Advertisement

Lipidomics in translational research and the clinical significance of lipid-based biomarkers

  • Daniel J. Stephenson
    Affiliations
    Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, Va
    Search for articles by this author
  • L. Alexis Hoeferlin
    Affiliations
    Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, Va
    Search for articles by this author
  • Charles E. Chalfant
    Correspondence
    Reprint requests: Charles E. Chalfant, Department of Biochemistry, Virginia Commonwealth University, Sanger Hall, 1101 E. Marshall St, Richmond, VA 23298
    Affiliations
    Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, Va

    Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Va

    VCU Massey Cancer Center, Cancer Cell Signaling Program, Virginia Commonwealth University, Richmond, Va

    VCU Institute of Molecular Medicine, Richmond, Va

    VCU Johnson Center for Critical Care and Pulmonary Research, Richmond, Va
    Search for articles by this author
      Lipidomics is a rapidly developing field of study that focuses on the identification and quantitation of various lipid species in the lipidome. Lipidomics has now emerged in the forefront of scientific research due to the importance of lipids in metabolism, cancer, and disease. Using both targeted and untargeted mass spectrometry as a tool for analysis, progress in the field has rapidly progressed in the last decade. Having the ability to assess these small molecules in vivo has led to better understanding of several lipid-driven mechanisms and the identification of lipid-based biomarkers in neurodegenerative disease, cancer, sepsis, wound healing, and pre-eclampsia. Biomarker identification and mechanistic understanding of specific lipid pathways linked to a disease's pathologies can form the foundation in the development of novel therapeutics in hopes of curing human disease.

      Abbreviations:

      5-HETE (5-hydroxyicosatetraenoic acid), 12-HETE (12-hydroxyicosatetraenoic acid), 15-HETE (15-hydroxyicosatetraenoic acid), aa (diacyl), ae (acyl-alkyl), ACs (acylcarnitines), ACOG (The American College of Obstetricians and Gynecologists), AD (Alzheimer’s disease), (amyloid-beta), aSAH (aneurysmal subarachnoid hemorrhage), AA (arachidonic acid), CL (cardiolipins), C1P (ceramide-1-phosphate), CERK (ceramide kinase), CSF (cerebrospinal fluid), CEH (cholesterol ester hydrolase), COX-1 (cyclooxygenase 1), COX-2 (cyclooxygenase 2), cPLA2α (group IVA cytosolic phospholipase A2), P450 (cytochrome P450), DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), ESI (electrospray ionization), ER (endoplasmic reticulum), ELISA (enzyme-linked immunosorbent assay), FT-ICR MS (Fourier transform ion cyclotron resonance mass spectrometry), Gal-G5 (galactose-functionalized polyamidoamine dendrimer generation 5), HDL (high-density lipoprotein), HPLC (high pressure liquid chromatography), HTS (high-throughput screening), HMG-CoA (hydroxymethylglutaryl-CoA), HMGCS (hydroxymethylglutaryl-CoA synthase), ICU (intensive care unit), LTB4 (leukotriene B4), LXA4 (lipoxin A4), LOX (lipoxygenase), LC/MS-MS (liquid chromatography mass spectrometry), LDL (low-density lipoprotein), LPA (lysophosphatidic acid), LPC (lysophosphatidylcholine), m/z (mass/charge ratio), mApoE-PA-LIP (modified ApoE-derived peptide), MRM (multiple reaction monitoring), PLS-DA (partial least squares discriminant analysis), PLA2 (phospholipase A2), PA (phosphatidic acid), PC (phosphatidylcholine), PE (phosphatidylethanolamine), PG (phosphatidylglycerols), PI (phosphatidylinositol), PIP2 (phosphatidylinositol 4,5-bisphosphate), PS (phosphatidylserine), PDIM (phthiocerol dimycocerosate), PRP (platelet-rich plasma), PAMAM (polyamidoamine), PUFA (polyunsaturated fatty acid), PIH (pregnancy-induced hypertension), PGE1 (prostaglandin E1), PGE2 (prostaglandin E2), PGF1a (prostaglandin F1 alpha), PGF2a (prostaglandin F2 alpha), PGJ2 (prostaglandin J2), SPMs (pro-resolving lipid mediators), PD1 (protection D1), QTOF (quadrupole time-of-flight), RNS (reactive nitrogen species), ROS (reactive oxygen species), RvD1 (resolvin D1), RvD2 (resolvin D2), RvD5 (resolvin D5), RvE1 (resolvin E1), RvE2 (resolvin E2), SM (sphingomyelin), SMases (sphingomyelinases), S1P (sphingosine-1-phosphate), SL-1 (sulfolipid-1), TCA cycle (the citric acid cycle), TXA2 (thromboxane A2), TXB2 (thromboxane B2), TXM (11-dehydro-TXB2), QQQ (triple quadrupole mass spectrometry), UPLC (ultra-high pressure liquid chromatography)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Seam N.
