Advertisement

Digital image analysis in breast pathology—from image processing techniques to artificial intelligence

  • Stephanie Robertson
    Affiliations
    Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden

    Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden
    Search for articles by this author
  • Hossein Azizpour
    Affiliations
    School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden

    Science for Life Laboratory, Stockholm, Sweden
    Search for articles by this author
  • Kevin Smith
    Affiliations
    School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden

    Science for Life Laboratory, Stockholm, Sweden
    Search for articles by this author
  • Johan Hartman
    Correspondence
    Reprint requests:Department of Oncology-Pathology, Karolinska Institutet, CCK, SE-17176 Stockholm, Sweden;
    Affiliations
    Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden

    Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden

    Stockholm South General Hospital, Stockholm, Sweden
    Search for articles by this author
Published:November 07, 2017DOI:https://doi.org/10.1016/j.trsl.2017.10.010
      Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis.

      Abbreviations:

      DIA (digital image analysis), AI (artificial intelligence), H&E (hematoxylin and eosin), IHC (immunohistochemistry), ISH (in situ hybridization), DCIS (ductal carcinoma in situ), ER (estrogen receptor α), PR (progesterone receptor), HER2 (human epidermal growth factor receptor 2), DNA (deoxyribonucleic acid), mRNA (messenger ribonucleic acid), WSI (whole-slide imaging), CAD (computer-aided diagnosis), RF (random forest), SVM (support vector machine), MIL (multiple instance learning), ConvNet (convolutional network)
      To read this article in full you will need to make a payment

      References

        • Krizhevsky A.
        • Sutskever I.
        • Hinton G.E.
        Imagenet classification with deep convolutional neural networks.
        Adv Neural Inf Process Syst. 2012; : 1097-1105
        • Hinton G.
        • Deng L.
        • Yu D.
        • et al.
        Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups.
        IEEE Signal Process Mag. 2012; 29: 82-97
        • Silver D.
        • Huang A.
        • Maddison C.J.
        • et al.
        Mastering the game of Go with deep neural networks and tree search.
        Nature. 2016; 529: 484-489
        • Esteva A.
        • Kuprel B.
        • Novoa R.A.
        • et al.
        Dermatologist-level classification of skin cancer with deep neural networks.
        Nature. 2017; 542: 115-118
        • Gulshan V.
        • Peng L.
        • Coram M.
        • et al.
        Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
        JAMA. 2016; 316: 2402-2410
        • Syeda-Mahmood T.
        • Walach E.
        • Beymer D.
        • et al.
        Medical sieve: a cognitive assistant for radiologists and cardiologists. SPIE Medical Imaging.
        2016 (International Society for Optics and Photonics)
        • Anirudh R.
        • Thiagarajan J.J.
        • Bremer T.
        • Kim H.
        Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data. SPIE Medical Imaging.
        2016 (International Society for Optics and Photonics)
        • Stewart B.
        • Wild C.
        World cancer report 2014.
        (Lyon: International Agency for Research on Cancer)2014
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2017.
        CA Cancer J Clin. 2017; 67: 7-30
        • Azzopardi A.G.
        Problems in breast pathology. Classification of primary breast carcinoma.
        W.B. Saunders, Philadelphia1979
        • Tavassoli F.A.
        Pathology of the Breast.
        Appleton and Lange, Stanford1992
        • Tavassoli F.A.
        • Devilee P.
        World Health Organization classification of tumours.
        in: Tavassoli F.A. Devilee P. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon2003
        • Lakhani S.R.
        Lakhani S.R. WHO classification of tumours of the breast. IARC Press, Lyon2012
        • Chu P.G.
        • Weiss L.M.
        Keratin expression in human tissues and neoplasms.
        Histopathology. 2002; 40: 403-439
        • Perkins W.
        • Campbell I.
        • Leigh I.M.
        • MacKie R.M.
        Keratin expression in normal skin and epidermal neoplasms demonstrated by a panel of monoclonal antibodies.
        J Cutan Pathol. 1992; 19: 476-482
        • Qureshi H.S.
        • Linden M.D.
        • Divine G.
        • Raju U.B.
        E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters.
        Am J Clin Pathol. 2006; 125: 377-385
        • Berezowski K.
        • Stastny J.F.
        • Kornstein M.J.
        Cytokeratins 7 and 20 and carcinoembryonic antigen in ovarian and colonic carcinoma.
        Mod Pathol. 1996; 9: 426-429
        • Lagendijk J.H.
        • Mullink H.
        • Van Diest P.J.
        • Meijer G.A.
        • Meijer C.J.
        Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites.
        Hum Pathol. 1998; 29: 491-497
        • Loy T.S.
        • Calaluce R.D.
        Utility of cytokeratin immunostaining in separating pulmonary adenocarcinomas from colonic adenocarcinomas.
