Advertisement
Original Article| Volume 186, P19-35.e5, August 2017

LXR-dependent regulation of macrophage-specific reverse cholesterol transport is impaired in a model of genetic diabesity

  • Author Footnotes
    1 These authors contributed equally to this work.
    Teresa L. Errico
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau – Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain

    Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Karen Alejandra Méndez-Lara
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau – Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain

    Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
    Search for articles by this author
  • David Santos
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
    Search for articles by this author
  • Núria Cabrerizo
    Affiliations
    Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau – Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain
    Search for articles by this author
  • Lucía Baila-Rueda
    Affiliations
    CIBER de Enfermedades Cardiovasculares, Madrid, Spain

    Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
    Search for articles by this author
  • Jari Metso
    Affiliations
    National Institute for Health and Welfare, Genomics and Biomarkers unit, and Minerva Foundation Institute for medical Research, Biomedicum, Helsinki, Finland
    Search for articles by this author
  • Ana Cenarro
    Affiliations
    CIBER de Enfermedades Cardiovasculares, Madrid, Spain

    Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
    Search for articles by this author
  • Eva Pardina
    Affiliations
    Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
    Search for articles by this author
  • Albert Lecube
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain

    Unitat de Recerca en Diabetes i Metabolisme, Institut de Recerca Hospital Universitari Vall d'Hebron, Barcelona, Spain
    Search for articles by this author
  • Matti Jauhiainen
    Affiliations
    National Institute for Health and Welfare, Genomics and Biomarkers unit, and Minerva Foundation Institute for medical Research, Biomedicum, Helsinki, Finland
    Search for articles by this author
  • Julia Peinado-Onsurbe
    Affiliations
    Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
    Search for articles by this author
  • Joan Carles Escolà-Gil
    Affiliations
    Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau – Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain

    Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain

    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
    Search for articles by this author
  • Author Footnotes
    2 These authors are co-principal and co-corresponding authors of this work.
    Francisco Blanco-Vaca
    Correspondence
    Reprint requests: Dr Francisco Blanco-Vaca or Josep Julve, IIB-Sant Pau, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain
    Footnotes
    2 These authors are co-principal and co-corresponding authors of this work.
    Affiliations
    Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau – Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain

    Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain

    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
    Search for articles by this author
  • Author Footnotes
    2 These authors are co-principal and co-corresponding authors of this work.
    Josep Julve
    Correspondence
    Reprint requests: Dr Francisco Blanco-Vaca or Josep Julve, IIB-Sant Pau, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain
    Footnotes
    2 These authors are co-principal and co-corresponding authors of this work.
    Affiliations
    Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau – Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain

    Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain

    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    2 These authors are co-principal and co-corresponding authors of this work.
      Diabesity and fatty liver have been associated with low levels of high-density lipoprotein cholesterol, and thus could impair macrophage-specific reverse cholesterol transport (m-RCT). Liver X receptor (LXR) plays a critical role in m-RCT. Abcg5/g8 sterol transporters, which are involved in cholesterol trafficking into bile, as well as other LXR targets, could be compromised in the livers of obese individuals. We aimed to determine m-RCT dynamics in a mouse model of diabesity, the db/db mice. These obese mice displayed a significant retention of macrophage-derived cholesterol in the liver and reduced fecal cholesterol elimination compared with nonobese mice. This was associated with a significant downregulation of the hepatic LXR targets, including Abcg5/g8. Pharmacologic induction of LXR promoted the delivery of total tracer output into feces in db/db mice, partly due to increased liver and small intestine Abcg5/Abcg8 gene expression. Notably, a favorable upregulation of the hepatic levels of ABCG5/G8 and NR1H3 was also observed postoperatively in morbidly obese patients, suggesting a similar LXR impairment in these patients. In conclusion, our data show that downregulation of the LXR axis impairs cholesterol transfer from macrophages to feces in db/db mice, whereas the induction of the LXR axis partly restores impaired m-RCT by elevating the liver and small intestine expressions of Abcg5/g8.

      Abbreviations:

      ABC (ATP-binding cassette transporters), apo (apolipoprotein), CVD (cardiovascular disease), HDL (high-density lipoprotein), HDL-C (HDL cholesterol), LDL (low-density lipoprotein), LDL-C (LDL cholesterol), m-RCT (in vivo macrophage-specific reverse cholesterol transport), T2D (type 2 diabetes mellitus)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bays H.E.
        • Toth P.P.
        • Kris-Etherton P.M.
        • et al.
        Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association.
        J Clin Lipidol. 2013; 7: 304-383
        • Tchernof A.
        • Despres J.P.
        Pathophysiology of human visceral obesity: an update.
        Physiol Rev. 2013; 93: 359-404
        • Khera A.V.
        • Cuchel M.
        • de la Llera-Moya M.
        • et al.
        Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
        N Engl J Med. 2011; 364: 127-135
        • Lee-Rueckert M.
        • Escola-Gil J.C.
        • Kovanen P.T.
        HDL functionality in reverse cholesterol transport–Challenges in translating data emerging from mouse models to human disease.
        Biochim Biophys Acta. 2016; 1861: 566-583
        • Tan K.C.
        Reverse cholesterol transport in type 2 diabetes mellitus.
        Diabetes Obes Metab. 2009; 11: 534-543
        • Nestel P.
        • Hoang A.
        • Sviridov D.
        • Straznicky N.
        Cholesterol efflux from macrophages is influenced differentially by plasmas from overweight insulin-sensitive and -resistant subjects.
        Int J Obes (lond). 2012; 36: 407-413
        • Khera A.V.
        • Rader D.J.
        Cholesterol efflux capacity: full steam ahead or a bump in the road?.
        Arterioscler Thromb Vasc Biol. 2013; 33: 1449-1451
        • Low H.
        • Hoang A.
        • Forbes J.
        • et al.
        Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models.
        Diabetologia. 2012; 55: 2513-2521
        • Sabeva N.S.
        • Rouse E.J.
        • Graf G.A.
        Defects in the leptin axis reduce abundance of the ABCG5-ABCG8 sterol transporter in liver.
        J Biol Chem. 2007; 282: 22397-22405
        • Yu L.
        • Hammer R.E.
        • Li-Hawkins J.
        • et al.
        Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion.
        Proc Natl Acad Sci U S A. 2002; 99: 16237-16242
        • Yu L.
        • Li-Hawkins J.
        • Hammer R.E.
        • et al.
        Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol.
        J Clin Invest. 2002; 110: 671-680
        • Langheim S.
        • Yu L.
        • von Bergmann K.
        • et al.
        ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile.
        J Lipid Res. 2005; 46: 1732-1738
        • Yu L.
        • Gupta S.
        • Xu F.
        • et al.
        Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion.
        J Biol Chem. 2005; 280: 8742-8747
        • Klett E.L.
        • Lu K.
        • Kosters A.
        • et al.
        A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol.
        BMC Med. 2004; 2: 5
        • Plosch T.
        • Bloks V.W.
        • Terasawa Y.
        • et al.
        Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor.
        Gastroenterology. 2004; 126: 290-300
        • Yang C.
        • Yu L.
        • Li W.
        • Xu F.
        • Cohen J.C.
        • Hobbs H.H.
        Disruption of cholesterol homeostasis by plant sterols.
        J Clin Invest. 2004; 114: 813-822
        • Salen G.
        • Shore V.
        • Tint G.S.
        • et al.
        Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis.
        J Lipid Res. 1989; 30: 1319-1330
        • Lutjohann D.
        • Bjorkhem I.
        • Beil U.F.
        • von Bergmann K.
        Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment.
        J Lipid Res. 1995; 36: 1763-1773
        • Yu L.
        • York J.
        • von Bergmann K.
        • Lutjohann D.
        • Cohen J.C.
        • Hobbs H.H.
        Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8.
        J Biol Chem. 2003; 278: 15565-15570
        • Yu X.H.
        • Qian K.
        • Jiang N.
        • Zheng X.L.
        • Cayabyab F.S.
        • Tang C.K.
        ABCG5/ABCG8 in cholesterol excretion and atherosclerosis.
        Clin Chim Acta. 2014; 428: 82-88
      1. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and treatment of high blood cholesterol in Adults (Adult treatment panel III).
        JAMA. 2001; 285: 2486-2497
        • Lohman T.
        • Roche A.
        • Martorel R.
        Standardization of anthropometric measurements.
        Human Kinetics Publishers, Champaign, IL1988: 39-80
        • Bonora E.
        • Micciolo R.
        • Ghiatas A.A.
        • et al.
        Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements?.
        Metabolism. 1995; 44: 1617-1625
        • van Haperen R.
        • van Tol A.
        • Vermeulen P.
        • et al.
        Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1082-1088
        • Baila-Rueda L.
        • Cenarro A.
        • Cofan M.
        • et al.
        Simultaneous determination of oxysterols, phytosterols and cholesterol precursors by high performance liquid chromatography tandem mass spectrometry in human serum.
        Analytical Methods. 2013; 5: 2249-2257
        • Marzal-Casacuberta A.
        • Blanco-Vaca F.
        • Ishida B.Y.
        • et al.
        Functional lecithin:cholesterol acyltransferase deficiency and high density lipoprotein deficiency in transgenic mice overexpressing human apolipoprotein A-II.
