Advertisement
In-Depth Review: Chimeric Antigen Receptor T Cell-based Therapies| Volume 187, P53-58, September 2017

Antigen-specific regulatory T cells: are police CARs the answer?

      Cellular therapy with T-regulatory cells (Tregs) is a promising strategy to control immune responses and restore immune tolerance in a variety of immune-mediated diseases, such as transplant rejection and autoimmunity. Multiple clinical trials are currently testing this approach, typically by infusing a single dose of polyclonal Tregs that have been expanded in vitro. However, evidence from animal models of Treg therapy has clearly shown that antigen-specific Tregs are vastly superior to polyclonal cells, meaning that fewer cells are needed for the desired therapeutic effect. Traditional methods to obtain antigen-specific Tregs include antigen-stimulated expansion or T-cell receptor (TCR) overexpression. However, these methods are limited by low cell numbers, complex manufacturing procedures, and knowledge of patient-specific TCRs which recognize disease-relevant MHC-peptide complexes. Recently, several groups have explored the potential to use chimeric antigen receptors (CARs) to generate antigen-specific Tregs. Here, we discuss the progress in this field and highlight the major outstanding questions that remain to be addressed as this approach moves toward clinical applications.

      Abbreviations:

      CEA (carcinoembryonic antigen), CAR (chimeric antigen receptor), EAE (experimental autoimmune encephalomyelitis), HLA (human leukocyte antigen), HSCT (Hematopoietic stem cell transplantation), LAP (latency-associated peptide), PBMC (peripheral blood mononuclear cell), Treg (T-regulatory cells), TCR (T-cell receptor), TGF (Transforming growth factor), TNP (2,4,6-trinitrophenol), TNBS (2,4,6-trinitrobenzene sulfonic acid), WT (wild-type)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Trzonkowski P.
        • Bacchetta R.
        • Battaglia M.
        • et al.
        Hurdles in therapy with regulatory T cells.
        Sci Transl Med. 2015; 7: 304ps18
        • Green E.A.
        • Choi Y.W.
        • Flavell R.A.
        Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals.
        Immunity. 2002; 16: 183-191
        • Tang Q.
        • Henriksen K.J.
        • Bi M.
        • et al.
        In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes.
        J Exp Med. 2004; 199: 1455-1465
        • Tarbell K.V.
        • Yamazaki S.
        • Olson K.
        • Toy P.
        • Steinman R.M.
        CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes.
        J Exp Med. 2004; 199: 1467-1477
        • Masteller E.L.
        • Warner M.R.
        • Tang Q.
        • Tarbell K.V.
        • McDevitt H.
        • Bluestone J.A.
        Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice.
        J Immunol. 2005; 175: 3053-3059
        • Tarbell K.V.
        • Petit L.
        • Zuo X.
        • et al.
        Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice.
        J Exp Med. 2007; 204: 191-201
        • Stephens L.A.
        • Malpass K.H.
        • Anderton S.M.
        Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg.
        Eur J Immunol. 2009; 39: 1108-1117
        • Tsang J.Y.
        • Tanriver Y.
        • Jiang S.
        • et al.
        Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice.
        J Clin Invest. 2008; 118: 3619-3628
        • Sanchez-Fueyo A.
        • Sandner S.
        • Habicht A.
        • et al.
        Specificity of CD4+CD25+ regulatory T cell function in alloimmunity.
        J Immunol. 2006; 176: 329-334
        • Nishimura E.
        • Sakihama T.
        • Setoguchi R.
        • Tanaka K.
        • Sakaguchi S.
        Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells.
        Int Immunol. 2004; 16: 1189-1201
        • Joffre O.
        • Santolaria T.
        • Calise D.
        • et al.
        Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes.
        Nat Med. 2008; 14: 88-92
        • Golshayan D.
        • Jiang S.
        • Tsang J.
        • Garin M.I.
        • Mottet C.
        • Lechler R.I.
        In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance.
        Blood. 2007; 109: 827-835
        • Brunstein C.G.
        • Blazar B.R.
        • Miller J.S.
        • et al.
        Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation.
        Biol Blood Marrow Transplant. 2013; 19: 1271-1273
        • Putnam A.L.
        • Safinia N.
        • Medvec A.
        • et al.
        Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation.
        Am J Transplant. 2013; 13: 3010-3020
        • Brusko T.M.
        • Koya R.C.
        • Zhu S.
        • et al.
        Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.
        PLoS One. 2010; 5: e11726
        • Elinav E.
        • Waks T.
        • Eshhar Z.
        Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice.
        Gastroenterology. 2008; 134: 2014-2024
        • Blat D.
        • Zigmond E.
        • Alteber Z.
        • Waks T.
        • Eshhar Z.
        Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells.
        Mol Ther. 2014; 22: 1018-1028
