Advertisement
In-Depth Review: Chimeric Antigen Receptor T Cell-based Therapies| Volume 187, P11-21, September 2017

Development of novel antigen receptors for CAR T-cell therapy directed toward solid malignancies

  • David Chen
    Correspondence
    Reprint requests: David Chen, Surgery Branch, National Cancer Institute National Institutes of Health, 10 Center Drive, Building 10 CRC/3W – 3840, Bethesda, MD 20892
    Affiliations
    Surgery Branch, National Cancer Institute National Institutes of Health, Bethesda, Md
    Search for articles by this author
  • James Yang
    Affiliations
    Surgery Branch, National Cancer Institute National Institutes of Health, Bethesda, Md
    Search for articles by this author
      Development of chimeric antigen receptor (CAR) T cells have led to remarkable successes in the treatment of B-cell malignancies with anti-CD19 CAR. Here we discuss the development of novel antigen receptors for use in solid malignancies with respect to target antigens, receptor design, and T cell manipulations.

      Abbreviations:

      CAR (chimeric antigen receptor), HLA (human leukocyte antigen), MHC (major histocompatibility complex), NCI CTCAE (National Cancer Institute Common Terminology Criteria for Adverse Events), NSG (NOD scid gamma), PBL (peripheral blood lymphocytes), RECIST (Response Evaluation Criteria in Solid Tumors), scFv (single chain variable fragment), TCR (T cell receptor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gross G.
        • Waks T.
        • Eshhar Z.
        Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity.
        Proc Natl Acad Sci U S A. 1989; 86: 10024-10028
        • Kuwana Y.
        • Asakura Y.
        • Utsunomiya N.
        • et al.
        Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions.
        Biochem Biophys Res Commun. 1987; 149: 960-968
        • Romeo C.
        • Seed B.
        Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides.
        Cell. 1991; 64: 1037-1046
        • Eshhar Z.
        • Waks T.
        • Gross G.
        • Schindler D.G.
        Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.
        Proc Natl Acad Sci U S A. 1993; 90: 720-724
        • Kochenderfer J.N.
        • Feldman S.A.
        • Zhao Y.
        • et al.
        Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor.
        J Immunother. 2009; 32: 689-702
        • Kochenderfer J.N.
        • Yu Z.
        • Frasheri D.
        • Restifo N.P.
        • Rosenberg S.A.
        Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.
        Blood. 2010; 116: 3875-3886
        • Kochenderfer J.N.
        • Wilson W.H.
        • Janik J.E.
        • et al.
        Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19.
        Blood. 2010; 116: 4099-4102
        • Kochenderfer J.N.
        • Dudley M.E.
        • Feldman S.A.
        • et al.
        B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells.
        Blood. 2012; 119: 2709-2720
        • Kochenderfer J.N.
        • Dudley M.E.
        • Carpenter R.O.
        • et al.
        Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation.
        Blood. 2013; 122: 4129-4139
        • Kochenderfer J.N.
        • Dudley M.E.
        • Kassim S.H.
        • et al.
        Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor.
        J Clin Oncol. 2015; 33: 540-549
        • Porter D.L.
        • Levine B.L.
        • Kalos M.
        • Bagg A.
        • June C.H.
        Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.
        N Engl J Med. 2011; 365: 725-733
        • Kalos M.
        • Levine B.L.
        • Porter D.L.
        • et al.
        T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia.
        Sci Transl Med. 2011; 3: 95ra73
        • Grupp S.A.
        • Kalos M.
        • Barrett D.
        • et al.
        Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.
        N Engl J Med. 2013; 368: 1509-1518
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Brentjens R.J.
        • Latouche J.B.
        • Santos E.
        • et al.
        Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15.
        Nat Med. 2003; 9: 279-286
        • Brentjens R.J.
        • Santos E.
        • Nikhamin Y.
        • et al.
        Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts.
        Clin Cancer Res. 2007; 13: 5426-5435
        • Brentjens R.J.
        • Riviere I.
        • Park J.H.
        • et al.
        Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias.
        Blood. 2011; 118: 4817-4828
        • Brentjens R.J.
        • Davila M.L.
        • Riviere I.
        • et al.
        CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia.
        Sci Transl Med. 2013; 5: 177ra38
        • Terakura S.
        • Yamamoto T.N.
        • Gardner R.A.
        • Turtle C.J.
        • Jensen M.C.
        • Riddell S.R.
        Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells.