        Am J Clin Pathol. 1994; 102: 764-767
        • Nadji M.
        • Tabei S.Z.
        • Castro A.
        • et al.
        Prostatic-specific antigen: an immunohistologic marker for prostatic neoplasms.
        Cancer. 1981; 48: 1229-1232
        • Gould V.E.
        Synaptophysin. A new and promising pan-neuroendocrine marker.
        Arch Pathol Lab Med. 1987; 111: 791-794
        • Cao Y.
        • Schlag P.M.
        • Karsten U.
        Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, and sialosyl-Tn) in benign and malignant lesions of colonic epithelium: apolar localization corresponds to malignant transformation.
        Virchows Arch. 1997; 431: 159-166
        • Naber S.P.
        Molecular pathology—diagnosis of infectious disease.
        N Engl J Med. 1994; 331: 1212-1215
        • Scarff R.W.
        • Torloni H.
        Histological typing of breast tumours (International Histological Classification of Tumours, no. 2).
        (Geneva: World Health Organization)1968
        • Elston C.W.
        • Ellis I.O.
        Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up.
        Histopathology. 1991; 19: 403-410
        • Meyer J.S.
        • Alvarez C.
        • Milikowski C.
        • et al.
        Breast carcinoma malignancy grading by Bloom-Richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index.
        Mod Pathol. 2005; 18: 1067-1078
        • Brierley J.D.
        • Gospodarowicz M.K.
        • Wittekind C.
        Brierley J.D. Gospodarowicz M.K. Wittekind C. TNM classification of malignant tumours. 8th ed. John Wiley & Sons, Ltd, Oxford, UK2017
        • Coates A.S.
        • Winer E.P.
        • Goldhirsch A.
        • et al.
        Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015.
        Ann Oncol. 2015; 26: 1533-1546
        • Goldhirsch A.
        • Winer E.P.
        • Coates A.S.
        • et al.
        Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013.
        Ann Oncol. 2013; 24: 2206-2223
        • Goldhirsch A.
        • Wood W.C.
        • Coates A.S.
        • Gelber R.D.
        • Thurlimann B.
        • Senn H.J.
        Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011.
        Ann Oncol. 2011; 22: 1736-1747
        • Harris L.
        • Fritsche H.
        • Mennel R.
        • et al.
        American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer.
        J Clin Oncol. 2007; 25: 5287-5312
        • Van Poznak C.
        • Somerfield M.R.
        • Bast R.C.
        • et al.
        Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology Clinical Practice Guideline.
        J Clin Oncol. 2015; 33: 2695-2704
        • Harris L.N.
        • Ismaila N.
        • McShane L.M.
        • et al.
        Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline.
        J Clin Oncol. 2016; 34: 1134-1150
        • Hammond M.E.
        • Hayes D.F.
        • Dowsett M.
        • et al.
        American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer.
        Arch Pathol Lab Med. 2010; 134: 907-922
        • Hawkins R.A.
        • Roberts M.M.
        • Forrest A.P.
        Oestrogen receptors and breast cancer: current status.
        Br J Surg. 1980; 67: 153-169
        • Barnes D.M.
        • Hanby A.M.
        Oestrogen and progesterone receptors in breast cancer: past, present and future.
        Histopathology. 2001; 38: 271-274
        • Li C.I.
        • Daling J.R.
        • Malone K.E.
        Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998.
        J Clin Oncol. 2003; 21: 28-34
        • Slamon D.J.
        • Clark G.M.
        • Wong S.G.
        • Levin W.J.
        • Ullrich A.
        • McGuire W.L.
        Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.
        Science. 1987; 235: 177-182
        • Wolff A.C.
        • Hammond M.E.
        • Hicks D.G.
        • et al.
        Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update.
        J Clin Oncol. 2013; 31: 3997-4013
        • Grabau D.
        • Quality- and Standardization Committee (KVAST)
        Quality- and standadization document for breast tumors.
        (Alingsås, Sweden: Swedish Pathological Society/Swedish Society of Clinical Cytology)2014
        • Gavrielides M.A.
        • Gallas B.D.
        • Lenz P.
        • Badano A.
        • Hewitt S.M.
        Observer variability in the interpretation of HER2/neu immunohistochemical expression with unaided and computer-aided digital microscopy.
        Arch Pathol Lab Med. 2011; 135: 233-242
        • Bloom K.
        • Harrington D.
        Enhanced accuracy and reliability of HER-2/neu immunohistochemical scoring using digital microscopy.
        Am J Clin Pathol. 2004; 121: 620-630
        • Roche P.C.
        • Suman V.J.
        • Jenkins R.B.
        • et al.
        Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831.
        J Natl Cancer Inst. 2002; 94: 855-857
        • Perez E.A.
        • Suman V.J.
        • Davidson N.E.
