Advertisement
Review Article| Volume 189, P65-75, November 2017

The future perspective: metabolomics in laboratory medicine for inborn errors of metabolism

  • Yana Sandlers
    Correspondence
    Reprint requests: Yana Sandlers, Department of Chemistry, Cleveland State University, 2323 Euclid Ave, Cleveland, OH 44115
    Affiliations
    Department of Chemistry, Cleveland State University, Cleveland, Ohio
    Search for articles by this author
      Metabolomics can be described as a simultaneous and comprehensive analysis of small molecules in a biological sample. Recent technological and bioinformatics advances have facilitated large-scale metabolomic studies in many areas, including inborn errors of metabolism (IEMs). Despite significant improvements in the diagnosis and treatment of some IEMs, it is still challenging to understand how genetic variation affects disease progression and susceptibility. In addition, a search for new more personalized therapies and a growing demand for tools to monitor the long-term metabolic effects of existing therapies set the stage for metabolomics integration in preclinical and clinical studies. While targeted metabolomics approach is a common practice in biochemical genetics laboratories for biochemical diagnosis and monitoring of IEMs, applications of untargeted metabolomics in the clinical laboratories are still in infancy, facing some challenges. It is however, expected in the future to dramatically change the scope and utility of the clinical laboratory playing a significant role in patient management. This review provides an overview of targeted and global, large-scale metabolomic studies applied to investigate various IEMs. We discuss an existing and prospective clinical applications of metabolomics in IEMs for better diagnosis and deep understanding of complex metabolic perturbations associated with the etiology of inherited metabolic disorders.

      Abbreviations:

      GC-MS (gas chromatography mass spectrometry), LC-MS (liquid chromatography mass spectrometry), CSF (Cerebrospinal fluid), IEM (inborn errors of metabolism), MALDI (matrix-assisted laser desorption ionization), SELDI (Surface-enhanced laser desorption/ionization), NMR (nuclear magnetic resonance), NBS (newborn screening), PKU (phenylketonuria), LCHAD (Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency), TFP (Trifunctional protein deficiency), MMA (methylmalonic acedimia), PA (propionic acedimia), OTC (Ornithine transcarbamylase deficiency), RDC (respiratory chain deficiencies), SLOS (Smith-Lemli Opitz syndrome), CTX (Cerebrotendinous xanthomatosis), RP (Reverse phase), HILIC (hydrophilic interaction liquid chromatography), ROC (receiver-operating characteristic), AUC (Area under the curve)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nicholson J.K.
        • Lindon J.C.
        Systems biology: Metabonomics.
        Nature. 2008; 455: 1054-1056
        • Horning E.C.
        Use of combined gas-liquid chromatography and mass spectrometry for clinical problems.
        Clin Chem. 1968; 14: 777
        • Behar K.L.
        • Denhollander J.A.
        • Stromski M.E.
        • et al.
        High resolution H-1 nuclear magnetic resonance study of cerebral hypoxia in vivo.
        Proc Natl Acad Sci U S A. 1983; 80: 4945-4948
        • Oliver S.G.
        • Winson M.K.
        • Kell D.B.
        • Baganz F.
        Systematic functional analysis of the yeast genome.
        Trends Biotechnol. 1998; 16: 373-378
        • Nicholson J.K.
        • Lindon J.C.
        • Holmes E.
        “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.
        Xenobiotica. 1999; 29: 1181-1189
        • Clendinen C.S.
        • Lee-McMullen B.
        • Williams C.M.
        • et al.
        13C NMR metabolomics: applications at natural abundance.
        Anal Chem. 2014; 86: 9242-9250
        • Aruni DeSilva M.
        • Shanaiah N.
        • Gowda G.A.N.
        • Rosa-Pérez K.
        • Hanson B.A.
        • Raftery D.
        Application of 31P NMR spectroscopy and chemical derivatization for metabolite profiling of lipophilic compounds in human serum.
        Magn Reson Chem. 2009; 47: S74-S80
        • Karaman I.
        Preprocessing and pretreatment of metabolomics data for statistical analysis.
        Adv Exp Med Biol. 2017; 965: 145-161
        • Ren S.
        • Hinzman A.A.
        • Kang E.L.
        • Szczesniak-Long R.D.
        • Lu J.
        Computational and statistical analysis of metabolomics data.
        Metabolomics. 2015; 11: 1492-1513
        • Kankainen M.
        • Gopalacharyulu P.
        • Holm L.
        • Oresic M.
        MPEA—metabolite pathway enrichment analysis.
        Bioinformatics. 2011; 27: 1878-1879
        • Chagoyen M.
        • Pazos F.
        Tools for the functional interpretation of metabolomic experiments.
        Brief Bioinform. 2013; 14: 737-744
        • Mak C.M.
        • Lee H.C.
        • Chan A.Y.
        • Lam C.W.
        Inborn errors of metabolism and expanded newborn screening: review and update.
        Crit Rev Clin Lab Sci. 2013; 50: 142-162
        • Vernon H.
        Inborn errors of metabolism advances in diagnosis and therapy.
