Advertisement

Deciphering metabolic rewiring in breast cancer subtypes

  • Martin P. Ogrodzinski
    Affiliations
    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mich

    Department of Physiology, Michigan State University, East Lansing, Mich
    Search for articles by this author
  • Jamie J. Bernard
    Affiliations
    Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Mich
    Search for articles by this author
  • Sophia Y. Lunt
    Correspondence
    Reprint requests: Sophia Y. Lunt, Biochemistry Building, 603 Wilson Road, Room 522A, East Lansing, MI 48824.
    Affiliations
    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mich

    Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Mich
    Search for articles by this author
      Metabolic reprogramming, an emerging hallmark of cancer, is observed in breast cancer. Breast cancer cells rewire their cellular metabolism to meet the demands of survival, proliferation, and invasion. However, breast cancer is a heterogeneous disease, and metabolic rewiring is not uniform. Each subtype of breast cancer displays distinct metabolic alterations. Here, we focus on unique metabolic reprogramming associated with subtypes of breast cancer, as well as common features. Therapeutic opportunities based on subtype-specific metabolic alterations are also discussed. Through this discussion, we aim to provide insight into subtype-specific metabolic rewiring and vulnerabilities that have the potential to better guide therapy and improve outcomes for patients.

      Abbreviations:

      ACL (ATP citrate lyase), Akt (Protein kinase B), ASCT2 (Alanine, serine, cysteine-preferring transporter 2), ASS (Argininosuccinate synthetase), BMI (Body mass index), CAF (Cancer-associated fibroblasts), ER (Estrogen receptor), FASN (Fatty acid synthase), GPC (Glycerophosphocholine), HER2 (Human epidermal growth factor receptor 2), HIF-1 (Hypoxia-inducible factor-1), HIFs (Hypoxia-inducible factors), IBC (Inflammatory breast cancer), IGF-1 (Insulin-like growth factor 1), LDH (Lactate dehydrogenase), MCT (Monocarboxylate transporter), MTHFD1L (Methylenetetrahydrofolate dehydrogenase 1-like), MTHFD2 (Methylenetetrahydrofolate dehydrogenase 2), mTOR (Mammalian target of rapamycin), NAD+ (Nicotinamide adenine dinucleotide oxidized), NADH (Nicotinamide adenine dinucleotide reduced), NADP+ (Nicotinamide adenine dinucleotide phosphate oxidized), NADPH (Nicotinamide adenine dinucleotide phosphate reduced), OTC (Ornithine transcarbamylase), PAM50 (Prediction analysis of microarray 50), PCho (Phosphocholine), PDX (Patient-derived xenograft), PHGDH (Phosphoglycerate dehydrogenase), PI3K (Phosphatidylinositol 3-kinase), PKM1 (Pyruvate kinase M1 isoform), PKM2 (Pyruvate kinase M2 isoform), PR (Progesterone receptor), PSAT1 (Phosphoserine aminotransferase 1), PSPH (Phosphoserine phosphatase), PtdCho (Phosphatidylcholine), ROS (Reactive oxygen species), RRM2 (Ribonucleotide reductase M2), SHMT1 (Serine hydroxymethyltransferase 1), SHMT2 (Serine hydroxymethyltransferase 2), TCA (Tricarboxylic acid), TNBC (Triple-negative breast cancer)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • DeSantis C.
        • Howlader N.
        • Cronin K.A.
        • Jemal A.
        Breast cancer incidence rates in U.S. Women are no longer declining.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 733-739
        • Miller K.D.
        • Siegel R.L.
        • Lin C.C.
        • et al.
        Cancer treatment and survivorship statistics, 2016.
        CA Cancer J Clin. 2016; 66: 271-289
        • Senkus E.
        • Kyriakides S.
        • Penault-Llorca F.
        • et al.
        Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2013; 24: vi7-vi23
        • Anampa J.
        • Makower D.
        • Sparano J.A.
        Progress in adjuvant chemotherapy for breast cancer: an overview.
        BMC Med. 2015; 13: 195
        • Early Breast Cancer Trialists' Collaborative G
        Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials.
        Lancet. 2005; 365: 1687-1717
        • Gonzalez-Angulo A.M.
        • Morales-Vasquez F.
        • Hortobagyi G.N.
        Overview of resistance to systemic therapy in patients with breast cancer.
        in: Yu D. Hung M.-C. Breast Cancer Chemosensitivity. Springer New York, New York, NY2007: 1-22
        • Vander Heiden M.G.
        • DeBerardinis R.J.
        Understanding the intersections between metabolism and cancer biology.
        Cell. 2017; 168: 657-669
        • DeBerardinis R.J.
        • Chandel N.S.
        Fundamentals of cancer metabolism.
        Sci Adv. 2016; 2: e1600200
        • Pavlova Natalya N.
        • Thompson Craig B.
        The emerging hallmarks of cancer metabolism.
        Cell Metab. 2016; 23: 27-47
        • Cantor J.R.
        • Sabatini D.M.
        Cancer cell metabolism: one hallmark, many faces.
        Cancer Discov. 2012; 2: 881-898
        • Elia I.
        • Fendt S.-M.
        In vivo cancer metabolism is defined by the nutrient microenvironment.
        Translational Cancer Res. 2016; 5: S1284-S1287
        • Elia I.
        • Schmieder R.
        • Christen S.
        • Fendt S.M.
        Organ-specific cancer metabolism and its potential for therapy.
        Handbook Exp Pharmacol. 2016; 233: 321-353
        • Hu J.
        • Locasale J.W.
        • Bielas J.H.
        • et al.
        Heterogeneity of tumor-induced gene expression changes in the human metabolic network.
        Nat Biotechnol. 2013; 31: 522-529
        • DeBerardinis R.J.
        • Sayed N.
        • Ditsworth D.
        • Thompson C.B.
        Brick by brick: metabolism and tumor cell growth.
        Curr Opin Genet Dev. 2008; 18: 54-61
        • Lunt S.Y.
        • Vander Heiden M.G.
        Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
        Annu Rev Cell Dev Biol. 2011; 27: 441-464
        • Ahn C.S.