        • et al.
        HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial.
        J Clin Oncol. 2006; 24: 3032-3038
        • Bueno-de-Mesquita J.M.
        • Nuyten D.S.
        • Wesseling J.
        • van Tinteren H.
        • Linn S.C.
        • van de Vijver M.J.
        The impact of inter-observer variation in pathological assessment of node-negative breast cancer on clinical risk assessment and patient selection for adjuvant systemic treatment.
        Ann Oncol. 2010; 21: 40-47
        • Dowsett M.
        • Nielsen T.O.
        • A'Hern R.
        • et al.
        Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group.
        J Natl Cancer Inst. 2011; 103: 1656-1664
        • Criscitiello C.
        • Disalvatore D.
        • De Laurentiis M.
        • et al.
        High Ki-67 score is indicative of a greater benefit from adjuvant chemotherapy when added to endocrine therapy in luminal B HER2 negative and node-positive breast cancer.
        Breast. 2014; 23: 69-75
        • Curigliano G.
        • Burstein H.J.
        • P Winer E.
        • et al.
        De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017.
        Ann Oncol. 2017; 28: 1700-1712
        • de Azambuja E.
        • Cardoso F.
        • de Castro Jr, G.
        • et al.
        Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients.
        Br J Cancer. 2007; 96: 1504-1513
        • Polley M.Y.
        • Leung S.C.
        • Gao D.
        • et al.
        An international study to increase concordance in Ki67 scoring.
        Mod Pathol. 2015; 28: 778-786
        • Hayes D.F.
        From genome to bedside: are we lost in translation?.
        Breast. 2013; 22: S22-S26
        • Polley M.Y.
        • Leung S.C.
        • McShane L.M.
        • et al.
        An international Ki67 reproducibility study.
        J Natl Cancer Inst. 2013; 105: 1897-1906
        • Varga Z.
        • Diebold J.
        • Dommann-Scherrer C.
        • et al.
        How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists.
        PLoS ONE. 2012; 7 (e37379)
        • van ‘t Veer L.J.
        • Dai H.
        • van de Vijver M.J.
        • et al.
        Gene expression profiling predicts clinical outcome of breast cancer.
        Nature. 2002; 415: 530-536
        • Sorlie T.
        • Perou C.M.
        • Tibshirani R.
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci USA. 2001; 98: 10869-10874
        • Loi S.
        • Haibe-Kains B.
        • Desmedt C.
        • et al.
        Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade.
        J Clin Oncol. 2007; 25: 1239-1246
        • Parker J.S.
        • Mullins M.
        • Cheang M.C.
        • et al.
        Supervised risk predictor of breast cancer based on intrinsic subtypes.
        J Clin Oncol. 2009; 27: 1160-1167
        • Perou C.M.
        • Sorlie T.
        • Eisen M.B.
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752
        • Fan C.
        • Oh D.S.
        • Wessels L.
        • et al.
        Concordance among gene-expression-based predictors for breast cancer.
        N Engl J Med. 2006; 355: 560-569
        • Hu Z.
        • Fan C.
        • Oh D.S.
        • et al.
        The molecular portraits of breast tumors are conserved across microarray platforms.
        BMC Genomics. 2006; 7: 96
        • Sorlie T.
        • Tibshirani R.
        • Parker J.
        • et al.
        Repeated observation of breast tumor subtypes in independent gene expression data sets.
        Proc Natl Acad Sci USA. 2003; 100: 8418-8423
        • Bastien R.R.
        • Rodriguez-Lescure A.
        • Ebbert M.T.
        • et al.
        PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers.
        BMC Med Genomics. 2012; 5: 44
        • Nielsen T.O.
        • Parker J.S.
        • Leung S.
        • et al.
        A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer.
        Clin Cancer Res. 2010; 16: 5222-5232
        • Bayraktar S.
        • Royce M.
        • Stork-Sloots L.
        • de Snoo F.
        • Gluck S.
        Molecular subtyping predicts pathologic tumor response in early-stage breast cancer treated with neoadjuvant docetaxel plus capecitabine with or without trastuzumab chemotherapy.
        Med Oncol. 2014; 31: 163
        • Nguyen B.
        • Cusumano P.G.
        • Deck K.
        • et al.
        Comparison of molecular subtyping with BluePrint, MammaPrint, and TargetPrint to local clinical subtyping in breast cancer patients.
        Ann Surg Oncol. 2012; 19: 3257-3263
        • Dowsett M.
        • Sestak I.
        • Lopez-Knowles E.
        • et al.
        Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy.
        J Clin Oncol. 2013; 31: 2783-2790
        • Paik S.
        • Shak S.
        • Tang G.
        • et al.
        A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.
        N Engl J Med. 2004; 351: 2817-2826
        • Cheang M.C.
        • Chia S.K.