        JAMA Pediatr. 2015; 169: 778-782
        • Wilcken B.
        • Wiley V.
        Newborn screening.
        Pathology. 2008; 40: 104-115
        • Millington D.S.
        • Kodo N.
        • Norwood D.L.
        • Roe C.R.
        Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism.
        J Inherit Metab Dis. 1990; 13: 321-324
        • Chace D.H.
        • Hillman S.L.
        • Millington D.S.
        • Kahler S.G.
        • Roe C.R.
        • Naylor E.W.
        Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry.
        Clin Chem. 1995; 41: 62-68
        • Rinaldo P.
        • Cowan T.M.
        • Matern D.
        Acylcarnitine profile analysis.
        Genet Med. 2008; 10: 151-156
        • Chace D.H.
        • Kalas T.A.
        • Naylor E.W.
        Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns.
        Clin Chem. 2003; 49: 1797-1817
        • Matern D.
        • Gavrilov D.
        • Oglesbee D.
        • Raymond K.
        • Rinaldo P.
        • Tortorelli S.
        Newborn screening for lysosomal storage disorders.
        Semin Perinatol. 2015; 39: 206-216
        • Vogel B.H.
        • Bradley S.E.
        • Adams D.J.
        • et al.
        Newborn screening for X linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines.
        Mol Genet Metab. 2015; 114: 599-603
        • Vaz F.M.
        • Bootsma A.H.
        • Kulik W.
        • et al.
        A newborn screening method for cerebrotendinous xanthomatosis using bile alcohol glucuronides and metabolite ratios.
        J Lipid Res. 2017; 58: 1002-1007
        • Mütze U.
        • Beblo S.
        • Kortz L.
        • et al.
        Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.
        PLoS One. 2012; 7: e43021
        • McCoin C.S.
        • Piccolo B.D.
        • Knotts T.A.
        Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation.
        J Inherit Metab Dis. 2016; 39: 399-408
        • Janeckova H.
        • Hron K.
        • Wojtowicz P.
        • et al.
        Targeted metabolomic analysis of plasma samples for the diagnosis of inherited metabolic disorders.
        J Chromatogr A. 2012; 1226: 11-17
        • Miller M.J.
        • Kennedy A.D.
        • Eckhart A.D.
        • et al.
        Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism.
        J Inherit Metab Dis. 2015; 38: 1029-1039
        • Fan M.
        • Sidhu R.
        • Fujiwara H.
        • et al.
        Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling.
        J Lipid Res. 2013; 54: 2800-2814
        • Wikoff W.R.
        • Gangoiti J.A.
        • Barshop B.A.
        • Siuzdak G.
        Metabolomics identifies perturbations in human disorders of propionate metabolism.
        Clin Chem. 2007; 53: 2169-2176
        • Thompson L.J.
        • Strittmatter L.
        • Tardif J.
        A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh Syndrome.
        Cell Rep. 2015; 13: 981-989
        • Barshop B.A.
        Metabolomic approaches to mitochondrial disease: correlation of urine organic acids.
        Mitochondrion. 2004; 4: 521-527
        • Oostendorp M.
        • Engelke U.F.
        • Willemsen M.A.
        • Wevers R.A.
        Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy.
        Clin Chem. 2006; 52: 1395-1405
        • Sandlers Y.
        • Mercier K.
        • Pathmasiri W.
        • et al.
        Metabolomics reveals new mechanisms for pathogenesis in Barth Syndrome and introduces novel roles for cardiolipin in cellular function.
        PLoS One. 2016; 11: e0151802
        • Minkler P.E.
        • Stoll M.S.
        • Ingalls S.T.
        • Yang S.
        • Kerner J.
        • Hoppel C.L.
        Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization mass spectrometry.
        Clin Chem. 2008; 54: 1443-1454
        • Filee R.
        • Schoos R.
        • Boemer F.
        Evaluation of physiological amino acids profiling by tandem mass spectrometry.
        JIMD Rep. 2014; 13: 119-128
        • Karam P.E.
        • Majdalani M.N.
        • Daher R.T.
        • Barhoumi A.
        • Yazbeck N.
        Cardiovascular disease biomarkers in patients with inborn errors of protein metabolism: a pilot study.
        J Hum Nutr Diet. 2015; 28: 344-349
        • Camp K.M.
        • Lloyd-Puryear M.A.
        • Yao L.
        • et al.
        Expanding research to provide an evidence base for nutritional interventions for the management of inborn errors of metabolism.
        Mol Genet Metab. 2013; 109: 319-328
        • Lightowlers R.N.
        • Taylor R.W.
        • Turnbull D.M.
        Mutations causing mitochondrial disease: what is new and what challenges remain.
        Science. 2015; 349: 1494-1499
        • El-Hattaba A.W.
        • Scaglia F.
        Mitochondrial cytopathies.
        Cell Calcium. 2016; 60: 199-206
        • Reinecke C.J.
        • Koekemoer G.
        • van der Westhuizen F.H.
        • et al.
        Metabolomics of urinary organic acids in respiratory chain deficiencies in children.