        • Metallo C.M.
        Mitochondria as biosynthetic factories for cancer proliferation.
        Cancer Metab. 2015; 3: 1
        • Lorendeau D.
        • Christen S.
        • Rinaldi G.
        • Fendt S.-M.
        Metabolic control of signalling pathways and metabolic auto-regulation.
        Biol Cell. 2015; 107: 251-272
        • Kaelin William Jr., G.
        • McKnight Steven L.
        Influence of metabolism on epigenetics and disease.
        Cell. 2013; 153: 56-69
        • Wishart D.
        • Mandal R.
        • Stanislaus A.
        • Ramirez-Gaona M.
        Cancer metabolomics and the human metabolome database.
        Metabolites. 2016; 6: 10
        • Patel S.
        • Ahmed S.
        Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery.
        J Pharm Biomed Anal. 2015; 107: 63-74
        • Olivares O.
        • Däbritz J.H.M.
        • King A.
        • Gottlieb E.
        • Halsey C.
        Research into cancer metabolomics: towards a clinical metamorphosis.
        Semin Cell Dev Biol. 2015; 43: 52-64
        • Spratlin J.L.
        • Serkova N.J.
        • Gail Eckhardt S.
        Clinical applications of metabolomics in oncology: a review.
        Clin Cancer Res. 2009; 15: 431-440
        • Armitage E.G.
        • Southam A.D.
        Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics.
        Metabolomics. 2016; 12: 146
        • Fan Y.
        • Zhou X.
        • Xia T.-S.
        • et al.
        Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer.
        Oncotarget. 2016; 7: 9925-9938
        • Bro R.
        • Kamstrup-Nielsen M.H.
        • Engelsen S.B.
        • et al.
        Forecasting individual breast cancer risk using plasma metabolomics and biocontours.
        Metabolomics. 2015; 11: 1376-1380
        • Shen J.
        • Yan L.
        • Liu S.
        • Ambrosone C.B.
        • Zhao H.
        Plasma metabolomic profiles in breast cancer patients and healthy controls: by race and tumor receptor subtypes.
        Translational Oncol. 2013; 6: 757-765
        • Yang M.
        • Soga T.
        • Pollard P.J.
        Oncometabolites: linking altered metabolism with cancer.
        J Clin Invest. 2013; 123: 3652-3658
        • Dang L.
        • White D.W.
        • Gross S.
        • et al.
        Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.
        Nature. 2009; 462: 739-744
        • Pollard P.J.
        • Brière J.J.
        • Alam N.A.
        • et al.
        Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations.
        Hum Mol Genet. 2005; 14: 2231-2239
        • Buescher J.M.
        • Antoniewicz M.R.
        • Boros L.G.
        • et al.
        A roadmap for interpreting 13C metabolite labeling patterns from cells.
        Curr Opin Biotechnol. 2015; 34: 189-201
        • Lane A.N.
        • Fan T.W.M.
        NMR-based stable isotope resolved metabolomics in systems biochemistry.
        Arch Biochem Biophys. 2017; 628: 123-131
        • Shajahan-Haq A.N.
        • Cheema M.S.
        • Clarke R.
        Application of metabolomics in drug resistant breast cancer research.
        Metabolites. 2015; 5: 100-118
        • Sørlie T.
        • Perou C.M.
        • Tibshirani R.
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci U S A. 2001; 98: 10869-10874
        • Perou C.M.
        • Sorlie T.
        • Eisen M.B.
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752
        • Dai X.
        • Li T.
        • Bai Z.
        • et al.
        Breast cancer intrinsic subtype classification, clinical use and future trends.
        Am J Cancer Res. 2015; 5: 2929-2943
        • Sørlie T.
        • Tibshirani R.
        • Parker J.
        • et al.
        Repeated observation of breast tumor subtypes in independent gene expression data sets.
        Proc Natl Acad Sci. 2003; 100: 8418-8423
        • Hu Z.
        • Fan C.
        • Oh D.S.
        • Marron J.S.
        • He X.
        • Qaqish B.F.
        The molecular portraits of breast tumors are conserved across microarray platforms.
        BMC Genomics. 2006; 7: 96
        • Parker J.S.
        • Mullins M.
        • Cheang M.C.
        • et al.
        Supervised risk predictor of breast cancer based on intrinsic subtypes.
        J Clin Oncol. 2009; 27: 1160-1167
        • Liu M.C.
        • Pitcher B.N.
        • Mardis E.R.
        • et al.
        PAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance).
        NPJ Breast Cancer. 2016; 2: 15023
        • Howlader N.
        • Altekruse S.F.
        • Li C.I.
        • et al.
        US incidence of breast cancer subtypes defined by Joint hormone receptor and HER2 status.
        J Natl Cancer Inst. 2014; 106: dju055
        • Carey L.A.
        • Perou C.M.
        • Livasy C.A.
        • et al.
        Race, breast cancer subtypes, and survival in the carolina breast cancer study.
        JAMA. 2006; 295: 2492-2502
        • Foulkes W.D.
        • Smith I.E.
        • Reis-Filho J.S.
        Triple-negative breast cancer.
        N Engl J Med. 2010; 363: 1938-1948
        • Kim S.
        • Kim D.H.
        • Jung W.-H.
        • Koo J.S.
        Metabolic phenotypes in triple-negative breast cancer.
        Tumor Biol. 2013; 34: 1699-1712
        • Koo H.R.
        • Park J.S.
        • Kang K.W.
        • et al.
        18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes.
        Eur Radiol. 2014; 24: 610-618
        • Groheux D.
        • Giacchetti S.
        • Moretti J.-L.
        • et al.
        Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer.
        Eur J Nucl Med Mol Imaging. 2011; 38: 426-435
        • Palaskas N.
        • Larson S.M.
        • Schultz N.
        • et al.
        18F-Fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers.
        Cancer Res. 2011; 71: 5164-5174
        • Choi J.
        • Kim D.H.
        • Jung W.H.
        • Koo J.S.
        Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype.
        Breast Cancer Res. 2013; 15: R78
        • Doyen J.