        • Voduc D.
        • et al.
        Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer.
        J Natl Cancer Inst. 2009; 101: 736-750
        • Guiu S.
        • Michiels S.
        • Andre F.
        • et al.
        Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement.
        Ann Oncol. 2012; 23: 2997-3006
        • de Azambuja E.
        • Holmes A.P.
        • Piccart-Gebhart M.
        • et al.
        Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response.
        Lancet Oncol. 2014; 15: 1137-1146
        • Ho J.
        • Parwani A.V.
        • Jukic D.M.
        • Yagi Y.
        • Anthony L.
        • Gilbertson J.R.
        Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies.
        Hum Pathol. 2006; 37: 322-331
        • Helin H.
        • Lundin M.
        • Lundin J.
        • et al.
        Web-based virtual microscopy in teaching and standardizing Gleason grading.
        Hum Pathol. 2005; 36: 381-386
        • Fine J.L.
        • Grzybicki D.M.
        • Silowash R.
        • et al.
        Evaluation of whole slide image immunohistochemistry interpretation in challenging prostate needle biopsies.
        Hum Pathol. 2008; 39: 564-572
        • Lopez A.M.
        • Graham A.R.
        • Barker G.P.
        • et al.
        Virtual slide telepathology enables an innovative telehealth rapid breast care clinic.
        Hum Pathol. 2009; 40: 1082-1091
        • Velez N.
        • Jukic D.
        • Ho J.
        Evaluation of 2 whole-slide imaging applications in dermatopathology.
        Hum Pathol. 2008; 39: 1341-1349
        • Evans A.J.
        • Chetty R.
        • Clarke B.A.
        • et al.
        Primary frozen section diagnosis by robotic microscopy and virtual slide telepathology: the University Health Network experience.
        Hum Pathol. 2009; 40: 1070-1081
        • Wienert S.
        • Beil M.
        • Saeger K.
        • Hufnagl P.
        • Schrader T.
        Integration and acceleration of virtual microscopy as the key to successful implementation into the routine diagnostic process.
        Diagn Pathol. 2009; 4: 3
        • Jara-Lazaro A.R.
        • Thamboo T.P.
        • Teh M.
        • Tan P.H.
        Digital pathology: exploring its applications in diagnostic surgical pathology practice.
        Pathology. 2010; 42: 512-518
        • Warren Burhenne L.J.
        • Wood S.A.
        • D'Orsi C.J.
        • et al.
        Potential contribution of computer-aided detection to the sensitivity of screening mammography.
        Radiology. 2000; 215: 554-562
        • Shiraishi J.
        • Li Q.
        • Appelbaum D.
        • Doi K.
        Computer-aided diagnosis and artificial intelligence in clinical imaging.
        Semin Nucl Med. 2011; 41: 449-462
        • Khan A.M.
        • Rajpoot N.
        • Treanor D.
        • Magee D.
        A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution.
        IEEE Trans Biomed Eng. 2014; 61: 1729-1738
        • Kass M.
        • Witkin A.
        • Terzopoulos D.
        Snakes: active contour models.
        Int J Comput Vis. 1988; 1: 321-331
        • Jing J.
        • Wan T.
        • Cao J.
        • Qin Z.
        An improved hybrid active contour model for nuclear segmentation on breast cancer histopathology.
        (Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on)2016 (IEEE)
        • Ali S.
        • Madabhushi A.
        Active contour for overlap resolution using watershed based initialization (ACOReW): Applications to histopathology.
        (Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on)2011 (IEEE)
        • Ali S.
        • Madabhushi A.
        An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery.
        IEEE Trans Med Imaging. 2012; 31: 1448-1460
        • Veta M.
        • Pluim J.P.
        • van Diest P.J.
        • Viergever M.A.
        Breast cancer histopathology image analysis: a review.
        IEEE Trans Biomed Eng. 2014; 61: 1400-1411
        • Gurcan M.N.
        • Boucheron L.E.
        • Can A.
        • Madabhushi A.
        • Rajpoot N.M.
        • Yener B.
        Histopathological image analysis: a review.
        IEEE Rev Biomed Eng. 2009; 2: 147-171
        • Tuominen V.J.
        • Ruotoistenmaki S.
        • Viitanen A.
        • Jumppanen M.
        • Isola J.
        ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67.
        Breast Cancer Res. 2010; 12: 12
        • Yeo M.K.
        • Kim H.E.
        • Kim S.H.
        • Chae B.J.
        • Song B.J.
        • Lee A.
        Clinical usefulness of the free web-based image analysis application ImmunoRatio for assessment of Ki-67 labelling index in breast cancer.
        J Clin Pathol. 2017; 70: 715-719
        • Tuominen V.J.
        • Tolonen T.T.
        • Isola J.
