Advertisement

The proteasome as a target to combat malaria: hits and misses

      The proteasome plays a vital role throughout the life cycle as Plasmodium parasites quickly adapt to a new host and undergo a series of morphologic changes during asexual replication and sexual differentiation. Plasmodium carries 3 different types of protease complexes: typical eukaryotic proteasome (26S) that resides in the cytoplasm and the nucleus, a prokaryotic proteasome homolog ClpQ that resides in the mitochondria, and a caseinolytic protease complex ClpP that resides in the apicoplast. In silico prediction in conjunction with immunoprecipitation analysis of ubiquitin conjugates have suggested that over half of the Plasmodium falciparum proteome during asexual reproduction are potential targets for ubiquitination. The marked potency of multiple classes of proteasome inhibitors against all stages of the life cycle, synergy with the current frontline antimalarial, artemisinin, and recent advances identifying differences between Plasmodium and human proteasomes strongly support further drug development efforts.

      Abbreviations:

      PfPMT (phosphoethanolamine methyltransferase), UPS (uUbiquitin proteasome system), ART (artemisinin), ACT (artemisinin-based combination therapy), FDA (food and drug administration), DHA (dihydroartemisinin)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cowman AF
        • Healer J
        • Marapana D
        • Marsh K
        Malaria: Biology and Disease.
        Cell. 2016; 167: 610-624
        • Ramasamy G
        • Gupta D
        • Mohmmed A
        • Chauhan VS
        Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease.
        Mol Biochem Parasitol. 2007; 152: 139-148
        • Rathore S
        • Jain S
        • Sinha D
        • Gupta M
        • Asad M
        • Srivastava A
        • et al.
        Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death.
        Cell Death Dis. 2011; 2: e231
        • Tschan S
        • Kreidenweiss A
        • Stierhof YD
        • Sessler N
        • Fendel R
        • Mordmüller B
        Mitochondrial localization of the threonine peptidase PfHslV, a ClpQ ortholog in Plasmodium falciparum.
        Int J Parasitol. 2010; 40: 1517-1523
        • Mordmüller B
        • Fendel R
        • Kreidenweiss A
        • et al.
        Plasmodia express two threonine-peptidase complexes during asexual development.
        Mol Biochem Parasitol. 2006; 148: 79-85
        • Ponts N
        • Saraf A
        • Chung DWD
        • et al.
        Unraveling the ubiquitome of the human malaria parasite.
        J Biol Chem. 2011; 286: 40320-40330
        • Aminake MN
        • Schoof S
        • Sologub L
        • et al.
        Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast.
        Antimicrob Agents Chemother. 2011; 55: 1338-1348
        • Witola WH
        • Ben MamounC
        Choline induces transcriptional repression and proteasomal degradation of the malarial phosphoethanolamine methyltransferase.
        Eukaryot Cell. 2007; 6: 1618-1624
        • Witola WH
        • El Bissati K
        • Pessi G
        • Xie C
        • Roepe PD
        • Ben MamounC
        Disruption of the Plasmodium falciparum PfPMT gene results in a complete loss of phosphatidylcholine biosynthesis via the serine-decarboxylase- phosphoethanolamine-methyltransferase pathway and severe growth and survival defects.
        J Biol Chem. 2008; 283: 27636-27643
        • Aminake MN
        • Arndt HD
        • Pradel G
        The proteasome of malaria parasites: a multi-stage drug target for chemotherapeutic intervention?.
        Int J Parasitol Drugs Drug Resist. 2012; 2 (Available from:): 1-10
        • Czesny B
        • Goshu S
        • Cook JL
        • Williamson KC
        The proteasome inhibitor epoxomicin has potent Plasmodium falciparum gametocytocidal activity.
        Antimicrob Agents Chemother. 2009; 53: 4080-4085
        • Delves MJ
        • Ruecker A
        • Straschil U
        • et al.
        Male and female Plasmodium falciparum mature gametocytes show different responses to antimalarial drugs.
        Antimicrob Agents Chemother. 2013; 57: 3268-3274
        • Ngwa CJ
        • Scheuermayer M
        • Mair GR
        • et al.
        Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito.
        BMC Genomics. 2013; 14: 256
        • Gantt SM
        • Myung JM
        • Briones MRS
        • et al.
        Proteasome inhibitors block development of Plasmodium spp.