        • Suffredini A.F.
        Mechanisms of sepsis and insights from clinical trials.
        Drug Discov Today Dis Mech. 2007; 4: 83-93
        • Hall M.J.
        • Williams S.N.
        • DeFrances C.J.
        • Golosinskiy A.
        Inpatient care for septicemia or sepsis: a challenge for patients and hospitals.
        NCHS Data Brief. 2011; 62: 1-8
        • Ott J.
        • Hiesgen C.
        • Mayer K.
        Lipids in critical care medicine.
        Prostaglandins Leukot Essent Fatty Acids. 2011; 85: 267-273
        • Fetterman Jr., J.W.
        • Zdanowicz M.M.
        Therapeutic potential of n-3 polyunsaturated fatty acids in disease.
        Am J Health Syst Pharm. 2009; 66: 1169-1179
        • Stahelin R.V.
        • Subramanian P.
        • Vora P.
        • Cho W.
        • Chalfant C.E.
        Ceramide-1-phosphate binds group IVA cytosolic phospholipase A2 via a novel site in the C2 domain.
        J Biol Chem. 2007; 282: 20467-20474
        • Wenk M.R.
        The emerging field of lipidomics.
        Nat Rev Drug Discov. 2005; 4: 594-610
        • Berg J.M.
        • Tymoczko J.L.
        • Stryer L.
        Biochemistry.
        in: Biochemistry textbook. 5th ed. W. H. Freeman and Company, New York, NY2006: 1120
        • Nagase T.
        • Uozumi N.
        • Ishii S.
        • et al.
        Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2.
        Nat Immunol. 2000; 1: 42-46
        • Wenzel R.P.
        Treating sepsis.
        N Engl J Med. 2002; 347: 966-967
        • Lefebvre J.S.
        • Marleau S.
        • Milot V.
        • et al.
        Toll-like receptor ligands induce polymorphonuclear leukocyte migration: key roles for leukotriene B4 and platelet-activating factor.
        FASEB J. 2010; 24: 637-647
        • Lefebvre J.S.
        • Lévesque T.
        • Picard S.
        • et al.
        Extra domain A of fibronectin primes leukotriene biosynthesis and stimulates neutrophil migration through activation of Toll-like receptor 4.
        Arthritis Rheum. 2011; 63: 1527-1533
        • Zardi E.M.
        • Zardi D.M.
        • Dobrina A.
        • Afeltra A.
        Prostacyclin in sepsis: a systematic review.
        Prostaglandins Other Lipid Mediat. 2007; 83: 1-24
        • Cook J.A.
        Eicosanoids.
        Crit Care Med. 2005; 33: S488-S491
        • Spite M.
        • Norling L.V.
        • Summers L.
        • et al.
        Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis.
        Nature. 2009; 461: 1287-1291
        • Krishnamurthy V.R.
        • Dougherty A.
        • Haller C.A.
        • Chaikof E.L.
        Total synthesis and bioactivity of 18(R)-hydroxyeicosapentaenoic acid.
        J Org Chem. 2011; 76: 5433-5437
        • Clark J.D.
        • Lin L.L.
        • Kriz R.W.
        • et al.
        A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP.
        Cell. 1991; 65: 1043-1051
        • Clark J.D.
        • Schievella A.R.
        • Nalefski E.A.