        ImmunoMembrane: a publicly available web application for digital image analysis of HER2 immunohistochemistry.
        Histopathology. 2012; 60: 758-767
        • Stalhammar G.
        • Fuentes Martinez N.
        • Lippert M.
        • et al.
        Digital image analysis outperforms manual biomarker assessment in breast cancer.
        Mod Pathol. 2016; 29: 318-329
        • Lykkegaard Andersen N.
        • Brugmann A.
        • Lelkaitis G.
        • Nielsen S.
        • Friis Lippert M.
        • Vyberg M.
        Virtual Double Staining: a digital approach to immunohistochemical quantification of estrogen receptor protein in breast carcinoma specimens.
        Appl Immunohistochem Mol Morphol. 2017; https://doi.org/10.1097/PAI.0000000000000502
        • Roge R.
        • Riber-Hansen R.
        • Nielsen S.
        • Vyberg M.
        Proliferation assessment in breast carcinomas using digital image analysis based on virtual Ki67/cytokeratin double staining.
        Breast Cancer Res Treat. 2016; 158: 11-19
        • Ahern T.P.
        • Beck A.H.
        • Rosner B.A.
        • et al.
        Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms.
        J Clin Pathol. 2017; 70: 428-434
        • Holten-Rossing H.
        • Moller Talman M.L.
        • Kristensson M.
        • Vainer B.
        Optimizing HER2 assessment in breast cancer: application of automated image analysis.
        Breast Cancer Res Treat. 2015; 152: 367-375
        • Rizzardi A.E.
        • Johnson A.T.
        • Vogel R.I.
        • et al.
        Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring.
        Diagn Pathol. 2012; 7: 42
        • Nielsen P.S.
        • Riber-Hansen R.
        • Jensen T.O.
        • Schmidt H.
        • Steiniche T.
        Proliferation indices of phosphohistone H3 and Ki67: strong prognostic markers in a consecutive cohort with stage I/II melanoma.
        Mod Pathol. 2013; 26: 404-413
        • Brugmann A.
        • Eld M.
        • Lelkaitis G.
        • et al.
        Digital image analysis of membrane connectivity is a robust measure of HER2 immunostains.
        Breast Cancer Res Treat. 2012; 132: 41-49
        • Holten-Rossing H.
        • Talman M.M.
        • Jylling A.M.B.
        • Laenkholm A.V.
        • Kristensson M.
        • Vainer B.
        Application of automated image analysis reduces the workload of manual screening of sentinel Lymph node biopsies in breast cancer.
        Histopathology. 2017; https://doi.org/10.1111/his.13305
        • Konsti J.
        • Lundin M.
        • Linder N.
        • et al.
        Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium.
        Diagn Pathol. 2012; 7: 29
        • Buchanan B.G.
        • Shortliffe E.H.
        Rule-based expert systems: Addison-Wesley Reading, MA.
        1984
        • Olson W.H.
        • Kaemmerer W.F.
        Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias.
        (Google Patents)1996
        • Kramer M.A.
        • Palowitch B.
        A rule-based approach to fault diagnosis using the signed directed graph.
        AIChE J. 1987; 33: 1067-1078
        • Xu J.
        Rule-based automatic software performance diagnosis and improvement.
        Perform Eval. 2012; 69: 525-550
        • Azimi V.
        • Chang Y.H.
        • Thibault G.
        • et al.
        Breast cancer histopathology image analysis pipeline for tumor purity estimation.
        (Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on)2017 (IEEE)
        • Ehteshami Bejnordi B.
        • Linz J.
        • Glass B.
        • et al.
        Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images.
        (arXiv preprint arXiv:170205803)2017
        • Song Y.
        • Zou J.J.
        • Chang H.
        • Cai W.
        Adapting fisher vectors for histopathology image classification.
        (Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on)2017 (IEEE)
        • Das K.
        • Karri S.P.K.
        • Roy A.G.
        • Chatterjee J.
        • Sheet D.
        Classifying histopathology whole-slides using fusion of decisions from deep convolutional network on a collection of random multi-views at multi-magnification.
        (Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on)2017 (IEEE)
        • Wollmann T.
        • Rohr K.
        Deep residual Hough voting for mitotic cell detection in histopathology images.
        (Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on)2017 (IEEE)
        • Naylor P.
        • Laé M.
        • Reyal F.
        • Walter T.
        Nuclei segmentation in histopathology images using deep neural networks.
        (Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on)2017 (IEEE)
        • Cao J.
        • Qin Z.
        • Jing J.
        • Chen J.
        • Wan T.
        An automatic breast cancer grading method in histopathological images based on pixel-, object-, and semantic-level features.
        (Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on)2016 (IEEE)
        • Spanhol F.A.
        • Oliveira L.S.
        • Petitjean C.
        • Heutte L.
        Breast cancer histopathological image classification using convolutional neural networks.