        • Trastour C.
        • Ettore F.
        • et al.
        Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome.
        Biochem Biophys Res Commun. 2014; 451: 54-61
        • McCleland M.L.
        • Adler A.S.
        • Shang Y.
        • et al.
        An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer.
        Cancer Res. 2012; 72: 5812-5823
        • Van Dang C.
        • Xu J.
        • Chen Y.
        • Olopade O.I.
        MYC and breast cancer.
        Genes Cancer. 2010; 1: 629-640
        • Osthus R.C.
        • Shim H.
        • Kim S.
        • et al.
        Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc.
        J Biol Chem. 2000; 275: 21797-21800
        • Shim H.
        • Dolde C.
        • Lewis B.C.
        • et al.
        c-Myc transactivation of LDH-A: implications for tumor metabolism and growth.
        Proc Natl Acad Sci. 1997; 94: 6658-6663
        • Shen L.
        • O'Shea J.M.
        • Kaadige M.R.
        • et al.
        Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP.
        Proc Natl Acad Sci. 2015; 112: 5425-5430
        • Nakai K.
        • Hung M.-C.
        • Yamaguchi H.
        A perspective on anti-EGFR therapies targeting triple-negative breast cancer.
        Am J Cancer Res. 2016; 6: 1609-1623
        • Costa R.
        • Shah A.N.
        • Santa-Maria C.A.
        • et al.
        Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: new discoveries and practical insights for drug development.
        Cancer Treat Rev. 2017; 53: 111-119
        • Lim S.-O.
        • Li C.-W.
        • Xia W.
        • et al.
        EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape.
        Cancer Res. 2016; 76: 1284-1296
        • Dang C.V.
        MYC on the path to cancer.
        Cell. 2012; 149: 22-35
        • Wise D.R.
        • DeBerardinis R.J.
        • Mancuso A.
        • et al.
        Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
        Proc Natl Acad Sci. 2008; 105: 18782-18787
        • Gao P.
        • Tchernyshyov I.
        • Chang T.-C.
        • et al.
        c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.
        Nature. 2009; 458: 762-765
        • Kim J.Y.
        • Heo S.-H.
        • Choi S.K.
        • et al.
        Glutaminase expression is a poor prognostic factor in node-positive triple-negative breast cancer patients with a high level of tumor-infiltrating lymphocytes.
        Virchows Arch. 2017; 470: 381-389
        • Wise D.R.
        • Thompson C.B.
        Glutamine addiction: a new therapeutic target in cancer.
        Trends Biochem Sci. 2010; 35: 427-433
        • Hensley C.T.
        • Wasti A.T.
        • DeBerardinis R.J.
        Glutamine and cancer: cell biology, physiology, and clinical opportunities.
        J Clin Invest. 2013; 123: 3678-3684
        • Yang L.
        • Venneti S.
        • Nagrath D.
        Glutaminolysis: a hallmark of cancer metabolism.
        Annu Rev Biomed Eng. 2017; 19: 163-194
        • McKeehan W.L.
        Glycolysis, glutaminolysis and cell proliferation.
        Cell Biol Int Rep. 1982; 6: 635-650
        • Kim S.
        • Kim D.H.
        • Jung W.-H.
        • Koo J.S.
        Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer.
        Endocr Relat Cancer. 2013; 20: 339-348
        • Kung H.-N.
        • Marks J.R.
        • Chi J.-T.
        Glutamine synthetase is a genetic determinant of cell type–specific glutamine independence in breast epithelia.
        PLoS Genet. 2011; 7: e1002229
        • Timmerman Luika A.
        • Holton T.
        • Yuneva M.
        • et al.
        Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.
        Cancer Cell. 2013; 24: 450-465
        • Cetinbas N.M.
        • Sudderth J.
        • Harris R.C.
        • et al.
        Glucose-dependent anaplerosis in cancer cells is required for cellular redox balance in the absence of glutamine.
        Sci Rep. 2016; 6: 32606
        • Davidson Shawn M.
        • Papagiannakopoulos T.
        • Olenchock Benjamin A.
        • et al.
        Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer.
        Cell Metab. 2016; 23: 517-528
        • Haukaas T.H.
        • Euceda L.R.
        • Giskeødegård G.F.
        • et al.
        Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes.
        Cancer Metab. 2016; 4: 12
        • Gross M.I.
        • Demo S.D.
        • Dennison J.B.
        • et al.
        Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer.
        Mol Cancer Ther. 2014; 13: 890
        • Cao M.D.
        • Lamichhane S.
        • Lundgren S.
        • et al.
        Metabolic characterization of triple negative breast cancer.
        BMC Cancer. 2014; 14: 941
        • van Geldermalsen M.
        • Wang Q.
        • Nagarajah R.
        • et al.
        ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer.
        Oncogene. 2016; 35: 3201-3208
        • Possemato R.
        • Marks K.M.
        • Shaul Y.D.
        • et al.
        Functional genomics reveal that the serine synthesis pathway is essential in breast cancer.
        Nature. 2011; 476: 346-350
        • Locasale J.W.
        • Grassian A.R.
        • Melman T.
        • et al.
        Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis.
        Nat Genet. 2011; 43: 869-874
        • Noh S.
        • Kim D.H.
        • Jung W.H.
        • Koo J.S.
        Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues.
        Tumor Biol. 2014; 35: 4457-4468
        • Pollari S.
        • Käkönen S.-M.
        • Edgren H.
        • et al.
        Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.
        Breast Cancer Res Treat. 2011; 125: 421-430
        • Sun L.
        • Song L.
        • Wan Q.
        • et al.
        cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions.
        Cell Res. 2015; 25: 429-444
        • Mattaini K.R.
        • Sullivan M.R.
        • Vander Heiden M.G.
        The importance of serine metabolism in cancer.
        J Cell Biol. 2016; 214: 249-257
        • Amelio I.
        • Cutruzzolá F.
        • Antonov A.
        • Agostini M.
        • Melino G.
        Serine and glycine metabolism in cancer.
        Trends Biochem Sci. 2014; 39: 191-198
        • Jain M.