        Antimicrob Agents Chemother. 1998; 42: 2731-2738
        • Zhang M
        • Fennell C
        • Ranford-Cartwright L
        • et al.
        The Plasmodium eukaryotic initiation factor-2α kinase IK2 controls the latency of sporozoites in the mosquito salivary glands.
        J Exp Med. 2010; 207 (Available from:): 1465-1474
        • Jayabalasingham B
        • Bano N
        • Coppens I
        Metamorphosis of the malaria parasite in the liver is associated with organelle clearance.
        Cell Res. 2010; 20 (Available from:): 1043-1059
        • Hershko A
        • Ciechanover A
        The ubiquitin system.
        Annu Rev Biochem. 1998; 67 (Available from: ): 425-479
        • Lee DH
        • Goldberg AL
        Proteasome inhibitors: valuable new tools for cell biologists.
        Trends Cell Biol. 1998; 8 (Available from:): 397-403
        • Bogyo M
        • Wang EW
        Proteasome inhibitors: complex tools for a complex enzyme.
        Curr Top Microbiol Immunol. 2002; 268: 185-208
        • Bibo-Verdugo B
        • Jiang Z
        • Caffrey CR
        • O'Donoghue AJ
        Targeting proteasomes in infectious organisms to combat disease.
        FEBS J. 2017; 284: 1503-1517
        • Mita T
        • Tanabe K
        Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance.
        Jpn J Infect Dis. 2012; 65: 465-475
        • Tilley L
        • Straimer J
        • Gnädig NF
        • Ralph SA
        • Fidock DA
        Artemisinin action and resistance in Plasmodium falciparum.
        Trends Parasitol. 2016; 32: 682-696
        • Duru V
        • Witkowski B
        • Ménard D
        Review article plasmodium falciparum resistance to artemisinin derivatives and piperaquine: a major challenge for malaria elimination in Cambodia.
        Am J Trop Med Hyg. 2016; 95: 1228-1238
        • Na-Bangchang K
        • Karbwang J
        Emerging artemisinin resistance in the border areas of Thailand.
        Expert Rev Clin Pharmacol. 2013; 6: 307-322
        • Li H
        • Bogyo M
        • da Fonseca PCA
        The cryo-EM structure of the Plasmodium falciparum 20S proteasome and its use in the fight against malaria.
        FEBS J. 2016; 283 (Available from:): 4238-4243
        • Mok S
        • Ashley EA
        • Ferreira PE
        • et al.
        Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.
        Science. 2015; 347 (Available from:): 431-435
        • Ariey F
        • Witkowski B
        • Amaratunga C
        • et al.
        A molecular marker of artemisinin-resistant Plasmodium falciparum.
        Nature. 2016; 505: 50-55
        • Mita T
        • Tachibana SI
        • Hashimoto M
        • Hirai M
        Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites.
        Expert Rev Anti Infect Ther. 2016; 14: 125-135
        • Dogovski C
        • Xie SC
        • Burgio G
        • et al.
        Targeting the cell stress response of Plasmodium falciparum to Overcome artemisinin resistance.
        PLoS Biol. 2015; 13: 1-26
        • Ng CL
        • Fidock DA
        • Bogyo M
        Protein degradation systems as antimalarial therapeutic targets.
        Trends Parasitol. 2017; 33 (Available from:): 731-743
        • Prudhomme J
        • McDaniel E
        • Ponts N
        • et al.
        Marine actinomycetes: a new source of compounds against the human malaria parasite.
        PLoS One. 2008; 3: e2335
        • Sridhar S
        • Bhat G
        • Guruprasad K
        Analysis of bortezomib inhibitor docked within the catalytic subunits of the Plasmodium falciparum 20S proteasome.
        Springerplus. 2013; 2: 1-11
        • Fenteany G
        • Standaert RF
        • Lane WS
        • Choi S
        • Corey EJ
        • Schreiber SL
        Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin.
        Science. 1995; 268 (80-): 726-731
        • Kreidenweiss A
        • Kremsner PG
        • Mordmüller B
        Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon.
        Malar J. 2008; 7: 1-8
        • Gulder TAM
        • Moore BS
        Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics.
        Angew Chem Int Ed Engl. 2010; 49 (Available from:): 9346-9367
        • Hanada M
        • Sugawara K
        • Kaneta K
        • et al.
        Epoxomicin, a new antitumor agent of microbial origin.