        (Neural Networks (IJCNN), 2016 International Joint Conference on)2016 (IEEE)
        • Li W.
        • Zhang J.
        • McKenna S.J.
        Multiple instance cancer detection by boosting regularised trees.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2015 (Springer)
        • Paul A.
        • Dey A.
        • Mukherjee D.P.
        • Sivaswamy J.
        • Tourani V.
        Regenerative random forest with automatic feature selection to detect mitosis in histopathological breast cancer images.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2015 (Springer)
        • Xie Y.
        • Xing F.
        • Kong X.
        • Su H.
        • Yang L.
        Beyond classification: structured regression for robust cell detection using convolutional neural network.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2015 (Springer)
        • Su H.
        • Xing F.
        • Kong X.
        • Xie Y.
        • Zhang S.
        • Yang L.
        Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2015 (Springer)
        • Xie Y.
        • Kong X.
        • Xing F.
        • Liu F.
        • Su H.
        • Yang L.
        Deep voting: A robust approach toward nucleus localization in microscopy images.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2015 (Springer)
        • Akbar S.
        • Jordan L.
        • Thompson A.M.
        • McKenna S.J.
        Tumor localization in tissue microarrays using rotation invariant superpixel pyramids.
        (Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on)2015 (IEEE)
        • Su H.
        • Liu F.
        • Xie Y.
        • Xing F.
        • Meyyappan S.
        • Yang L.
        Region segmentation in histopathological breast cancer images using deep convolutional neural network.
        (Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on)2015 (IEEE)
        • Peter L.
        • Mateus D.
        • Chatelain P.
        • et al.
        Leveraging random forests for interactive exploration of large histological images.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2014 (Springer)
        • Ciresan D.C.
        • Giusti A.
        • Gambardella L.M.
        • Schmidhuber J.
        Mitosis detection in breast cancer histology images with deep neural networks.
        Med Image Comput Comput Assist Interv. 2013; 16: 411-418
        • Arteta C.
        • Lempitsky V.
        • Noble J.A.
        • Zisserman A.
        Learning to detect cells using non-overlapping extremal regions.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2012 (Springer)
        • Song Y.
        • Li Q.
        • Huang H.
        • Feng D.
        • Chen M.
        • Cai W.
        Histopathology Image Categorization with Discriminative Dimension Reduction of Fisher Vectors.
        (European Conference on Computer Vision)2016 (Springer)
        • Vu T.H.
        • Mousavi H.S.
        • Monga V.
        • Rao U.A.
        • Rao G.
        DFDL: Discriminative feature-oriented dictionary learning for histopathological image classification.
        (Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on)2015 (IEEE)
        • Khan A.M.
        • Sirinukunwattana K.
        • Rajpoot N.
        Geodesic geometric mean of regional covariance descriptors as an image-level descriptor for nuclear atypia grading in breast histology images.
        (International Workshop on Machine Learning in Medical Imaging)2014 (Springer)
        • Srinivas U.
        • Mousavi H.
        • Jeon C.
        • Monga V.
        • Hattel A.
        • Jayarao B.
        SHIRC: A simultaneous sparsity model for histopathological image representation and classification.
        (Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on)2013 (IEEE)
        • Xu Y.
        • Zhu J.-Y.
        • Chang E.
        • Tu Z.
        Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering.
        (Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on)2012 (IEEE)
        • Xu Y.
        • Zhang J.
        • Eric I.
        • Chang C.
        • Lai M.
        • Tu Z.
        Context-constrained multiple instance learning for histopathology image segmentation.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2012 (Springer)
        • Cheplygina V.
        • Sørensen L.
        • Tax D.M.
        • de Bruijne M.
        • Loog M.
        Label stability in multiple instance learning.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2015 (Springer)
        • Chang H.
        • Zhou Y.
        • Spellman P.
        • Parvin B.
        Stacked predictive sparse coding for classification of distinct regions in tumor histopathology.
        (Proceedings of the IEEE International Conference on Computer Vision)2013
        • Lowe D.G.
        Object recognition from local scale-invariant features.
        (Computer vision, 1999 The proceedings of the seventh IEEE international conference on)1999 (Ieee)
        • Bay H.
        • Tuytelaars T.
        • Van Gool L.
        Surf: Speeded up robust features.
        (Computer vision–ECCV 2006)2006: 404-417
        • Ojala T.
        • Pietikainen M.
        • Maenpaa T.
        Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.
        IEEE Trans Pattern Anal Mach Intell. 2002; 24: 971-987
        • Cheikh B.B.
        • Elie N.
        • Plancoulaine B.
        • Bor-Angelier C.
        • Racoceanu D.
        Spatial interaction analysis with graph based mathematical morphology for histopathology.
        (Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on)2017 (IEEE)
        • Doyle S.
        • Agner S.