        • Lin L.L.
        Cytosolic phospholipase A2.
        J Lipid Mediat Cell Signal. 1995; 12: 83-117
        • Funk C.D.
        Prostaglandins and leukotrienes: advances in eicosanoid biology.
        Science. 2001; 294: 1871-1875
        • Pettus B.J.
        • Kitatani K.
        • Chalfant C.E.
        • et al.
        The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate.
        Mol Pharmacol. 2005; 68: 330-335
        • Subramanian P.
        • Stahelin R.V.
        • Szulc Z.
        • Bielawska A.
        • Cho W.
        • Chalfant C.E.
        Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2 alpha and enhances the interaction of the enzyme with phosphatidylcholine.
        J Biol Chem. 2005; 280: 17601-17607
        • Pettus B.J.
        • Chalfant C.E.
        • Hannun Y.A.
        Sphingolipids in inflammation: roles and implications.
        Curr Mol Med. 2004; 4: 405-418
        • Pettus B.J.
        • Bielawska A.
        • Subramanian P.
        • et al.
        Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2.
        J Biol Chem. 2004; 279: 11320-11326
        • Pettus B.J.
        • Bielawska A.
        • Spiegel S.
        • Roddy P.
        • Hannun Y.A.
        • Chalfant C.E.
        Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release.
        J Biol Chem. 2003; 278: 38206-38213
        • Klockenbusch W.
        • Somville T.
        • Hafner D.
        • Strobach H.
        • Schrör K.
        Excretion of prostacyclin and thromboxane metabolites before, during, and after pregnancy-induced hypertension.
        Eur J Obstet Gynecol Reprod Biol. 1994; 57: 47-50
        • Walsh S.W.
        • Wang Y.
        Trophoblast and placental villous core production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia.
        J Clin Endocrinol Metab. 1995; 80: 1888-1893
        • Hubel C.A.
        • Roberts J.M.
        • Taylor R.N.
        • Musci T.J.
        • Rogers G.M.
        • McLaughlin M.K.
        Lipid peroxidation in pregnancy: new perspectives on preeclampsia.
        Am J Obstet Gynecol. 1989; 161: 1025-1034
        • Hubel C.A.
        Oxidative stress in the pathogenesis of preeclampsia.
        Proc Soc Exp Biol Med. 1999; 222: 222-235
        • Siddiqui I.A.
        • Jaleel A.
        • Tamimi W.
        • Al Kadri H.M.
        Role of oxidative stress in the pathogenesis of preeclampsia.
        Arch Gynecol Obstet. 2010; 282: 469-474
        • Perneby C.
        • Vahter M.
        • Åkesson A.
        • Bremme K.
        • Hjemdahl P.
        Thromboxane metabolite excretion during pregnancy - Influence of preeclampsia and aspirin treatment.
        Thromb Res. 2011; 127: 605-606
        • Roberts J.M.
        • Druzin M.
        • August P.A.
        • et al.
        ACOG guidelines: hypertension in pregnancy.
        Am Coll Obstet Gynecol. 2012; : 1-100https://doi.org/10.1097/01.AOG.0000437382.03963.88
        • Lamour N.F.
        • Wijesinghe D.S.
        • Mietla J.A.
        • Ward K.E.
        • Stahelin R.V.
        • Chalfant C.E.
        Ceramide kinase regulates the production of tumor necrosis factor α (TNFα) via inhibition of TNFα-converting enzyme.
        J Biol Chem. 2011; 286: 42808-42817
        • Hinkovska-Galcheva V.T.
        • Boxer L.A.
        • Mansfield P.J.
        • Harsh D.
        • Blackwood A.
        • Shayman J.A.
        The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion.
        J Biol Chem. 1998; 273: 33203-33209
        • Lennartz M.R.
        Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis.
        Int J Biochem Cell Biol. 1999; 31: 415-430
        • Rubin B.B.
        • Downey G.P.
        • Koh A.
        • et al.
        Cytosolic phospholipase A2-alpha is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection: cPLA2-alpha does not regulate neutrophil NADPH oxidase activity.