        Blood. 2012; 119: 72-82
        • Wang X.
        • Naranjo A.
        • Brown C.E.
        • et al.
        Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale.
        J Immunother. 2012; 35: 689-701
        • Haso W.
        • Lee D.W.
        • Shah N.N.
        • et al.
        Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.
        Blood. 2013; 121: 1165-1174
        • Fry T.J.
        • Mackall C.L.
        T-cell adoptive immunotherapy for acute lymphoblastic leukemia.
        Hematology Am Soc Hematol Educ Program. 2013; 2013: 348-353
        • Shah N.N.
        • Stetler-Stevenson M.
        • Yuan C.M.
        • et al.
        Minimal residual disease negative complete remissions following anti-CD22 chimeric antigen receptor (CAR) in children and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL).
        Blood. 2016; 128: 650
        • Goff S.L.
        • Dudley M.E.
        • Citrin D.E.
        • et al.
        Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma.
        J Clin Oncol. 2016; 34: 2389-2397
        • Besser M.J.
        • Shapira-Frommer R.
        • Treves A.J.
        • et al.
        Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients.
        J Immunother. 2009; 32: 415-423
        • Besser M.J.
        • Shapira-Frommer R.
        • Treves A.J.
        • et al.
        Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients.
        Clin Cancer Res. 2010; 16: 2646-2655
        • Radvanyi L.G.
        • Bernatchez C.
        • Zhang M.
        • et al.
        Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients.
        Clin Cancer Res. 2012; 18: 6758-6770
        • Kershaw M.H.
        • Westwood J.A.
        • Parker L.L.
        • et al.
        A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.
        Clin Cancer Res. 2006; 12: 6106-6115
        • Parker N.
        • Turk M.J.
        • Westrick E.
        • Lewis J.D.
        • Low P.S.
        • Leamon C.P.
        Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay.
        Anal Biochem. 2005; 338: 284-293
        • Lamers C.H.
        • Sleijfer S.
        • Vulto A.G.
        • et al.
        Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience.
        J Clin Oncol. 2006; 24: e20-e22
        • Weijtens M.E.
        • Willemsen R.A.
        • Valerio D.
        • Stam K.
        • Bolhuis R.L.
        Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity.
        J Immunol. 1996; 157: 836-843
        • Nolan K.F.
        • Yun C.O.
        • Akamatsu Y.
        • et al.
        Bypassing immunization: optimized design of “designer T cells” against carcinoembryonic antigen (CEA)-expressing tumors, and lack of suppression by soluble CEA.
        Clin Cancer Res. 1999; 5: 3928-3941
        • Beecham E.J.
        • Ortiz-Pujols S.
        • Junghans R.P.
        Dynamics of tumor cell killing by human T lymphocytes armed with an anti-carcinoembryonic antigen chimeric immunoglobulin T-cell receptor.
        J Immunother. 2000; 23: 332-343
        • Parkhurst M.R.
        • Joo J.
        • Riley J.P.
        • et al.
        Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells.
        Clin Cancer Res. 2009; 15: 169-180
        • Robbins P.F.
        • Li Y.F.
        • El-Gamil M.
        • et al.
        Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions.
        J Immunol. 2008; 180: 6116-6131
        • Zhao Y.B.
        • Wang Q.J.
        • Yang S.C.
        • et al.
        A Herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity.
        J Immunol. 2009; 183: 5563-5574
        • Morgan R.A.
        • Yang J.C.
        • Kitano M.
        • Dudley M.E.
        • Laurencot C.M.
        • Rosenberg S.A.
        Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.
        Mol Ther. 2010; 18: 843-851
        • Lammie G.
        • Cheung N.
        • Gerald W.
        • Rosenblum M.
        • Cordoncardo C.
        Ganglioside gd(2) expression in the human nervous-system and in neuroblastomas - an immunohistochemical study.
        Int J Oncol. 1993; 3: 909-915
        • Rossig C.
        • Bollard C.M.
        • Nuchtern J.G.
        • Rooney C.M.
        • Brenner M.K.
        Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy.
        Blood. 2002; 99: 2009-2016
        • Pule M.A.
        • Savoldo B.
        • Myers G.D.
        • et al.
        Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma.
        Nat Med. 2008; 14: 1264-1270
        • Chang K.
        • Pastan I.
        • Willingham M.C.
        Isolation and characterization of a monoclonal-antibody, K1, reactive with ovarian cancers and normal Mesothelium.