        J Antibiot. 1992; 45: 1746-1752
        • Sugawara K
        • Hatori M
        • Nishiyama Y
        • et al.
        Eponemycin, a new antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity.
        J Antibiot. 1990; 43: 8-18
        • Fitri LE
        • Cahyono AW
        • Nugraha RYB
        • et al.
        Analysis of eponemycin (α’β’ epoxyketone) analog compound from streptomyces hygroscopicus subsp hygroscopicus extracts and its antiplasmodial activity during plasmodium berghei infection.
        Biomed Res. 2017; 28: 164-172
        • Kim KB
        • Crews CM
        From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes.
        Nat Prod Rep. 2013; 30 (Available from:): 600-604
        • Li H
        • Ponder EL
        • Verdoes M
        • et al.
        Validation of the proteasome as a therapeutic target in plasmodium using an epoxyketone inhibitor with parasite-specific toxicity.
        Chem Biol. 2012; 19 (Available from:): 1535-1545
        • LaMonte GM
        • Almaliti J
        • Bibo-Verdugo B
        • et al.
        Development of a potent inhibitor of the Plasmodium proteasome with reduced mammalian toxicity.
        J Med Chem. 2017; 60: 6721-6732
        • Palmer JT
        • Rasnick D
        • Klaus JL
        • Brömme D
        Vinyl sulfones as mechanism-based cysteine protease inhibitors.
        J Med Chem. 1995; 38: 3193-3196
        • Bogyo M
        • McMaster JS
        • Gaczynska M
        • Tortorella D
        • Goldberg AL
        • Ploegh H
        Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HsIV by a new class of inhibitors.
        Proc Natl Acad Sci USA. 1997; 94: 6629-6634
        • Rosenthal PJ
        • Olson JE
        • Lee GK
        • Palmer JT
        • Klaus JL
        • Rasnick D
        Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.
        Antimicrob Agents Chemother. 1996; 40 (Available from:): 1600-1603
        • Tschan S
        • Brouwer AJ
        • Werkhoven PR
        • et al.
        Broad-spectrum antimalarial activity of peptido sulfonyl fluorides, a new class of proteasome inhibitors.
        Antimicrob Agents Chemother. 2013; 57: 3576-3584
        • Vinitsky A
        • Michaud C
        • Powers JC
        • Orlowski M
        Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex.
        Biochemistry. 1992; 31 (Available from:): 9421-9428
        • Tsubuki S
        • Kawasaki H
        • Saito Y
        • Miyashita N
        • Inomata M
        • Kawashima S
        Purification and characterization of a Z-Leu-Leu-Leu-MCA degrading protease expected to regulate neurite formation: a novel catalytic activity in proteasome.
        Biochem Biophys Res Commun. 1993; 196 (Available from:): 1195-1201
        • Rock KL
        • Gramm C
        • Rothstein L
        • et al.
        Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules.
        Cell. 1994; 78 (Available from:): 761-771
        • Coux O
        • Tanaka K
        • Goldberg AL
        Structure and functions of the 20S and 26S proteasomes.
        Annu Rev Biochem. 1996; 65 (Available from:): 801-847
        • Tsubuki S
        • Saito Y
        • Tomioka M
        • Ito H
        • Kawashima S
        Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine.
        J Biochem. 1996; 119: 572-576
        • Momose I
        • Sekizawa R
        • Hirosawa S
        • et al.
        Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. II. Structure determination and synthesis.
        J Antibiot. 2001; 54 (Available from: ): 1004-1012
        • Prasad R
        • Atul KollaVK
        • Legac J
        • et al.
        Blocking Plasmodium falciparum development via dual inhibition of hemoglobin degradation and the ubiquitin proteasome system by MG132.
        PLoS One. 2013; 8 (Available from: ): e73530
        • Oerlemans R
        • Franke NE
        • Assaraf YG
        • et al.
        Molecular basis of bortezomib resistance: proteasome subunit25 (PSMB5) gene mutation and overexpression of PSMB5 protein.
        Blood. 2008; 112: 2489-2499
        • Moore BS
        • Eustáquio AS
        • McGlinchey RP
        Advances in and applications of proteasome inhibitors.
        Curr Opin Chem Biol. 2008; 12 (Available from:): 434-440
        • Lindenthal C
        • Weich N
        • Chia YS
        • Heussler V
        • Klinkert MQ
        The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites.