        J Biol Chem. 2005; 280: 7519-7529
        • Menten-Dedoyart C.
        • Faccinetto C.
        • Golovchenko M.
        • et al.
        Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva.
        J Immunol. 2012; 189: 5393-5401
        • Doi K.
        • Leelahavanichkul A.
        • Yuen P.S.
        • Star R.A.
        Animal models of sepsis and sepsis-induced kidney injury.
        J Clin Invest. 2009; 119: 2868-2878
        • Balgoma D.
        • Montero O.
        • Balboa M.A.
        • Balsinde J.
        Lipidomic approaches to the study of phospholipase A2-regulated phospholipid fatty acid incorporation and remodeling.
        Biochimie. 2010; 92: 645-650
        • Dalli J.
        • Colas R.A.
        • Quintana C.
        • et al.
        Human sepsis eicosanoid and Proresolving lipid mediator temporal profiles.
        Crit Care Med. 2016; 45: 1
        • Rittirsch D.
        • Huber-Lang M.S.
        • Flierl M.A.
        • Ward P.A.
        Immunodesign of experimental sepsis by cecal ligation and puncture.
        Nat Protoc. 2009; 4: 31-36
        • Dejager L.
        • Pinheiro I.
        • Dejonckheere E.
        • Libert C.
        Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?.
        Trends Microbiol. 2011; 19: 198-208
        • Seok J.
        • Warren H.S.
        • Cuenca A.G.
        • et al.
        • the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program
        Genomic responses in mouse models poorly mimic human inflammatory diseases.
        Proc Natl Acad Sci U S A. 2013; 110: 3507-3512
        • Ajuebor M.N.
        • Das A.M.
        • Virág L.
        • Flower R.J.
        • Szabó C.
        • Perretti M.
        Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10.
        J Immunol. 1999; 162: 1685-1691
        • Suram S.
        • Silveira L.J.
        • Mahaffey S.
        • et al.
        Cytosolic phospholipase A(2)α and eicosanoids regulate expression of genes in macrophages involved in host defense and inflammation.
        PLoS One. 2013; 8: e69002
        • Turnbull I.R.
        • Clark A.T.
        • Stromberg P.E.
        • et al.
        Effects of aging on the immunopathologic response to sepsis.
        Crit Care Med. 2009; 37: 1018-1023
        • Muenzer J.T.
        • Davis C.G.
        • Chang K.
        • et al.
        Characterization and modulation of the immunosuppressive phase of sepsis.
        Infect Immun. 2010; 78: 1582-1592
        • Fisher B.J.
        • Kraskauskas D.
        • Martin E.J.
        • et al.
        Attenuation of sepsis-induced organ injury in mice by vitamin C.
        JPEN J Parenter Enteral Nutr. 2014; 38: 825-839
        • Fowler A.A.
        • Syed A.A.
        • Knowlson S.
        • et al.
        Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis.
        J Transl Med. 2014; 12: 32
        • Fisher B.J.
        • Kraskauskas D.
        • Martin E.J.
        • et al.
        Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid.
        Am J Physiol Lung Cell Mol Physiol. 2012; 303: L20-L32
        • Swartz D.E.
        • Seely A.J.
        • Ferri L.
        • Giannias B.
        • Christou N.V.
        Decreased systemic polymorphonuclear neutrophil (PMN) rolling without increased PMN adhesion in peritonitis at remote sites.
        Arch Surg. 2000; 135: 959-966
        • Serhan C.N.
        • Chiang N.
        • Van Dyke T.E.
        Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.
        Nat Rev Immunol. 2008; 8: 349-361
        • Blaine S.A.
        • Meyer A.M.
        • Hurteau G.
        • et al.
        Targeted over-expression of mPGES-1 and elevated PGE2 production is not sufficient for lung tumorigenesis in mice.
        Carcinogenesis. 2005; 26: 209-217
        • Yamashita H.
        • Kitayama J.
        • Shida D.
        Differential expression of lysophosphatidic acid receptor-2 in intestinal and diffuse type gastric cancer.
        J Surg Oncol. 2006; 93: 30-35
        • Yamashita S.
        • Yamashita J.
        • Ogawa M.
        Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency.
        Br J Cancer. 1994; 69: 1166-1170
        • Chen C.
        COX-2's new role in inflammation.
        Nat Chem Biol. 2010; 6: 401-402
        • Garcia-Albeniz X.
        • Chan A.
        Aspirin for the prevention of colorectal cancer.
        Best Pract Res Clin Gastroenterol. 2012; 25: 461-472
        • Pan D.S.
        • Yan M.
        • Hassan M.
        • Fang Z.B.
        • Chen M.T.
        Plasma 8-iso-Prostaglandin F2α, a possible prognostic marker in aneurysmal subarachnoid hemorrhage.
        Clin Chim Acta. 2017; 469: 166-170
        • Kant M.
        • Akıs M.
        • Calan M.
        • et al.
        Elevated urinary levels of 8-oxo-2′-deoxyguanosine, (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines, and 8-iso-prostaglandin F2a as potential biomarkers of oxidative stress in patients with prediabetes.
        DNA Repair. 2016; 48: 1-7
        • Scholl T.O.
        • Leskiw M.
        • Chen X.
        • Sims M.
        • Stein T.P.
        Oxidative stress, diet, and the etiology of preeclampsia.
        Am J Clin Nutr. 2005; 81: 1390-1396
        • Smith W.L.
        • Urade Y.
        • Jakobsson P.J.
        Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis.
        Chem Rev. 2011; 111: 5821-5865
        • Haeggström J.Z.
        • Funk C.D.
        Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease.
        Chem Rev. 2011; 111: 5866-5898
        • Groeger A.L.
        • Cipollina C.
        • Cole M.P.
        • et al.
        Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids.
        Nat Chem Biol. 2010; 6: 433-441
        • Hoeferlin L.A.
        • Huynh Q.K.
        • Mietla J.A.
        • et al.
        The lipid portion of activated platelet-rich plasma significantly Contributes to its wound healing Properties.
        Adv Wound Care. 2015; 4: 100-109
        • Mohammed B.M.
        • Sanford K.W.
        • Fisher B.J.
        • et al.
        Impact of high dose vitamin C on platelet function.
        World J Crit Care Med. 2017; 6: 37
        • Lamour N.F.
        • Stahelin R.V.
        • Wijesinghe D.S.
        • et al.
        Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis.
        J Lipid Res. 2007; 48: 1293-1304
        • Simanshu D.K.
        • Kamlekar R.-K.
        • Wijesinghe D.S.
        • et al.
        Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids.
        Nature. 2013;  500: 463-467
        • Wijesinghe D.S.
        • Brentnall M.
        • Mietla J.A.
        • et al.
        Ceramide kinase is required for a normal eicosanoid response and the subsequent orderly migration of fibroblasts.
        J Lipid Res. 2014; 55: 1298-1309
        • Dennis E.A.
        • Norris P.C.
        Eicosanoid storm in infection and inflammation.
        Nat Rev Immunol. 2015; 15: 511-523
        • Yin M.Z.
        • Tan S.
        • Li X.
        • et al.
        Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study.
        Tumor Biol. 2016; 37: 5485-5492
        • Fahy E.
        • Subramaniam S.
        • Murphy R.C.
        • et al.
        Update of the LIPID MAPS comprehensive classification system for lipids.
        J Lipid Res. 2009; 50: S9-S14
        • Burke J.E.
        • Dennis E.A.
        Phospholipase A2 structure/function, mechanism, and signaling.
        J Lipid Res. 2009; 50: S237-S242
        • Six D.A.
        • Dennis E.A.
        Essential Ca2+-independent role of the Group IVA cytosolic phospholipase A2 C2 domain for interfacial activity.
        J Biol Chem. 2003; 278: 23842-23860
        • Podo F.
        • Sardanelli F.
        • Iorio E.
        • et al.
        Abnormal choline phospholipid metabolism in breast and ovary cancer:molecular bases for Noninvasive Imaging approaches.
        Curr Med Imaging Rev. 2007; 3: 123-137
        • Anand S.
        • Young S.
        • Esplin M.S.
        • et al.
        Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry.