        Int J Cancer. 1992; 50: 373-381
        • Hassan R.
        • Bullock S.
        • Premkumar A.
        • et al.
        Phase I study of SS1P a recombinant anti-mesothelin immunotoxin given as a bolus IV infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers.
        Clin Cancer Res. 2007; 13: 5144-5149
        • Hassan R.
        • Lerner M.R.
        • Benbrook D.
        • et al.
        Antitumor activity of SS(dsFv)PE38 and SS1(dsFv)PE38, recombinant antimesothelin Immunotoxins against human gynecologic cancers grown in organotypic culture in vitro.
        Clin Cancer Res. 2002; 8: 3520-3526
        • Li Q.
        • Verschraegen C.F.
        • Mendoza J.
        • Hassan R.
        Cytotoxic activity of the recombinant anti-mesothelin immunotoxin, SS1(dsFv)PE38, towards tumor cell lines established from ascites of patients with peritoneal mesotheliomas.
        Anticancer Res. 2004; 24: 1327-1335
        • Hassan R.
        • Miller A.C.
        • Sharon E.
        • et al.
        Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression.
        Sci Transl Med. 2013; 5: 208ra147
        • Beatty G.L.
        • Haas A.R.
        • Maus M.V.
        • et al.
        Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies.
        Cancer Immunol Res. 2014; 2: 112-120
        • Carpenito C.
        • Milone M.C.
        • Hassan R.
        • et al.
        Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.
        Proc Natl Acad Sci U S A. 2009; 106: 3360-3365
        • Davis J.L.
        • Theoret M.R.
        • Zheng Z.L.
        • Lamers C.H.
        • Rosenberg S.A.
        • Morgan R.A.
        Development of human anti-murine T-cell receptor antibodies in both responding and nonresponding patients enrolled in TCR gene therapy trials.
        Clin Cancer Res. 2010; 16: 5852-5861
        • Debinski W.
        • Gibo D.M.
        • Slagle B.
        • Powers S.K.
        • Gillespie G.Y.
        Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme.
        Int J Oncol. 1999; 15: 481-486
        • Mintz A.
        • Gibo D.M.
        • Slagle-Webb B.
        • Christensen N.D.
        • Debinski W.
        IL-13R alpha 2 is a glioma-restricted receptor for interleukin-13.
        Neoplasia. 2002; 4: 388-399
        • Debinski W.
        • Thompson J.P.
        Retargeting interleukin 13 for radioimmunodetection and radioimmunotherapy of human high-grade gliomas.
        Clin Cancer Res. 1999; 5: 3143s-3147s
        • Kahlon K.S.
        • Brown C.
        • Cooper L.J.
        • Raubitschek A.
        • Forman S.J.
        • Jensen M.C.
        Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells.
        Cancer Res. 2004; 64: 9160-9166
        • Brown C.E.
        • Badie B.
        • Barish M.E.
        • et al.
        Bioactivity and safety of IL13R alpha 2-redirected chimeric antigen receptor CD8(+) T cells in patients with recurrent glioblastoma.
        Clin Cancer Res. 2015; 21: 4062-4072
        • Brown C.E.
        • Alizadeh D.
        • Starr R.
        • et al.
        Regression of glioblastoma after chimeric antigen receptor T-cell therapy.
        N Engl J Med. 2016; 375: 2561-2569
        • Girling A.
        • Bartkova J.
        • Burchell J.
        • Gendler S.
        • Gillett C.
        • Taylor-Papadimitriou J.
        A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas.
        Int J Cancer. 1989; 43: 1072-1076
        • Gaemers I.C.
        • Vos H.L.
        • Volders H.H.
        • van der Valk S.W.
        • Hilkens J.
        A stat-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells.
        J Biol Chem. 2001; 276: 6191-6199
        • Burchell J.
        • Poulsom R.
        • Hanby A.
        • et al.
        An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas.
        Glycobiology. 1999; 9: 1307-1311
        • Sewell R.
        • Backstrom M.
        • Dalziel M.
        • et al.
        The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer.
        J Biol Chem. 2006; 281: 3586-3594
        • Brockhausen I.
        • Yang J.M.
        • Burchell J.
        • Whitehouse C.
        • Taylorpapadimitriou J.
        Mechanisms underlying aberrant glycosylation of Muc1 mucin in breast-cancer cells.
        Eur J Biochem. 1995; 233: 607-617
        • Lloyd K.O.
        • Burchell J.
        • Kudryashov V.