        • Nilsson R.
        • Sharma S.
        • et al.
        Metabolite profiling identifies a key role for Glycine in rapid cancer cell proliferation.
        Science. 2012; 336: 1040-1044
        • Tang X.
        • Ding C.K.
        • Wu J.
        • et al.
        Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling.
        Oncogene. 2016; 36: 4235-4242
        • Wang Z.
        • Shi X.
        • Li Y.
        • et al.
        Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells.
        Cell Death Dis. 2014; 5: e1563
        • Korde Choudhari S.
        • Chaudhary M.
        • Bagde S.
        • Gadbail A.R.
        • Joshi V.
        Nitric oxide and cancer: a review.
        World J Surg Oncol. 2013; 11: 118
        • Martinez L.
        • Thames E.
        • Kim J.
        • Chaudhuri G.
        • Singh R.
        • Pervin S.
        Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis.
        BMC Cancer. 2016; 16: 559
        • Pervin S.
        • Singh R.
        • Hernandez E.
        • Wu G.
        • Chaudhuri G.
        Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: Involvement of mammalian target of rapamycin/eIF4E pathway.
        Cancer Res. 2007; 67: 289-299
        • Long Y.
        • Tsai W.-B.
        • Wang D.
        • et al.
        Argininosuccinate synthetase 1 (ASS1) is a common metabolic marker of chemosensitivity for targeted arginine- and glutamine-starvation therapy.
        Cancer Lett. 2017; 388: 54-63
        • Hernandez C.P.
        • Morrow K.
        • Lopez-Barcons L.A.
        • et al.
        Pegylated arginase I: a potential therapeutic approach in T-ALL.
        Blood. 2010; 115: 5214-5221
        • Zeng X.
        • Li Y.
        • Fan J.
        • et al.
        Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkin/'s lymphoma cells.
        Cell Death Dis. 2013; 4: e840
        • Tanios R.
        • Bekdash A.
        • Kassab E.
        • et al.
        Human recombinant arginase I(Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human acute myeloid leukemia cells.
        Leuk Res. 2013; 37: 1565-1571
        • Sugimura K.
        • Ohno T.
        • Kusuyama T.
        • Azuma I.
        High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro.
        Melanoma Res. 1992; 2: 191-196
        • Cheng P.N.-M.
        • Lam T.-L.
        • Lam W.-M.
        • et al.
        Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion.
        Cancer Res. 2007; 67: 309-317
        • Bowles T.L.
        • Kim R.
        • Galante J.
        • et al.
        Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase.
        Int J Cancer. 2008; 123: 1950-1955
        • Antalis C.J.
        • Arnold T.
        • Rasool T.
        • Lee B.
        • Buhman K.K.
        • Siddiqui R.A.
        High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation.
        Breast Cancer Res Treat. 2010; 122: 661-670
        • Vithayathil S.A.
        • Ma Y.
        • Kaipparettu B.A.
        Transmitochondrial cybrids: tools for functional studies of mutant mitochondria.
        in: Wong P.D.L.-J.C. Mitochondrial Disorders: Biochemical and Molecular Analysis. Humana Press, Totowa, NJ2012: 219-230
        • Park Jun H.
        • Vithayathil S.
        • Kumar S.
        • et al.
        Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer.
        Cell Rep. 2016; 14: 2154-2165
        • Camarda R.
        • Zhou A.Y.
        • Kohnz R.A.
        • et al.
        Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.
        Nat Med. 2016; 22: 427-432
        • Bonnefont J.-P.
        • Djouadi F.
        • Prip-Buus C.
        • Gobin S.
        • Munnich A.
        • Bastin J.
        Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects.
        Mol Aspects Med. 2004; 25: 495-520
        • Onitilo A.A.
        • Engel J.M.
        • Greenlee R.T.
        • Mukesh B.N.
        Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival.
        Clin Med Res. 2009; 7: 4-13
        • Pearson O.H.
        • Manni A.
        • Arafah B.
        • uddin M.
        Antiestrogen treatment of breast cancer: an overview.
        Cancer Res. 1982; 42: 3424s
        • Pavlides S.
        • Whitaker-Menezes D.
        • Castello-Cros R.
        • et al.
        The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
        Cell Cycle. 2009; 8: 3984-4001
        • Martinez-Outschoorn U.E.
        • Lin Z.
        • Trimmer C.
        • et al.
        Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect.
        Cell Cycle. 2011; 10: 2504-2520
        • Martinez-Outschoorn U.E.
        • Trimmer C.
        • Lin Z.
        • et al.
        Autophagy in cancer associated fibroblasts promotes tumor cell survival.
        Cell Cycle. 2010; 9: 3515-3533
        • Martinez-Outschoorn U.E.
        • Pavlides S.
        • Whitaker-Menezes D.
        • et al.
        Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.
        Cell Cycle. 2010; 9: 2423-2433
        • Whitaker-Menezes D.
        • Martinez-Outschoorn U.E.
        • Lin Z.
        • et al.
        Evidence for a stromal-epithelial “lactate shuttle” in human tumors.
        Cell Cycle. 2011; 10: 1772-1783
        • Clarke R.
        • Liu M.C.
        • Bouker K.B.
        • et al.
        Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling.
        Oncogene. 2003; 22: 7316-7339
        • Harris J.R.
        • Lippman M.E.
        • Morrow M.
        Diseases of the Breast.
        Wolters Kluwer Health, Philadelphia, US1996
        • Budczies J.
        • Brockmöller S.F.
        • Müller B.M.
        • et al.
        Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism.
        J Proteomics. 2013; 94: 279-288
        • Russo J.
        • Russo I.H.
        The role of estrogen in the initiation of breast cancer.
        J Steroid Biochem Mol Biol. 2006; 102: 89-96
        • Duffy M.J.
        Estrogen receptors: role in breast cancer.
        Crit Rev Clin Lab Sci. 2006; 43: 325-347
        • O'Mahony F.
        • Razandi M.
        • Pedram A.
        • Harvey B.J.
        • Levin E.R.
        Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells.