        Parasitology. 2005; 131: 37-44
        • Reynolds JM
        • El Bissati K
        • Brandenburg J
        • Günzl A
        • Ben MamounC
        Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B.
        BMC Clin Pharmacol. 2007; 7: 1-6
        • Dolloff NG
        Emerging therapeutic strategies for overcoming proteasome inhibitor resistance.
        Adv Cancer Res. 2015; 127 (Available from:): 191-226
        • Ruschak AM
        • Slassi M
        • Kay LE
        • Schimmer AD
        Novel proteasome inhibitors to overcome bortezomib resistance.
        J Natl Cancer Inst. 2011; 103: 1007-1017
        • Koguchi Y
        • Kohno J
        • Nishio M
        • et al.
        TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities.
        J Antibiot. 2000; 53: 105-109
        • Li H
        • Tsu C
        • Blackburn C
        • et al.
        Identification of potent and selective non-covalent inhibitors of the Plasmodium falciparum proteasome.
        J Am Chem Soc. 2014; 136 (Available from:): 13562-13565
        • Wilson DL
        • Meininger I
        • Strater Z
        • et al.
        Synthesis and evaluation of macrocyclic peptide aldehydes as potent and selective inhibitors of the 20S proteasome.
        ACS Med Chem Lett. 2016; 7: 250-255
        • Paugam A
        • Bulteau AL
        • Dupouy-Camet J
        • Creuzet C
        • Friguet B
        Characterization and role of protozoan parasite proteasomes.
        Trends Parasitol. 2003; 19: 55-59
        • Makioka A
        • Kumagai M
        • Ohtomo H
        • Kobayashi S
        • Takeuchi T
        Effect of proteasome inhibitors on the growth, encystation, and excystation of Entamoeba histolytica and Entamoeba invadens.
        Parasitol Res. 2002; 88: 454-459
        • Robertson CD
        The Leishmania mexicana proteasome.
        Mol Biochem Parasitol. 1999; 103: 49-60
        • De Diego JL KatzJM
        • Marshall P
        • Manning B
        • et al.
        The ubiquitin-proteasome pathway plays an essential role in proteolysis during Trypanosoma cruzi remodeling.
        Biochemistry. 2001; 40: 1053-1062
        • Shaw MK
        • He CY
        • Roos DS
        • Tilney LG
        Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii.
        Parasitology. 2000; 121: 35-47
        • Silva-Jardim I
        • Fátima Horta M
        • Ramalho-Pinto FJ
        The Leishmania chagasi proteasome: role in promastigotes growth and amastigotes survival within murine macrophages.
        Acta Trop. 2004; 91: 121-130
        • Raina P
        • Kaur S
        Knockdown of LdMC1 and Hsp70 by antisense oligonucleotides causes cell-cycle defects and programmed cell death in Leishmania donovani.
        Mol Cell Biochem. 2012; 359: 135-149
        • AbouLaila M
        • Nakamura K
        • Govind Y
        • Yokoyama N
        • Igarashi I
        Evaluation of the in vitro growth-inhibitory effect of epoxomicin on Babesia parasites.
        Vet Parasitol. 2010; 167: 19-27
        • Khare S
        • Nagle AS
        • Biggart A
        • et al.
        Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness.
        Nature. 2016; 537 (Available from:): 229-233
        • Lin G
        • Li D
        • Chidawanyika T
        • Nathan C
        • Li H
        Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome.
        Arch Biochem Biophys. 2010; 501: 214-220
        • Totaro KA
        • Barthelme D
        • Simpson PT
        • et al.
        Rational design of selective and bioactive inhibitors of the mycobacterium tuberculosis proteasome.
        ACS Infect Dis. 2017; 3: 176-181
        • Hsu HC
        • Singh PK
        • Fan H
        • et al.
        Structural basis for the species-selective binding of N, C-Capped dipeptides to the mycobacterium tuberculosis proteasome.
        Biochemistry. 2017; 56: 324-333
        • Jain S
        • Rathore S
        • Asad M
        • et al.
        The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum.
        Cell Microbiol. 2013; 15: 1660-1673
        • Mundra S
        • Thakur V
        • Bello AM
        • et al.
        A novel class of Plasmodial ClpP protease inhibitors as potential antimalarial agents.
        Bioorganic Med Chem. 2017; 25 (Available from:): 5662-5677