        • Yin B.W.
        • Taylor-Papadimitriou J.
        Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells.
        J Biol Chem. 1996; 271: 33325-33334
        • Wilkie S.
        • Picco G.
        • Foster J.
        • et al.
        Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor.
        J Immunol. 2008; 180: 4901-4909
        • Sorensen A.L.
        • Reis C.A.
        • Tarp M.A.
        • et al.
        Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance.
        Glycobiology. 2006; 16: 96-107
        • Tarp M.A.
        • Sorensen A.L.
        • Mandel U.
        • et al.
        Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat.
        Glycobiology. 2007; 17: 197-209
        • Posey Jr., A.D.
        • Schwab R.D.
        • Boesteanu A.C.
        • et al.
        Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane mucin MUC1 control Adenocarcinoma.
        Immunity. 2016; 44: 1444-1454
        • Hatanpaa K.J.
        • Burma S.
        • Zhao D.
        • Habib A.A.
        Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance.
        Neoplasia. 2010; 12: 675-684
        • Chu C.T.
        • Everiss K.D.
        • Wikstrand C.J.
        • Batra S.K.
        • Kung H.J.
        • Bigner D.D.
        Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII).
        Biochem J. 1997; 324: 855-861
        • Gupta P.
        • Han S.Y.
        • Holgado-Madruga M.
        • et al.
        Development of an EGFRvIII specific recombinant antibody.
        BMC Biotechnol. 2010; 10: 72
        • Johnson L.A.
        • Scholler J.
        • Ohkuri T.
        • et al.
        Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.
        Sci Transl Med. 2015; 7: 275ra22
        • Morgan R.A.
        • Johnson L.A.
        • Davis J.L.
        • et al.
        Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma.
        Hum Gene Ther. 2012; 23: 1043-1053
        • Hintzen R.Q.
        • Lens S.M.
        • Beckmann M.P.
        • Goodwin R.G.
        • Lynch D.
        • van Lier R.A.
        Characterization of the human CD27 ligand, a novel member of the TNF gene family.
        J Immunol. 1994; 152: 1762-1773
        • Junker K.
        • Hindermann W.
        • von Eggeling F.
        • Diegmann J.
        • Haessler K.
        • Schubert J.
        CD70: a new tumor specific biomarker for renal cell carcinoma.
        J Urol. 2005; 173: 2150-2153
        • Chahlavi A.
        • Rayman P.
        • Richmond A.L.
        • et al.
        Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70.
        Cancer Res. 2005; 65: 5428-5438
        • Hishima T.
        • Fukayama M.
        • Hayashi Y.
        • et al.
        CD70 expression in thymic carcinoma.
        Am J Surg Pathol. 2000; 24: 742-746
        • Shaffer D.R.
        • Savoldo B.
        • Yi Z.Z.
        • et al.
        T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies.
        Blood. 2011; 117: 4304-4314
        • Wang Q.J.
        • Yu Z.
        • Hanada K.I.
        • et al.
        Preclinical evaluation of chimeric antigen receptors targeting CD70-expressing cancers.
        Clin Cancer Res. 2017; 23: 2267-2276
        • Kowolik C.M.
        • Topp M.S.
        • Gonzalez S.
        • et al.
        CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells.
        Cancer Res. 2006; 66: 10995-11004
        • Imai C.
        • Mihara K.
        • Andreansky M.
        • et al.
        Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia.
        Leukemia. 2004; 18: 676-684
        • Milone M.C.
        • Fish J.D.
        • Carpenito C.
        • et al.
        Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo.
        Mol Ther. 2009; 17: 1453-1464
        • Zhong X.S.
        • Matsushita M.
        • Plotkin J.
        • Riviere I.
        • Sadelain M.
        Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI(3)kinase/AKT/Bcl-X-L activation and CD8(+) T cell-mediated tumor eradication.
        Mol Ther. 2010; 18: 413-420
        • Long A.H.
        • Haso W.M.
        • Shern J.F.
        • et al.
        4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors.
        Nat Med. 2015; 21: 581-590
        • Nieba L.
        • Honegger A.
        • Krebber C.
        • Pluckthun A.
        Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment.
        Protein Eng. 1997; 10: 435-444
        • Dolezal O.
        • De Gori R.
        • Walter M.
        • et al.
        Single-chain Fv multimers of the anti-neuraminidase antibody NC10: the residue at position 15 in the V(L) domain of the scFv-0 (V(L)-V(H)) molecule is primarily responsible for formation of a tetramer-trimer equilibrium.