        • Fransson M.
        • Piras E.
        • Burman J.
        • et al.
        CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery.
        J Neuroinflammation. 2012; 9: 112
        • MacDonald K.G.
        • Hoeppli R.E.
        • Huang Q.
        • et al.
        Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor.
        J Clin Invest. 2016; 126: 1413-1424
        • Boardman D.A.
        • Philippeos C.
        • Fruhwirth G.O.
        • et al.
        Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection.
        Am J Transplant. 2016; 17: 931-943
        • Noyan F.
        • Zimmermann K.
        • Hardtke-Wolenski M.
        • et al.
        Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor.
        Am J Transplant. 2016; 17: 917-930
        • Yoon J.
        • Schmidt A.
        • Zhang A.H.
        • Konigs C.
        • Kim Y.C.
        • Scott D.W.
        FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII.
        Blood. 2017; 129: 238-245
        • Elinav E.
        • Adam N.
        • Waks T.
        • Eshhar Z.
        Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor.
        Gastroenterology. 2009; 136: 1721-1731
        • Klatzmann D.
        • Abbas A.K.
        The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases.
        Nat Rev Immunol. 2015; 15: 283-294
        • Kendal A.R.
        • Waldmann H.
        Infectious tolerance: therapeutic potential.
        Curr Opin Immunol. 2010; 22: 560-565
        • Hou T.Z.
        • Qureshi O.S.
        • Wang C.J.
        • et al.
        A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T cells.
        J Immunol. 2015; 194: 2148-2159
        • Vignali D.A.
        • Collison L.W.
        • Workman C.J.
        How regulatory T cells work.
        Nat Rev Immunol. 2008; 8: 523-532
        • Hombach A.A.
        • Kofler D.
        • Rappl G.
        • Abken H.
        Redirecting human CD4+CD25+ regulatory T cells from the peripheral blood with pre-defined target specificity.
        Gene Ther. 2009; 16: 1088-1096
        • Oren R.
        • Hod-Marco M.
        • Haus-Cohen M.
        • et al.
        Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.
        J Immunol. 2014; 193: 5733-5743
        • Hogquist K.A.
        • Jameson S.C.
        The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function.
        Nat Immunol. 2014; 15: 815-823
        • Huynh A.
        • Zhang R.
        • Turka L.A.
        Signals and pathways controlling regulatory T cells.
        Immunol Rev. 2014; 258: 117-131
        • Schmidt A.M.
        • Lu W.
        • Sindhava V.J.
        • et al.
        Regulatory T cells require TCR signaling for their suppressive function.
        J Immunol. 2015; 194: 4362-4370
        • Zhang R.
        • Huynh A.
        • Whitcher G.
        • Chang J.
        • Maltzman J.S.
        • Turka L.A.
        An obligate cell-intrinsic function for CD28 in Tregs.
        J Clin Invest. 2013; 123: 580-593
        • Vahl J.C.
        • Drees C.
        • Heger K.
        • et al.
        Continuous T cell receptor signals maintain a functional regulatory T cell pool.
        Immunity. 2014; 41: 722-736
        • Levine A.G.
        • Arvey A.
        • Jin W.
        • Rudensky A.Y.
        Continuous requirement for the TCR in regulatory T cell function.
        Nat Immunol. 2014; 15: 1070-1078
        • Long A.H.
        • Haso W.M.
        • Shern J.F.
        • et al.
        4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors.
        Nat Med. 2015; 21: 581-590
        • Schoenbrunn A.
        • Frentsch M.
        • Kohler S.
        • et al.
        A converse 4-1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg.
        J Immunol. 2012; 189: 5985-5994
        • Paulos C.M.
        • Carpenito C.
        • Plesa G.
        • et al.
        The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells.
        Sci Transl Med. 2010; 2: 55ra78
        • Gagliani N.
        • Amezcua Vesely M.C.
        • Iseppon A.
        • et al.
        Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation.
        Nature. 2015; 523: 221-225
        • Fedorov V.D.
        • Themeli M.
        • Sadelain M.
        PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses.
        Sci Transl Med. 2013; 5: 215ra172
        • Hoffmann P.
        • Eder R.
        • Boeld T.J.
        • et al.
        Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion.
        Blood. 2006; 108: 4260-4267
        • Dijke I.E.
        • Hoeppli R.E.
        • Ellis T.
        • et al.
        Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells.
        Am J Transplant. 2016; 16: 58-71
        • Maus M.V.
        • June C.H.
        Making better chimeric antigen receptors for adoptive T-cell therapy.
        Clin Cancer Res. 2016; 22: 1875-1884
        • Sadelain M.
        Chimeric antigen receptors: driving immunology towards synthetic biology.
        Curr Opin Immunol. 2016; 41: 68-76
        • Gitelman S.E.
        • Bluestone J.A.
        Regulatory T cell therapy for type 1 diabetes: may the force be with you.
        J Autoimmun. 2016; 71: 78-87