        J Biol Chem. 1996; 271: 6720-6728
        • Jauhiainen M.
        • Metso J.
        • Pahlman R.
        • Blomqvist S.
        • van Tol A.
        • Ehnholm C.
        Human plasma phospholipid transfer protein causes high density lipoprotein conversion.
        J Biol Chem. 1993; 268: 4032-4036
        • Julve J.
        • Escola-Gil J.C.
        • Ribas V.
        • et al.
        Mechanisms of HDL deficiency in mice overexpressing human apoA-II.
        J Lipid Res. 2002; 43: 1734-1742
        • Escola-Gil J.C.
        • Lee-Rueckert M.
        • Santos D.
        • Cedo L.
        • Blanco-Vaca F.
        • Julve J.
        Quantification of in vitro macrophage cholesterol efflux and in vivo macrophage-specific reverse cholesterol transport.
        Methods Mol Biol. 2015; 1339: 211-233
        • Bouchard G.
        • Johnson D.
        • Carver T.
        • Paigen B.
        • Carey M.C.
        Cholesterol gallstone formation in overweight mice establishes that obesity per se is not linked directly to cholelithiasis risk.
        J Lipid Res. 2002; 43: 1105-1113
        • Tran K.Q.
        • Graewin S.J.
        • Swartz-Basile D.A.
        • Nakeeb A.
        • Svatek C.L.
        • Pitt H.A.
        Leptin-resistant obese mice have paradoxically low biliary cholesterol saturation.
        Surgery. 2003; 134: 372-377
        • Sabeva N.S.
        • Liu J.
        • Graf G.A.
        The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease.
        Curr Opin Endocrinol Diabetes Obes. 2009; 16: 172-177
        • Wang Y.
        • Su K.
        • Sabeva N.S.
        • et al.
        GRP78 rescues the ABCG5 ABCG8 sterol transporter in db/db mice.
        Metabolism. 2015; 64: 1435-1443
        • Su K.
        • Sabeva N.S.
        • Liu J.
        • et al.
        The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation.
        J Biol Chem. 2012; 287: 28564-28575
        • Guillemot-Legris O.
        • Mutemberezi V.
        • Cani P.D.
        • Muccioli G.G.
        Obesity is associated with changes in oxysterol metabolism and levels in mice liver, hypothalamus, adipose tissue and plasma.
        Sci Rep. 2016; 6: 19694
        • Ren S.
        • Ning Y.
        Sulfation of 25-hydroxycholesterol regulates lipid metabolism, inflammatory responses, and cell proliferation.
        Am J Physiol Endocrinol Metab. 2014; 306: E123-E130
        • Naik S.U.
        • Wang X.
        • Da Silva J.S.
        • et al.
        Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo.
        Circulation. 2006; 113: 90-97
        • Escola-Gil J.C.
        • Llaverias G.
        • Julve J.
        • Jauhiainen M.
        • Mendez-Gonzalez J.
        • Blanco-Vaca F.
        The cholesterol content of Western diets plays a major role in the paradoxical increase in high-density lipoprotein cholesterol and upregulates the macrophage reverse cholesterol transport pathway.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2493-2499
        • Mittendorfer B.
        Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking.
        Curr Opin Clin Nutr Metab Care. 2011; 14: 535-541
        • Biddinger S.B.
        • Haas J.T.
        • Yu B.B.
        • et al.
        Hepatic insulin resistance directly promotes formation of cholesterol gallstones.
        Nat Med. 2008; 14: 778-782
        • Grundy S.M.
        Metabolic complications of obesity.
        Endocrine. 2000; 13: 155-165
        • Clement K.
        • Vaisse C.
        • Lahlou N.
        • et al.
        A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.
        Nature. 1998; 392: 398-401
        • Munzberg H.
        • Bjornholm M.
        • Bates S.H.
        • Myers Jr., M.G.
        Leptin receptor action and mechanisms of leptin resistance.
        Cell Mol Life Sci. 2005; 62: 642-652
        • van der Veen J.N.
        • Havinga R.
        • Bloks V.W.
        • Groen A.K.
        • Kuipers F.
        Cholesterol feeding strongly reduces hepatic VLDL-triglyceride production in mice lacking the liver X receptor alpha.
        J Lipid Res. 2007; 48: 337-347
        • Wang H.H.
        • Patel S.B.
        • Carey M.C.
        • Wang D.Q.
        Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8(-/-) mice.
        Hepatology. 2007; 45: 998-1006
        • Calpe-Berdiel L.
        • Rotllan N.
        • Fievet C.
        • Roig R.
        • Blanco-Vaca F.
        • Escola-Gil J.C.
        Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8.
        J Lipid Res. 2008; 49: 1904-1911
        • Dikkers A.
        • de Boer J.F.
        • Groen A.K.
        • Tietge U.J.
        Hepatic ABCG5/G8 overexpression substantially increases biliary cholesterol secretion but does not impact in vivo macrophage-to-feces RCT.
        Atherosclerosis. 2015; 243: 402-406
        • Bloks V.W.
        • Bakker-Van Waarde W.M.
        • Verkade H.J.
        • et al.
        Down-regulation of hepatic and intestinal Abcg5 and Abcg8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes.
        Diabetologia. 2004; 47: 104-112
        • Berge K.E.
        • Tian H.
        • Graf G.A.
        • et al.
        Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.
        Science. 2000; 290: 1771-1775
        • Lee-Rueckert M.
        • Blanco-Vaca F.
        • Kovanen P.T.
        • Escola-Gil J.C.
        The role of the gut in reverse cholesterol transport–focus on the enterocyte.
        Prog Lipid Res. 2013; 52: 317-328