        Metabolomics. 2012; 8: 264-283
        • Han X.
        • Gross R.W.
        Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples.
        Mass Spectrom Rev. 2005; 24: 367-412
        • Garcia-Cazorla À.
        • Mochel F.
        • Lamari F.
        • Saudubray J.M.
        The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview.
        J Inherit Metab Dis. 2015; 38: 19-40
        • Kelley R.I.
        • Herman G.E.
        Inborn errors of sterol biosynthesis.
        Annu Rev Genomics Hum Genet. 2001; 2: 299-341
        • Byeon S.K.
        • Kim J.Y.
        • Lee J.S.
        • Moon M.H.
        Variations in plasma and urinary lipids in response to enzyme replacement therapy for Fabry disease patients by nanoflow UPLC-ESI-MS/MS.
        Anal Bioanal Chem. 2016; 408: 2265-2274
        • Mignarri A.
        • Magni A.
        • Del Puppo M.
        • et al.
        Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis.
        J Inherit Metab Dis. 2016; 39: 75-83
        • Vorkas P.A.
        • Isaac G.
        • Anwar M.A.
        • Davies A.H.
        • Want E.J.
        • Nicholson J.K.
        • Holmes E.
        Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease.
        Anal Chem. 2015; 87: 4184-4193
        • Ivanisevic J.
        • Zhu Z.J.
        • Plate L.
        • et al.
        Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism.
        Anal Chem. 2013; 85: 6876-6884
        • Spagou K.
        • Wilson I.D.
        • Masson P.
        • et al.
        HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies.
        Anal Chem. 2011; 83: 382-390
        • Trevedi D.K.
        • Iles R.K.
        HILIC-MS-based shotgun metabolomic profiling of maternal urine at 9–23 weeks of gestation – establishing the baseline changes in the maternal metabolome.
        Biomed Chromatogr. 2015; 29: 240-245
        • Ortmayr K.
        • Causon T.J.
        • Hann S.
        • Koellensperger G.
        Increasing selectivity and coverage in LC-MS based metabolome analysis.
        Trends Anal Chem. 2016; 82: 358-366
        • Siskos A.P.
        • Jain P.
        • Römisch-Margl W.
        • et al.
        Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma.
        Anal Chem. 2017; 89: 656-665
        • Cheema A.K.
        • Asara J.M.
        • Wang Y.
        • Neubert T.A.
        • Tolstikov V.
        • Turck C.W.
        The ABRF metabolomics research group 2013 study: investigation of spiked compound differences in a human plasma matrix.
        J Biomol Tech. 2015; 26: 83-89
        • Kamleh M.A.
        • Ebbels T.M.
        • Spagou K.
        • Masson P.
        • Want E.J.
        Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies.
        Anal Chem. 2012; 84: 2670-2677
        • Kirwan J.A.
        • Broadhurst D.I.
        • Davidson R.L.
        • Viant M.R.
        Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow.
        Anal Bioanal Chem. 2013; 405: 5147-5157
        • Brunius C.
        • Shi L.
        • Landberg R.
        Large-scale untargeted LC-MS metabolomics data correction using between-batch feature alignment and cluster-based within-batch signal intensity drift correction.
        Metabolomics. 2016; 12: 173
        • Sumner L.W.
        • Amberg A.
        • Barrett D.
        • et al.
        Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI).
        Metabolomics. 2007; 3: 211-221
        • Tautenhahn R.
        • Cho K.
        • Uritboonthai W.
        • Zhu Z.
        • Patti G.J.
        • Siuzdak G.
        An accelerated workflow for untargeted metabolomics using the METLIN database.
        Nat Biotechnol. 2012; 30: 826-828
        • Wang Y.
        • Kora G.
        • Bowen B.P.
        • Pan C.
        MIDAS: a database-searching algorithm for metabolite identification in metabolomics.
        Anal Chem. 2014; 86: 9496-9503
        • Bingol K.
        • Bruschweiler-Li L.
        • Yu C.
        • Somogyi A.
        • Zhang F.
        • Brüschweiler R.
        Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures.
        Anal Chem. 2015; 87: 3864-3870
        • Zhou B.
        • Wang J.
        • Ressom H.W.
        MetaboSearch: tool for mass-based metabolite identification using multiple databases.
        PLoS One. 2012; 7: e40096
        • Obuchowski N.A.
        • Lieber M.L.
        • Wians F.H.
        ROC curves in clinical chemistry: uses, misuses, and possible solutions.
        Clin Chem. 2004; 50: 1118-1125
        • Xia J.
        • Broadhurst D.I.
        • Wilson M.
        • Wishart D.S.
        Translational biomarker discovery in clinical metabolomics: an introductory tutorial.
        Metabolomics. 2013; 9: 280-299
        • Stone M.
        Cross-validatory choice and assessment of statistical predictions.
        J R Statist Soc B. 1974; 36: 111-147
        • Lee J.U.
        • Lee Y.H.
        • Kim S.Y.
        • et al.
        Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography–mass spectrometry.
        J Chromatogr A. 2016; 1453: 105-115