrati A.
        • Schomig A.
        Stem cell mobilization by granulocyte-colony-stimulating factor in acute myocardial infarction: lessons from the REVIVAL-2 trial.
        Nat Clin Pract Cardiovasc Med. 2007; 4 Suppl 1: S106-S109
        • Zohlnhofer D.
        • Dibra A.
        • Koppara T.
        • et al.
        Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis.
        J Am Coll Cardiol. 2008; 51: 1429-1437
        • Schuh A.
        • Liehn E.A.
        • Sasse A.
        • et al.
        Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model.
        Basic Res Cardiol. 2008; 103: 69-77
        • Dubois C.
        • Liu X.
        • Claus P.
        • et al.
        Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction.
        J Am Coll Cardiol. 2010; 55: 2232-2243
        • Alexander S.
        • Sasse A.
        • Konschalla S.
        • et al.
        Repetitive transplantation of different cell types sequentially improves heart function after infarction.
        J Cell Mol Med. 2012; 16: 1640-1647
        • Chen S.Y.
        • Wang F.
        • Yan X.Y.
        • et al.
        Autologous transplantation of EPCs encoding FGF1 gene promotes neovascularization in a porcine model of chronic myocardial ischemia.
        Int J Cardiol. 2009; 135: 223-232
        • Sen S.
        • Merchan J.
        • Dean J.
        • et al.
        Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction.
        Hum Gene Ther. 2010; 21: 1327-1334
        • Tang J.
        • Wang J.
        • Yang J.
        • et al.
        Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats.
        Eur J Cardiothorac Surg. 2009; 36: 644-650
        • Thal M.A.
        • Krishnamurthy P.
        • Mackie A.R.
        • et al.
        Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair.
        Circ Res. 2012; 111: 180-190
        • Wollert K.C.
        • Meyer G.P.
        • Lotz J.
        • et al.
        Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.
        Lancet. 2004; 364: 141-148
        • Jeevanantham V.
        • Butler M.
        • Saad A.
        • Abdel-Latif A.
        • Zuba-Surma E.K.
        • Dawn B.
        Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis.
        Circulation. 2012; 126: 551-568
        • Sun L.
        • Zhang T.
        • Lan X.
        • Du G.
        Effects of stem cell therapy on left ventricular remodeling after acute myocardial infarction: a meta-analysis.
        Clin Cardiol. 2010; 33: 296-302
        • Delewi R.
        • Hirsch A.
        • Tijssen J.G.
        • et al.
        Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis.
        Eur Heart J. 2014; 35: 989-998
        • Delewi R.
        • Andriessen A.
        • Tijssen J.G.
        • Zijlstra F.
        • Piek J.J.
        • Hirsch A.
        Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a meta-analysis of randomised controlled clinical trials.
        Heart. 2013; 99: 225-232
        • Chen S.L.
        • Fang W.W.
        • Ye F.
        • et al.
        Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.
        Am J Cardiol. 2004; 94: 92-95
        • Janssens S.
        • Dubois C.
        • Bogaert J.
        • et al.
        Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.
        Lancet. 2006; 367: 113-121
        • Povsic T.J.
        • Junge C.
        • Nada A.
        • et al.
        A phase 3, randomized, double-blinded, active-controlled, unblinded standard of care study assessing the efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina: design of the RENEW study.
        Am Heart J. 2013; 165: 854-861.e2
        • Yip H.K.
        • Chang L.T.
        • Chang W.N.
        • et al.
        Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke.
        Stroke. 2008; 39: 69-74
        • Marti-Fabregas J.
        • Crespo J.
        • Delgado-Mederos R.
        • et al.
        Endothelial progenitor cells in acute ischemic stroke.
        Brain Behav. 2013; 3: 649-655
        • Sobrino T.
        • Hurtado O.
        • Moro M.A.
        • et al.
        The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome.
        Stroke. 2007; 38: 2759-2764
        • Navarro-Sobrino M.
        • Rosell A.
        • Hernandez-Guillamon M.
        • et al.
        Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke.
        Microvasc Res. 2010; 80: 317-323
        • Mao L.
        • Huang M.
        • Chen S.C.
        • et al.
        Endogenous endothelial progenitor cells participate in neovascularization via CXCR4/SDF-1 axis and improve outcome after stroke.
        CNS Neurosci Ther. 2014; 20: 460-468
        • Bai Y.Y.
        • Wang L.
        • Peng X.G.
        • et al.
        Non-invasive monitoring of transplanted endothelial progenitor cells in diabetic ischemic stroke models.
        Biomaterials. 2015; 40: 43-50
        • Bogoslovsky T.
        • Chaudhry A.
        • Latour L.
        • et al.
        Endothelial progenitor cells correlate with lesion volume and growth in acute stroke.
        Neurology. 2010; 75: 2059-2062
        • Tsai N.W.
        • Hung S.H.
        • Huang C.R.
        • et al.
        The association between circulating endothelial progenitor cells and outcome in different subtypes of acute ischemic stroke.
        Clin Chim Acta. 2014; 427: 6-10
        • Fan Y.
        • Shen F.
        • Frenzel T.
        • et al.
        Endothelial progenitor cell transplantation improves long-term stroke outcome in mice.
        Ann Neurol. 2010; 67: 488-497
        • Bai Y.Y.
        • Peng X.G.
        • Wang L.S.
        • et al.
        Bone marrow endothelial progenitor cell transplantation after ischemic stroke: an investigation into its possible mechanism.
        CNS Neurosci Ther. 2015; 21: 877-886
        • Chen Y.L.
        • Tsai T.H.
        • Wallace C.G.
        • et al.
        Intra-carotid arterial administration of autologous peripheral blood-derived endothelial progenitor cells improves acute ischemic stroke neurological outcomes in rats.
        Int J Cardiol. 2015; 201: 668-683
        • Navarro-Sobrino M.
        • Hernandez-Guillamon M.
        • Fernandez-Cadenas I.
        • et al.
        The angiogenic gene profile of circulating endothelial progenitor cells from ischemic stroke patients.
        Vasc Cell. 2013; 5: 3
        • Rosell A.
        • Morancho A.
        • Navarro-Sobrino M.
        • et al.
        Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice.
        PLoS One. 2013; 8: e73244
        • Pena I.
        • Borlongan C.V.
        Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke.
        Transl Stroke Res. 2015; 6: 421-429
        • Sprigg N.
        • Bath P.M.
        • Zhao L.
        • et al.
        Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092).
        Stroke. 2006; 37: 2979-2983
        • England T.J.
        • Abaei M.
        • Auer D.P.
        • et al.
        Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial.
        Stroke. 2012; 43: 405-411
        • Moniche F.
        • Montaner J.
        • Gonzalez-Marcos J.R.
        • et al.
        Intra-arterial bone marrow mononuclear cell transplantation correlates with GM-CSF, PDGF-BB, and MMP-2 serum levels in stroke patients: results from a clinical trial.
        Cell Transplant. 2014; 23 Suppl 1: S57-S64
        • Prasad K.
        • Sharma A.
        • Garg A.
        • et al.
        Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial.
        Stroke. 2014; 45: 3618-3624
        • Moniche F.
        • Escudero I.
        • Zapata-Arriaza E.
        • et al.
        Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial.
        Int J Stroke. 2015; 10: 1149-1152

      CHORUS Manuscript

      View Open Manuscript