        J Lipid Res. 2016; 57: 687-696
        • Mukherjee A.
        • Ma Y.
        • Yuan F.
        • et al.
        Lysophosphatidic acid up-regulates hexokinase II and glycolysis to promote proliferation of ovarian cancer cells.
        Neoplasia. 2015; 17: 723-734
        • Stokes C.E.
        • Hawthorne J.N.
        Reduced phosphoinositide concentrations in anterior temporal cortex of alzheimer-Diseased brains.
        J Neurochem. 1987; 48: 1018-1021
        • Bana L.
        • Minniti S.
        • Salvati E.
        • et al.
        Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease.
        Nanomedicine. 2014; 10: 1583-1590
        • Inestrosa N.C.
        • Sagal J.P.
        • Colombres M.
        Acetylcholinesterase interaction with Alzheimer amyloid beta.
        Subcell Biochem. 2005; 38: 299-317
        • Lan J.S.
        • Zhang T.
        • Liu Y.
        • et al.
        Design, synthesis and biological activity of novel donepezil derivatives bearing N -benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors.
        Eur J Med Chem. 2017; 133: 184-196
        • Mapstone M.
        • Cheema A.K.
        • Fiandaca M.S.
        • et al.
        Plasma phospholipids identify antecedent memory impairment in older adults.
        Nat Med. 2014; 4: 415-418
        • Kitatani K.
        • Idkowiak-Baldys J.
        • Hannun Y.A.
        The sphingolipid salvage pathway in ceramide metabolism and signaling.
        Cell Signal. 2008; 20: 1010-1018
        • Maceyka M.
        • Harikumar K.B.
        • Milstien S.
        • Spiegel S.
        Sphingosine-1-phosphate signaling and its role in disease.
        Trends Cell Biol. 2012; 22: 50-60
        • Lima S.
        • Milstien S.
        • Spiegel S.
        Sphingosine and sphingosine kinase 1 Involvement in endocytic membrane trafficking.
        J Biol Chem. 2017; 292: 3074-3088
        • Nagahashi M.
        • Hait N.C.
        • Maceyka M.
        • et al.
        Sphingosine-1-phosphate in chronic intestinal inflammation and cancer.
        Adv Biol Regul. 2012; 29: 997-1003
        • Liang J.
        • Nagahashi M.
        • Kim E.Y.
        • et al.
        Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer.
        Cancer Cell. 2014; 23: 107-120
        • Hait N.C.
        • Avni D.
        • Yamada a.
        • et al.
        The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERα expression and enhances hormonal therapy for breast cancer.
        Oncogenesis. 2015; 4: e156
        • Contaifer D.
        • Carl D.E.
        • Warncke U.O.
        • et al.
        Unsupervised analysis of combined lipid and coagulation data reveal coagulopathy subtypes among dialysis patients.
        J Lipid Res. 2017; 58: 586-599
        • Deguchi H.
        • Yegneswaran S.
        • Griffin J.H.
        Sphingolipids as bioactive regulators of thrombin generation.
        J Biol Chem. 2004; 279: 12036-12042
        • Ariga T.
        • Jarvis W.D.
        • Yu R.K.
        Role of sphingolipid-mediated cell death in neurodegenerative diseases.
        J Lipid Res. 1998; 39: 1-16
        • Arboleda G.
        • Morales L.C.
        • Benítez B.
        • Arboleda H.
        Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration.
        Brain Res Rev. 2009; 59: 333-346
        • Filippov V.
        • Song M.A.
        • Zhang K.
        • et al.
        Increased ceramide in brains with alzheimer's and other neurodegenerative diseases.
        J Alzheimers Dis. 2012; 29: 537-547
        • Kosicek M.
        • Zetterberg H.
        • Andreasen N.
        • Peter-Katalinic J.
        • Hecimovic S.
        Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer's disease.
        Neurosci Lett. 2012; 516: 302-305
        • Fahy E.
        • Subramaniam S.
        • Brown H.A.
        • et al.
        A comprehensive classification system for lipids.
        J Lipid Res. 2005; 46: 839-861
        • Holthuis J.C.