        Mol Endocrinol. 2012; 26: 2058-2070
        • Krętowski R.
        • Borzym-Kluczyk M.
        • Stypułkowska A.
        • Brańska-Januszewska J.
        • Ostrowska H.
        • Cechowska-Pasko M.
        Low glucose dependent decrease of apoptosis and induction of autophagy in breast cancer MCF-7 cells.
        Mol Cell Biochem. 2016; 417: 35-47
        • Jia M.
        • Andreassen T.
        • Jensen L.
        • et al.
        Estrogen receptor α promotes breast cancer by reprogramming choline metabolism.
        Cancer Res. 2016; 76: 5634-5646
        • Grinde M.T.
        • Skrbo N.
        • Moestue S.A.
        • et al.
        Interplay of choline metabolites and genes in patient-derived breast cancer xenografts.
        Breast Cancer Res. 2014; 16: R5
        • Deblois G.
        • Giguere V.
        Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond.
        Nat Rev Cancer. 2013; 13: 27-36
        • Musgrove E.A.
        • Sutherland R.L.
        Biological determinants of endocrine resistance in breast cancer.
        Nat Rev Cancer. 2009; 9: 631-643
        • Osborne C.K.
        • Schiff R.
        Mechanisms of endocrine resistance in breast cancer.
        Annu Rev Med. 2011; 62: 233-247
        • Poirot M.
        • Silvente-Poirot S.
        • Weichselbaum R.R.
        Cholesterol metabolism and resistance to tamoxifen.
        Curr Opin Pharmacol. 2012; 12: 683-689
        • Lloyd S.M.
        • Arnold J.
        • Sreekumar A.
        Metabolomic profiling of hormone-dependent cancers: a bird's eye view.
        Trends Endocrinol Metab. 2015; 26: 477-485
        • Pitroda S.P.
        • Khodarev N.N.
        • Beckett M.A.
        • Kufe D.W.
        • Weichselbaum R.R.
        MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment.
        Proc Natl Acad Sci. 2009; 106: 5837-5841
        • Putluri N.
        • Maity S.
        • Kommangani R.
        • et al.
        Pathway-centric integrative analysis identifies RRM2 as a prognostic marker in breast cancer associated with poor survival and tamoxifen resistance.
        Neoplasia. 2014; 16: 390-402
        • Shah K.N.
        • Mehta K.R.
        • Peterson D.
        • Evangelista M.
        • Livesey J.C.
        • Faridi J.S.
        Akt-induced tamoxifen resistance is overturned by RRM2 inhibition.
        Mol Cancer Res. 2014; 12: 394-407
        • Slamon D.J.
        • Clark G.M.
        • Wong S.G.
        • Levin W.J.
        • Ullrich A.
        • McGuire W.L.
        Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.
        Science. 1987; 235: 177
        • Slamon D.J.
        • Godolphin W.
        • Jones L.A.
        • Holt J.A.
        • Wong S.G.
        • Keith D.E.
        Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.
        Science. 1989; 244: 707-712
        • Wirapati P.
        • Sotiriou C.
        • Kunkel S.
        • et al.
        Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures.
        Breast Cancer Res. 2008; 10: R65
        • Martin L.-A.
        • Farmer I.
        • Johnston S.R.D.
        • Ali S.
        • Marshall C.
        • Dowsett M.
        Enhanced estrogen receptor (ER) α, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation.
        J Biol Chem. 2003; 278: 30458-30468
        • Flågeng M.H.
        • Haugan Moi L.L.
        • Dixon J.M.
        • et al.
        Nuclear receptor co-activators and HER-2/neu are upregulated in breast cancer patients during neo-adjuvant treatment with aromatase inhibitors.
        Br J Cancer. 2009; 101: 1253-1260
        • Romond E.H.
        • Perez E.A.
        • Bryant J.
        • et al.
        Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer.
        N Engl J Med. 2005; 353: 1673-1684
        • Vu T.
        • Claret F.X.
        Trastuzumab: Updated mechanisms of action and resistance in breast cancer.
        Front Oncol. 2012; 2: 62
        • Moasser M.M.
        The oncogene HER2; its signaling and transforming functions and its role in human cancer pathogenesis.
        Oncogene. 2007; 26: 6469-6487
        • Roberts P.J.
        • Der C.J.
        Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.
        Oncogene. 2007; 26: 3291-3310
        • Plas D.R.
        • Thompson C.B.
        Akt-dependent transformation: there is more to growth than just surviving.
        Oncogene. 2005; 24: 7435-7442
        • Walsh A.J.
        • Cook R.S.
        • Manning H.C.
        • et al.
        Optical metabolic imaging identifies glycolytic levels, sub-types and early treatment response in breast cancer.
        Cancer Res. 2013; 73: 6164-6174
        • O'Neal J.
        • Clem A.
        • Reynolds L.
        • et al.
        Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer.
        Breast Cancer Res Treat. 2016; 160: 29-40
        • Chen Y.
        • Qian J.
        • He Q.
        • et al.
        mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer.
        Oncotarget. 2016; 7: 25224-25240
        • Jin Q.
        • Yuan L.X.
        • Boulbes D.
        • et al.
        Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells.
        Breast Cancer Res. 2010; 12: R96
        • Menendez J.A.
        • Vellon L.
        • Mehmi I.
        • et al.
        Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells.
        Proc Natl Acad Sci U S A. 2004; 101: 10715-10720
        • Youngblood V.M.
        • Kim L.C.
        • Edwards D.N.
        • et al.
        The ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer.
        Cancer Res. 2016; 76: 1825-1836
        • van Uden D.J.P.
        • van Laarhoven H.W.M.
        • Westenberg A.H.
        • de Wilt J.H.W.
        • Blanken-Peeters C.F.J.M.
        Inflammatory breast cancer: an overview.
        Crit Rev Oncol Hematol. 2015; 93: 116-126
        • Robertson F.M.
        • Bondy M.
        • Yang W.
        • et al.
        Inflammatory breast cancer: the disease, the biology, the treatment.
        CA Cancer J Clin. 2010; 60: 351-375
        • Hance K.W.