        • Madabhushi A.
        • Feldman M.
        • Tomaszewski J.
        Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features.
        (Biomedical Imaging: From Nano to Macro, 2008 ISBI 2008 5th IEEE International Symposium on)2008 (IEEE)
        • Xu J.
        • Xiang L.
        • Liu Q.
        • et al.
        Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images.
        IEEE Trans Med Imaging. 2016; 35: 119-130
        • Cruz-Roa A.A.
        • Ovalle J.E.A.
        • Madabhushi A.
        • Osorio F.A.G.
        A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2013 (Springer)
        • Nayak N.
        • Chang H.
        • Borowsky A.
        • Spellman P.
        • Parvin B.
        Classification of tumor histopathology via sparse feature learning.
        (Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on)2013 (IEEE)
        • Quinlan J.R.
        Induction of decision trees.
        Machine learning. 1986; 1: 81-106
        • Breiman L.
        Random forests.
        Machine learning. 2001; 45: 5-32
        • Liaw A.
        • Wiener M.
        Classification and regression by randomForest.
        R News. 2002; 2: 18-22
        • Cortes C.
        • Vapnik V.
        Support-vector networks.
        Mach Learn. 1995; 20: 273-297
        • Weston J.
        • Watkins C.
        Multi-class support vector machines.
        (Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May)1998
        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436-444
        • Bengio Y.
        • Courville A.
        • Vincent P.
        Representation learning: a review and new perspectives.
        IEEE Trans Pattern Anal Mach Intell. 2013; 35: 1798-1828
        • LeCun Y.
        • Kavukcuoglu K.
        • Farabet C.
        Convolutional networks and applications in vision.
        (Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on)2010 (IEEE)
        • Kingma D.P.
        • Welling M.
        Auto-encoding variational Bayes.
        (arXiv preprint arXiv:13126114)2013
        • Graves A.
        Supervised sequence labelling with recurrent neural networks.
        Springer, 2012
        • Goodfellow I.
        • Pouget-Abadie J.
        • Mirza M.
        • et al.
        Generative adversarial nets.
        (Adv Neural Inf Process Syst)2014
        • Bayramoglu N.
        • Heikkilä J.
        Transfer learning for cell nuclei classification in histopathology images.
        (Computer Vision–ECCV 2016 Workshops)2016 (Springer)
        • Veta M.
        • Van Diest P.J.
        • Pluim J.P.
        Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation.
        (International Conference on Medical Image Computing and Computer-Assisted Intervention)2016 (Springer)
        • Szegedy C.
        • Ioffe S.
        • Vanhoucke V.
        • Alemi A.A.
        Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.
        (AAAI)2017
        • He K.
        • Zhang X.
        • Ren S.
        • Sun J.
        Deep residual learning for image recognition.
        (Proceedings of the IEEE conference on computer vision and pattern recognition)2016
        • Simonyan K.
        • Zisserman A.
        Very deep convolutional networks for large-scale image recognition.
        (arXiv preprint arXiv:14091556)2014
        • Ciregan D.
        • Meier U.
        • Schmidhuber J.
        Multi-column deep neural networks for image classification.
        (Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on)2012 (IEEE)
        • Huang G.
        • Liu Z.
        • Weinberger K.Q.
        • van der Maaten L.
        Densely connected convolutional networks.
        (arXiv preprint arXiv:160806993)2016
        • Hinton G.E.
        Deep belief networks.
        Scholarpedia. 2009; 4: 5947
        • Salakhutdinov R.
        • Hinton G.
        Deep boltzmann machines.
        (Artificial Intelligence and Statistics)2009
        • Huang R.
        • Zhang S.
        • Li T.
        • He R.
        Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis.
        (arXiv preprint arXiv:170404086)2017
        • Lafarge M.W.
        • Pluim J.P.
        • Eppenhof K.A.
        • Moeskops P.
        • Veta M.
        Domain-adversarial neural networks to address the appearance variability of histopathology images.
        (arXiv preprint arXiv:170706183)2017
        • Udrea A.
        • Mitra G.D.
        Generative Adversarial Neural Networks for Pigmented and Non-Pigmented Skin Lesions Detection in Clinical Images.
        (Control Systems and Computer Science (CSCS), 2017 21st International Conference on)2017 (IEEE)
        • Dalle J.R.
        • Leow W.K.
        • Racoceanu D.
        • Tutac A.E.
        • Putti T.C.
        Automatic breast cancer grading of histopathological images.
        Conf Proc IEEE Eng Med Biol Soc. 2008; 2008: 3052-3055
        • Petushi S.
        • Garcia F.U.
        • Haber M.M.
        • Katsinis C.
        • Tozeren A.
        Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer.
        BMC Med Imaging. 2006; 6: 14
        • Basavanhally A.
        • Ganesan S.
        • Feldman M.