        • Menon A.K.
        Lipid landscapes and pipelines in membrane homeostasis.
        Nature. 2014; 510: 48-57
        • He H.
        • Lancina M.G.
        • Wang J.
        • Korzun W.J.
        • Yang H.
        • Ghosh S.
        Bolstering cholesteryl ester hydrolysis in liver: a hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis.
        Biomaterials. 2017; 130: 1-13
        • Konieczna L.
        • Baczek T.
        • Belka M.
        • et al.
        Steroid profiles as potential biomarkers in patients with urogenital tract cancer for diagnostic investigations analyzed by liquid chromatography coupled to mass spectrometry.
        J Pharm Biomed Anal. 2013; 73: 108-115
        • Pertegal M.
        • Fenoy F.J.
        • Bonacasa B.
        • et al.
        2-Methoxyestradiol plasma levels are associated with clinical Severity Indices and biomarkers of preeclampsia.
        Reprod Sci. 2015; 22: 198-206
      1. Esidence, P.E.R., & Alendar, W.O.R.K.C. (2001). The Australian Multi–Centre Study of Environmental Factors and Immune Function Gosford, NSW Dog Birds N/A Hornsby, NSW Cat yes Tertiary. Group, 1–7.

        • Kowdley K.V.
        • Mason J.B.
        • Meydani S.N.
        • Cornwall S.
        • Grand R.J.
        Vitamin E deficiency and impaired cellular immunity related to intestinal fat malabsorption.
        Gastroenterology. 1992; 102: 2139-2142
        • Traber M.G.
        • Atkinson J.
        Vitamin E, antioxidant and nothing more.
        Free Radic Biol Med. 2007; 43: 4-15
        • Choi J.
        • Leonard S.W.
        • Kasper K.
        • et al.
        Novel function of vitamin E in regulation of zebrafish (Danio rerio) brain lysophospholipids discovered using lipidomics.
        J Lipid Res. 2015; 56: 1182-1190
        • Badalà F.
        • Nouri-mahdavi K.
        • Raoof D.A.
        NIH public access.
        Computer. 2008; 144: 724-732
        • Cane D.E.
        Programming of erythromycin biosynthesis by a modular polyketide synthase.
        J Biol Chem. 2010; 285: 27517-27523
        • McDaniel R.
        • Thamchaipenet A.
        • Gustafsson C.
        • Fu H.
        • Betlach M.
        • Ashley G.
        Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products.
        Proc Natl Acad Sci U S A. 1999; 96: 1846-1851
        • Zeller F.P.
        • Uvodich K.C.
        Lovastatin for hypercholesterolemia.
        Drug Intell Clin Pharm. 1988; 22: 542-545
        • Jain M.
        • Petzold C.J.
        • Schelle M.W.
        • et al.
        Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling.
        Proc Natl Acad Sci U S A. 2007; 104: 5133-5138
        • Bligh E.G.
        • Dyer W.J.
        A rapid method of total lipid extraction and purification.
        Can J Biochem Physiol. 1959; 37: 911-917
        • Quehenberger O.
        • Armando A.M.
        • Brown A.H.
        • et al.
        Lipidomics reveals a remarkable diversity of lipids in human plasma.
        J Lipid Res. 2010; 51: 3299-3305
        • Lam C.
        • Law C.
        Untargeted mass spectrometry-based metabolomic profiling of Pleural Effusions: fatty acids as novel cancer biomarkers for malignant Pleural Effusions.
        J Proteome Res. 2014; 13: 4040-4046
        • Szymański P.
        • Markowicz M.
        • Mikiciuk-Olasik E.
        Adaptation of high-throughput screening in drug discovery-toxicological screening tests.
        Int J Mol Sci. 2012; 13: 427-452
      2. Southeastern Regional Lipid Conference 2016. Avanti Polar Lipids.
        2016 (Available at: https://www.serlc.us/. Accessed April 28, 2017)
      3. Lipidomics and Bioactive Lipids in Metabolism and Disease (B6). Abide Therapeutics Inc.
        2017 (Available at: http://www.keystonesymposia.org/17B6. Accessed April 28, 2017)