        • Anderson W.F.
        • Devesa S.S.
        • Young H.A.
        • Levine P.H.
        Trends in inflammatory breast carcinoma incidence and survival: The Surveillance, Epidemiology, and End Results Program at the National Cancer Institute.
        J Natl Cancer Inst. 2005; 97: 966-975
        • Parton M.
        • Dowsett M.
        • Ashley S.
        • Hills M.
        • Lowe F.
        • Smith I.E.
        High incidence of HER-2 positivity in inflammatory breast cancer.
        Breast. 2004; 13: 97-103
        • Masuda H.
        • Brewer T.M.
        • Liu D.D.
        • et al.
        Long-term treatment efficacy in primary inflammatory breast cancer by hormonal receptor- and HER2-defined subtypes.
        Ann Oncol. 2014; 25: 384-391
        • Liu J.
        • Chen K.
        • Jiang W.
        • et al.
        Chemotherapy response and survival of inflammatory breast cancer by hormone receptor- and HER2-defined molecular subtypes approximation: an analysis from the National Cancer Database.
        J Cancer Res Clin Oncol. 2017; 143: 161-168
        • Wynn M.L.
        • Yates J.A.
        • Evans C.R.
        • et al.
        RhoC GTPase is a potent regulator of glutamine metabolism and N-Acetylaspartate production in inflammatory breast cancer cells.
        J Biol Chem. 2016; 291: 13715-13729
        • Anastasiou D.
        • Yu Y.
        • Israelsen W.J.
        • et al.
        Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis.
        Nat Chem Biol. 2012; 8: 839-847
        • Christofk H.R.
        • Vander Heiden M.G.
        • Harris M.H.
        • et al.
        The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth.
        Nature. 2008; 452: 230-233
        • Mazurek S.
        Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells.
        Int J Biochem Cell Biol. 2011; 43: 969-980
        • Lunt S.Y.
        • Muralidhar V.
        • Hosios A.M.
        • et al.
        Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation.
        Mol Cell. 2015; 57: 95-107
        • Hanahan D.
        • Weinberg Robert A.
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674
        • Baeriswyl V.
        • Christofori G.
        The angiogenic switch in carcinogenesis.
        Semin Cancer Biol. 2009; 19: 329-337
        • Ravi R.
        • Mookerjee B.
        • Bhujwalla Z.M.
        • et al.
        Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α.
        Genes Dev. 2000; 14: 34-44
        • Pugh C.W.
        • Ratcliffe P.J.
        Regulation of angiogenesis by hypoxia: role of the HIF system.
        Nat Med. 2003; 9: 677-684
        • Schito L.
        • Semenza G.L.
        Hypoxia-inducible factors: master regulators of cancer progression.
        Trends Cancer. 2016; 2: 758-770
        • Dales J.-P.
        • Garcia S.
        • Meunier-Carpentier S.
        • et al.
        Overexpression of hypoxia-inducible factor HIF-1α predicts early relapse in breast cancer: retrospective study in a series of 745 patients.
        Int J Cancer. 2005; 116: 734-739
        • Schindl M.
        • Schoppmann S.F.
        • Samonigg H.
        • et al.
        Overexpression of hypoxia-inducible factor 1α is associated with an unfavorable prognosis in lymph node-positive breast cancer.
        Clin Cancer Res. 2002; 8: 1831-1837
        • Lundgren K.
        • Holm C.
        • Landberg G.
        Hypoxia and breast cancer: prognostic and therapeutic implications.
        Cell Mol Life Sci. 2007; 64: 3233-3247
        • Yehia L.
        • Boulos F.
        • Jabbour M.
        • Mahfoud Z.
        • Fakhruddin N.
        • El-Sabban M.
        Expression of HIF-1α and markers of angiogenesis are not significantly different in triple negative breast cancer compared to other breast cancer molecular subtypes: implications for future therapy.
        PLoS One. 2015; 10: e0129356
        • van der Groep P.
        • van Diest P.J.
        • Smolders Y.H.C.M.
        • et al.
        HIF-1α overexpression in ductal carcinoma in situ of the breast in BRCA1 and BRCA2 mutation carriers.
        PLoS One. 2013; 8: e56055
        • Wolff M.
        • Kosyna F.K.
        • Dunst J.
        • Jelkmann W.
        • Depping R.
        Impact of hypoxia inducible factors on estrogen receptor expression in breast cancer cells.
        Arch Biochem Biophys. 2017; 613: 23-30
        • Yang J.
        • AlTahan A.
        • Jones D.T.
        • et al.
        Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer.
        Proc Natl Acad Sci. 2015; 112: 15172-15177
        • Rohwer N.
        • Cramer T.
        Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways.
        Drug Resist Updat. 2011; 14: 191-201
        • Samanta D.
        • Gilkes D.M.
        • Chaturvedi P.
        • Xiang L.
        • Semenza G.L.
        Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells.
        Proc Natl Acad Sci. 2014; 111: E5429-E5438
        • Lu H.
        • Samanta D.
        • Xiang L.
        • et al.
        Chemotherapy triggers HIF-1–dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype.
        Proc Natl Acad Sci U S A. 2015; 112: E4600-E4609
        • Samanta D.
        • Park Y.
        • Andrabi S.A.
        • Shelton L.M.
        • Gilkes D.M.
        • Semenza G.L.
        PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis.
        Cancer Res. 2016; 76: 4430
        • Whelan K.A.
        • Schwab L.P.
        • Karakashev S.V.
        • et al.
        The oncogene HER2/neu (ERBB2) requires the hypoxia-inducible factor HIF-1 for mammary tumor growth and Anoikis resistance.
        J Biol Chem. 2013; 288: 15865-15877
        • Bashari M.H.
        • Fan F.
        • Vallet S.
        • et al.
        Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications.
        Breast Cancer Res. 2016; 18: 26
        • Schacter J.L.
        • Henson E.S.
        • Gibson S.B.
        Estrogen regulation of anti-apoptotic Bcl-2 family member Mcl-1 expression in breast cancer cells.
        PLoS One. 2014; 9: e100364
        • Flegal K.M.