        Protein Eng. 2003; 16: 47-56
        • Whitlow M.
        • Filpula D.
        • Rollence M.L.
        • Feng S.L.
        • Wood J.F.
        Multivalent Fvs - characterization of single-chain Fv oligomers and preparation of a Bispecific Fv.
        Protein Eng. 1994; 7: 1017-1026
        • Hudecek M.
        • Sommermeyer D.
        • Kosasih P.L.
        • et al.
        The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity.
        Cancer Immunol Res. 2015; 3: 125-135
        • Jonnalagadda M.
        • Mardiros A.
        • Urak R.
        • et al.
        Chimeric antigen receptors with mutated IgG4 Fc spacer avoid Fc receptor binding and improve T cell persistence and antitumor efficacy.
        Mol Ther. 2015; 23: 757-768
        • Roybal K.T.
        • Rupp L.J.
        • Morsut L.
        • et al.
        Precision tumor recognition by T cells with combinatorial antigen-sensing circuits.
        Cell. 2016; 164: 770-779
        • Di Stasi A.
        • Tey S.K.
        • Dotti G.
        • et al.
        Inducible apoptosis as a safety switch for adoptive cell therapy.
        N Engl J Med. 2011; 365: 1673-1683
        • Paszkiewicz P.J.
        • Frassle S.P.
        • Srivastava S.
        • et al.
        Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.
        J Clin Invest. 2016; 126: 4262-4272
        • Klebanoff C.A.
        • Gattinoni L.
        • Palmer D.C.
        • et al.
        Determinants of successful CD8(+) T-cell adoptive immunotherapy for large established tumors in mice.
        Clin Cancer Res. 2011; 17: 5343-5352
        • Lugli E.
        • Dominguez M.H.
        • Gattinoni L.
        • et al.
        Superior T memory stem cell persistence supports long-lived T cell memory.
        J Clin Invest. 2013; 123: 594-599
        • Berger C.
        • Jensen M.C.
        • Lansdorp P.M.
        • Gough M.
        • Elliott C.
        • Riddell S.R.
        Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates.
        J Clin Invest. 2008; 118: 294-305
        • Huang J.P.
        • Khong H.T.
        • Dudley M.E.
        • et al.
        Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression.
        J Immunother. 2005; 28: 258-267
        • Wolfl M.
        • Merker K.
        • Morbach H.
        • et al.
        Primed tumor-reactive multifunctional CD62L(+) human CD8(+) T cells for immunotherapy.
        Cancer Immunol Immunother. 2011; 60: 173-186
        • Zeng R.
        • Spolski R.
        • Finkelstein S.E.
        • et al.
        Synergy of IL-21 and IL-15 in regulating CD8(+) T cell expansion and function.
        J Exp Med. 2005; 201: 139-148
        • Sommermeyer D.
        • Hudecek M.
        • Kosasih P.L.
        • et al.
        Chimeric antigen receptor-modified T cells derived from defined CD8(+) and CD4(+) subsets confer superior antitumor reactivity in vivo.
        Leukemia. 2016; 30: 492-500
        • Wang X.L.
        • Popplewell L.L.
        • Wagner J.R.
        • et al.
        Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL.
        Blood. 2016; 127: 2980-2990
        • Kerkar S.P.
        • Muranski P.
        • Kaiser A.
        • et al.
        Tumor-specific CD8(+) T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts.
        Cancer Res. 2010; 70: 6725-6734
        • Zhang L.
        • Kerkar S.P.
        • Yu Z.
        • et al.
        Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment.
        Mol Ther. 2011; 19: 751-759
        • Zhang L.
        • Morgan R.A.
        • Beane J.D.
        • et al.
        Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma.
        Clin Cancer Res. 2015; 21: 2278-2288
        • Muranski P.
        • Boni A.
        • Antony P.A.
        • et al.
        Tumor-specific Th17-polarized cells eradicate large established melanoma.
        Blood. 2008; 112: 362-373
        • Chalmin F.
        • Mignot G.
        • Bruchard M.
        • et al.
        Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression.
        Immunity. 2012; 36: 362-373
        • Su S.
        • Hu B.
        • Shao J.
        • et al.
        CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients.
        Sci Rep. 2016; 6: 20070
        • Palmer D.C.
        • Guittard G.C.
        • Franco Z.
        • et al.
        Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance.
        J Exp Med. 2015; 212: 2095-2113