        • et al.
        Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides.
        IEEE Trans Biomed Eng. 2013; 60: 2089-2099
        • Wang H.
        • Cruz-Roa A.
        • Basavanhally A.
        • et al.
        Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features.
        J Med Imaging (Bellingham). 2014; 1: 034003
        • Veta M.
        • van Diest P.J.
        • Willems S.M.
        • et al.
        Assessment of algorithms for mitosis detection in breast cancer histopathology images.
        Med Image Anal. 2015; 20: 237-248
        • Malon C.D.
        • Cosatto E.
        Classification of mitotic figures with convolutional neural networks and seeded blob features.
        J Pathol Inform. 2013; 4: 9
        • Irshad H.
        Automated mitosis detection in histopathology using morphological and multi-channel statistics features.
        J Pathol Inform. 2013; 4: 10
        • Roux L.
        • Racoceanu D.
        • Lomenie N.
        • et al.
        Mitosis detection in breast cancer histological images an ICPR 2012 contest.
        J Pathol Inform. 2013; 4: 8
        • Spanhol F.A.
        • Oliveira L.S.
        • Petitjean C.
        • Heutte L.
        A dataset for breast cancer histopathological image classification.
        IEEE Trans Biomed Eng. 2016; 63: 1455-1462
        • Cruz-Roa A.
        • Basavanhally A.
        • Gonzalez F.
        • et al.
        Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks.
        (In: Gurcan MN, Madabhushi A, editors. Medical Imaging 2014: Digital Pathology. Proceedings of SPIE. 90412014)2014
        • Araujo T.
        • Aresta G.
        • Castro E.
        • et al.
        Classification of breast cancer histology images using Convolutional Neural Networks.
        PLoS ONE. 2017; 12 (e0177544)
        • Dundar M.M.
        • Badve S.
        • Bilgin G.
        • et al.
        Computerized classification of intraductal breast lesions using histopathological images.
        IEEE Trans Biomed Eng. 2011; 58: 1977-1984
        • Cruz-Roa A.
        • Gilmore H.
        • Basavanhally A.
        • et al.
        Accurate and reproducible invasive breast cancer detection in whole-slide images: a Deep Learning approach for quantifying tumor extent.
        Sci Rep. 2017; 7: 46450
        • Litjens G.
        • Sanchez C.I.
        • Timofeeva N.
        • et al.
        Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis.
        Sci Rep. 2016; 6: 26286
        • Wang D.
        • Khosla A.
        • Gargeya R.
        • Irshad H.
        • Beck A.H.
        Deep learning for identifying metastatic breast cancer.
        (arXiv preprint arXiv:160605718)2016
        • Liu Y.
        • Gadepalli K.
        • Norouzi M.
        • et al.
        Detecting cancer metastases on gigapixel pathology images.
        (arXiv preprint arXiv:170302442)2017
        • Wollmann T.
        • Rohr K.
        Automatic breast cancer grading in lymph nodes using a deep neural network.
        (arXiv preprint arXiv:170707565)2017
        • Vandenberghe M.E.
        • Scott M.L.
        • Scorer P.W.
        • Soderberg M.
        • Balcerzak D.
        • Barker C.
        Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer.
        Sci Rep. 2017; 7: 45938
        • Mungle T.
        • Tewary S.
        • Das D.K.
        • et al.
        MRF-ANN: a machine learning approach for automated ER scoring of breast cancer immunohistochemical images.
        J Microsc. 2017; 267: 117-129
        • Turkki R.
        • Linder N.
        • Kovanen P.E.
        • Pellinen T.
        • Lundin J.
        Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples.
        J Pathol Inform. 2016; 7: 38
        • Chen J.M.
        • Li Y.
        • Xu J.
        • et al.
        Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: a review.
        Tumour Biol. 2017; 39 (1010428317694550)
        • Madabhushi A.
        • Agner S.
        • Basavanhally A.
        • Doyle S.
        • Lee G.
        Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data.
        Comput Med Imaging Graph. 2011; 35: 506-514
        • Beck A.H.
        • Sangoi A.R.
        • Leung S.
        • et al.
        Systematic analysis of breast cancer morphology uncovers stromal features associated with survival.
        Sci Transl Med. 2011; 3: 108ra13
        • Szegedy C.
        • Zaremba W.
        • Sutskever I.
        • et al.
        Intriguing properties of neural networks.
        (arXiv preprint arXiv:13126199)2013
        • Xie P.
        • Bilenko M.
        • Finley T.
        • Gilad-Bachrach R.
        • Lauter K.
        • Naehrig M.
        Crypto-nets: Neural networks over encrypted data.
        (arXiv preprint arXiv:14126181)2014
        • Collins F.S.
        • Varmus H.
        A new initiative on precision medicine.
        N Engl J Med. 2015; 372: 793-795