        • Kruszon-Moran D.
        • Carroll M.D.
        • Fryar C.D.
        • Ogden C.L.
        Trends in obesity among adults in the United States, 2005 to 2014.
        JAMA. 2016; 315: 2284-2291
        • Cleary M.P.
        • Maihle N.J.
        The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer.
        Proc Soc Exp Biol Med. 1997; 216: 28-43
        • Trentham-Dietz A.
        • Newcomb P.A.
        • Storer B.E.
        • et al.
        Body size and risk of breast cancer.
        Am J Epidemiol. 1997; 145: 1011-1019
        • Huang Z.
        • Hankinson S.E.
        • Colditz G.A.
        • et al.
        Dual effects of weight and weight gain on breast cancer risk.
        JAMA. 1997; 278: 1407-1411
        • McTiernan A.
        Associations between energy balance and body mass index and risk of breast carcinoma in women from diverse racial and ethnic backgrounds in the US.
        Cancer. 2000; 88: 1248-1255
        • Ahn J.
        • Schatzkin A.
        • Lacey J.V.
        • et al.
        Adiposity, adult weight change, and postmenopausal breast cancer risk.
        Arch Intern Med. 2007; 167: 2091-2102
        • Ove Mæhle B.
        • Tretli S.
        • Skjærven R.
        • Thorsen T.
        Premorbid body weight and its relations to primary tumour diameter in breast cancer patients; its dependence on estrogen and progesteron receptor status.
        Breast Cancer Res Treat. 2001; 68: 159-169
        • Van Mieghem T.
        • Leunen K.
        • Pochet N.
        • et al.
        Body mass index and HER-2 overexpression in breast cancer patients over 50 years of age.
        Breast Cancer Res Treat. 2007; 106: 127-133
        • Font-Burgada J.
        • Sun B.
        • Karin M.
        Obesity and cancer: the oil that feeds the flame.
        Cell Metab. 2016; 23: 48-62
        • Osman M.A.
        • Hennessy B.T.
        Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clinical medicine insights.
        Oncology. 2015; 9: 105-112
        • Haakinson D.J.
        • Leeds S.G.
        • Dueck A.C.
        • et al.
        The impact of obesity on breast cancer: a retrospective review.
        Ann Surg Oncol. 2012; 19: 3012-3018
        • Ewertz M.
        • Jensen M.-B.
        • Gunnarsdóttir K.Á.
        • et al.
        Effect of obesity on prognosis after early-stage breast cancer.
        J Clin Oncol. 2011; 29: 25-31
        • McTiernan A.
        • Rajan K.B.
        • Tworoger S.S.
        • et al.
        Adiposity and sex hormones in postmenopausal breast cancer Survivors.
        J Clin Oncol. 2003; 21: 1961-1966
        • Bernstein L.
        • Ross R.K.
        Endogenous hormones and breast cancer risk.
        Epidemiol Rev. 1992; 15: 48-65
        • Eliassen A.H.
        • Missmer S.A.
        • Tworoger S.S.
        • Hankinson S.E.
        Endogenous steroid hormone concentrations and risk of breast cancer: does the association vary by a woman's predicted breast cancer risk?.
        J Clin Oncol. 2006; 24: 1823-1830
        • Cleary M.P.
        • Grossmann M.E.
        Obesity and breast cancer: the estrogen connection.
        Endocrinology. 2009; 150: 2537-2542
        • Carmichael A.R.
        Review article: obesity as a risk factor for development and poor prognosis of breast cancer.
        BJOG. 2006; 113: 1160-1166
        • Balaban S.
        • Shearer R.F.
        • Lee L.S.
        • et al.
        Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration.
        Cancer Metab. 2017; 5: 1
        • Nieman K.M.
        • Kenny H.A.
        • Penicka C.V.
        • et al.
        Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth.
        Nat Med. 2011; 17: 1498-1503
        • Algire C.
        • Amrein L.
        • Bazile M.
        • David S.
        • Zakikhani M.
        • Pollak M.
        Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo.
        Oncogene. 2011; 30: 1174-1182
        • Venkateswaran V.
        • Haddad A.Q.
        • Fleshner N.E.
        • et al.
        Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts.
        J Natl Cancer Inst. 2007; 99: 1793-1800
        • Osborne C.K.
        • Bolan G.
        • Monaco M.E.
        • Lippman M.E.
        Hormone responsive human breast cancer in long-term tissue culture: effect of insulin.
        Proc Natl Acad Sci. 1976; 73: 4536-4540
        • Lorincz A.
        • Sukumar S.
        Molecular links between obesity and breast cancer.
        Endocr Relat Cancer. 2006; 13: 279-292
        • Tessari P.
        • Cecchet D.
        • Cosma A.
        • et al.
        Insulin resistance of amino acid and protein metabolism in type 2 diabetes.
        Clin Nutr. 2011; 30: 267-272
        • Blagosklonny M.
        TOR-centric view on insulin resistance and diabetic complications: perspective for endocrinologists and gerontologists.
        Cell Death Dis. 2013; 4: e964
        • Brachmann S.M.
        • Hofmann I.
        • Schnell C.
        • et al.
        Specific apoptosis induction by the dual PI3K/mTOR inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells.
        Proc Natl Acad Sci. 2009; 106: 22299-22304
        • Wolff G.L.
        • Roberts D.W.
        • Mountjoy K.G.
        Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome.
        Physiol Genomics. 1999; 1: 151-163
        • Heston W.E.
        • Vlahakis G.
        Influence of the Ay gene on mammary-gland tumors, hepatomas, and normal growth in mice.
        J Natl Cancer Inst. 1961; 26: 969-983
        • Heston W.E.
        • Vlahakis G.
        C3H-Avy–a high hepatoma and high mammary tumor strain of mice.
        J Natl Cancer Inst. 1968; 40: 1161-1166
        • Heston W.E.
        • Vlahakis G.
        Genetic obesity and neoplasia.
        J Natl Cancer Inst. 1962; 29: 197-209
        • Hu X.
        • Juneja S.C.
        • Maihle N.J.
        • Cleary M.P.
        Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development.
        J Natl Cancer Inst. 2002; 94: 1704-1711
        • Zhu Y.
        • Aupperlee M.D.
        • Zhao Y.
        • et al.
        Pubertal and adult windows of susceptibility to a high animal fat diet in Trp53-null mammary tumorigenesis.
        Oncotarget. 2016; 7: 83409-83423
        • Cleary M.P.
        • Grande J.P.
        • Maihle N.J.
        Effect of high fat diet on body weight and mammary tumor latency in MMTV-TGF-alpha mice.
        Int J Obes Relat Metab Disord. 2004; 28: 956-962
        • Cleary M.P.
        • Grande J.P.
        • Juneja S.C.
        • Maihle N.J.
        Diet-induced obesity and mammary tumor development in MMTV-neu female mice.
        Nutr Cancer. 2004; 50: 174-180
        • Dogan S.
        • Hu X.
        • Zhang Y.
        • Maihle N.J.
        • Grande J.P.
        • Cleary M.P.
        Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-alpha mice.
        Breast Cancer Res. 2007; 9: R91
        • Khalid S.
        • Hwang D.
        • Babichev Y.
        • et al.
        Evidence for a tumor promoting effect of high-fat diet independent of insulin resistance in HER2/Neu mammary carcinogenesis.
        Breast Cancer Res Treat. 2010; 122: 647-659
        • Hefetz-Sela S.
        • Scherer P.E.
        Adipocytes: impact on tumor growth and potential sites for therapeutic intervention.
        Pharmacol Ther. 2013; 138: 197-210
        • Tan J.
        • Buache E.
        • Chenard M.P.
        • Dali-Youcef N.
        • Rio M.C.
        Adipocyte is a non-trivial, dynamic partner of breast cancer cells.
        Int J Dev Biol. 2011; 55: 851-859
        • Vander Heiden M.G.
        Targeting cancer metabolism: a therapeutic window opens.
        Nat Rev Drug Discov. 2011; 10: 671-684
        • Vernieri C.
        • Casola S.
        • Foiani M.
        • Pietrantonio F.
        • de Braud F.
        • Longo V.
        Targeting cancer metabolism: dietary and pharmacologic interventions.
        Cancer Discov. 2016; 6: 1315-1333
        • DeVita V.T.
        • Chu E.
        A history of cancer chemotherapy.
        Cancer Res. 2008; 68: 8643
        • Longley D.B.
        • Harkin D.P.
        • Johnston P.G.
        5-Fluorouracil: mechanisms of action and clinical strategies.
        Nat Rev Cancer. 2003; 3: 330-338
        • Verstappen C.C.P.
        • Heimans J.J.
        • Hoekman K.
        • Postma T.J.
        Neurotoxic complications of chemotherapy in patients with cancer.
        Drugs. 2003; 63: 1549-1563
        • Groopman J.E.
        • Itri L.M.
        Chemotherapy-induced anemia in adults: incidence and treatment.
        J Natl Cancer Inst. 1999; 91: 1616-1634
        • Zhou R.
        • Pantel A.R.
        • Li S.
        • et al.
        18F(2S,4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition.
        Cancer Res. 2017; 77: 1476-1484
        • Christen S.
        • Lorendeau D.
        • Schmieder R.
        • et al.
        Breast cancer-derived lung metastases show increased pyruvate Carboxylase-dependent anaplerosis.
        Cell Rep. 2016; 17: 837-848
        • Le A.
        • Lane Andrew N.
        • Hamaker M.
        • et al.
        Glucose-Independent glutamine metabolism via TCA cycling for proliferation and Survival in B Cells.
        Cell Metab. 2012; 15: 110-121
        • Xiang Y.
        • Stine Z.E.
        • Xia J.
        • et al.
        Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis.
        J Clin Invest. 2015; 125: 2293-2306
        • Shroff E.H.
        • Eberlin L.S.
        • Dang V.M.
        • et al.
        MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism.
        Proc Natl Acad Sci. 2015; 112: 6539-6544
        • Cheyne R.W.
        • Trembleau L.
        • McLaughlin A.
        • Smith T.A.D.
        Changes in 2-fluoro-2-deoxy-d-glucose incorporation, hexokinase activity and lactate production by breast cancer cells responding to treatment with the anti-HER-2 antibody trastuzumab.
        Nucl Med Biol. 2011; 38: 339-346
        • Acharya S.
        • Xu J.
        • Wang X.
        • et al.
        Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib.
        Am J Cancer Res. 2016; 6: 981-995
        • Zhang J.-S.
        • Lei J.-P.
        • Wei G.-Q.
        • Chen H.
        • Ma C.-Y.
        • Jiang H.-Z.
        Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: a review.
        Pharm Biol. 2016; 54: 1919-1925
        • Blancafort A.
        • Giró-Perafita A.
        • Oliveras G.
        • et al.
        Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs.
        PLoS One. 2015; 10: e0131241
        • Evans J.M.M.
        • Donnelly L.A.
        • Emslie-Smith A.M.
        • Alessi D.R.
        • Morris A.D.
        Metformin and reduced risk of cancer in diabetic patients.
        BMJ. 2005; 330: 1304-1305
        • Coyle C.
        • Cafferty F.H.
        • Vale C.
        • Langley R.E.
        Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis.
        Ann Oncol. 2016; 27: 2184-2195
        • Sacco F.
        • Calderone A.
        • Castagnoli L.
        • Cesareni G.
        The cell-autonomous mechanisms underlying the activity of metformin as an anticancer drug.
        Br J Cancer. 2016; 115: 1451-1456
        • Fendt S.-M.
        • Bell E.L.
        • Keibler M.A.
        • et al.
        Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism.
        Cancer Res. 2013; 73: 4429-4438
        • Smith T.A.D.
        • Phyu S.M.
        Metformin decouples phospholipid metabolism in breast cancer cells.
        PLoS One. 2016; 11: e0151179
        • Zakikhani M.
        • Bazile M.
        • Hashemi S.
        • et al.
        Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.
        PLoS One. 2012; 7: e49513