Advertisement

Aim for the core: suitability of the ubiquitin-independent 20S proteasome as a drug target in neurodegeneration

      Neurodegenerative diseases are a class of age-associated proteopathies characterized by the accumulation of misfolded and/or aggregation-prone proteins. This imbalance has been attributed, in part, to an age-dependent decay in the capacity of protein turnover. Most proteins are degraded by the ubiquitin-proteasome system (UPS), which is composed of ubiquitin ligases and regulatory particles, such as the 19S, that deliver cargo to the proteolytically active 20S proteasome (20S) core. However, a subset of clients, especially intrinsically disordered proteins (IDPs), are also removed by the action of the ubiquitin-independent proteasome system (UIPS). What are the specific contributions of the UPS and UIPS in the context of neurodegeneration? Here, we explore how age-associated changes in the relative contribution of the UPS and UIPS, combined with the IDP-like structure of many neurodegenerative disease-associated proteins, might contribute. Strikingly, the 20S has been shown to predominate in older neurons and to preferentially act on relevant substrates, such as synuclein and tau. Moreover, pharmacological activation of the 20S has been shown to accelerate removal of aggregation-prone proteins in some models. Together, these recent studies are turning attention to the 20S and the UIPS as potential therapeutic targets in neurodegeneration.

      Abbreviations:

      20S (core 20S proteasome), AD (Alzheimer's disease), ALS (amyotrophic lateral sclerosis), ATP (adenosine triphosphate), BBB (blood-brain barrier), DUB (deubiquitinating enzyme), HbYX (hydrophobic-tyrosine-unspecified residue ‘X’), IDP (intrinsically disordered protein), IDR (intrinsically-disordered region), LLVY-amc (succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin), NCC (NIH (National Institute of Health) clinical collection), NPL (Natural Product Library), PA (proteasome activators), PAINS (pan-assay interference compounds), PD (Parkinson's disease), ROS (reactive oxygen species), Rpt (regulatory particle of triple-ATPase), SAR (structure-activity relationship), tau (microtubule-associated protein tau (MAPT)), TDP-43 (trans-activation response element (TAR) DNA-binding protein 43), Ub (ubiquitin), UIPS (ubiquitin-independent proteasome system), UPS (ubiquitin-proteasome system), USP-14 (ubiquitin-specific-processing protease)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Smith DM
        • Benaroudj N
        • Goldberg A
        Proteasomes and their associated ATPases: a destructive combination.
        J Struct Biol. 2006; 156: 72-83https://doi.org/10.1016/j.jsb.2006.04.012
        • Goldberg AL
        Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy.
        Biochem Soc Trans. 2007; 35: 12-17
        • Huang L
        • Chen CH
        Proteasome regulators: activators and inhibitors.
        Curr Med Chem. 2009; 16: 931-939
        • Kish-Trier E
        • Hill CP
        Structural biology of the proteasome.
        Annu Rev Biophys. 2013; 42: 29-49https://doi.org/10.1146/annurev-biophys-083012-130417
        • Smith DM
        • Chang SC
        • Park S
        • Finley D
        • Cheng Y
        • Goldberg AL
        Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry.
        Mol Cell. 2007; 27: 731-744https://doi.org/10.1016/j.molcel.2007.06.033
        • Finley D
        Recognition and processing of ubiquitin-protein conjugates by the proteasome.
        Annu Rev Biochem. 2009; 78: 477-513https://doi.org/10.1146/annurev.biochem.78.081507.101607
        • Finley D
        • Ulrich HD
        • Sommer T
        • Kaiser P
        The ubiquitin-proteasome system of Saccharomyces cerevisiae.
        Genetics. 2012; 192: 319-360https://doi.org/10.1534/genetics.112.140467
        • DeMartino GN
        • Moomaw CR
        • Zagnitko OP
        • et al.
        PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family.
        J Biol Chem. 1994; 269: 20878-20884
        • Glickman MH
        • Rubin DM
        • Fried VA
        • Finley D
        The regulatory particle of the Saccharomyces cerevisiae proteasome.
        Mol Cell Biol. 1998; 18: 3149-3162
        • Schmidt M
        • Hanna J
        • Elsasser S
        • Finley D
        Proteasome-associated proteins: regulation of a proteolytic machine.
        Biol Chem. 2005; 386: 725-737https://doi.org/10.1515/BC.2005.085
        • Sadre-Bazzaz K
        • Whitby FG
        • Robinson H
        • Formosa T
        • Hill CP
        Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening.
        Mol Cell. 2010; 37: 728-735https://doi.org/10.1016/j.molcel.2010.02.002
        • Li J
        • Rechsteiner M
        Molecular dissection of the 11S REG (PA28) proteasome activators.
        Biochimie. 2001; 83: 373-383https://doi.org/10.1016/S0300-9084(01)01236-6
        • Förster A
        • Masters EI
        • Whitby FG
        • Robinson H
        • Hill CP
        The 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions.
        Mol Cell. 2005; 18: 589-599https://doi.org/10.1016/j.molcel.2005.04.016
        • Strickland E
        • Hakala K
        • Thomas PJ
        • DeMartino GN
        Recognition of misfolded proteins by PA700, the regulatory subcomplex of the 26S proteasome.
        J Biol Chem. 2000; 275: 5565-5572
        • Kwon YT
        • Ciechanover A
        The ubiquitin code in the ubiquitin-proteasome system and autophagy.
        Trends Biochem Sci. 2017; 42: 873-886https://doi.org/10.1016/j.tibs.2017.09.002
        • Rock KL
        • Gramm C
        • Rothstein L
        • et al.
        Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules.
        Cell. 1994; 78: 761-771https://doi.org/10.1016/S0092-8674(94)90462-6
        • Craiu A
        • Gaczynska M
        • Akopian T
        • et al.
        Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation.
        J Biol Chem. 1997; 272: 13437-13445https://doi.org/10.1074/jbc.272.20.13437
        • Hagai T
        • Levy Y
        Ubiquitin not only serves as a tag but also assists degradation by inducing protein unfolding.
        Proc Natl Acad Sci. 2010; 107: 2001-2006https://doi.org/10.1073/pnas.0912335107
        • Orlowski M
        • Wilk S
        Ubiquitin-independent proteolytic functions of the proteasome.
        Arch Biochem Biophys. 2003; 415: 1-5https://doi.org/10.1016/S0003-9861(03)00197-8
        • Baugh JM
        • Viktorova EG
        • Pilipenko EV
        Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination.
        J Mol Biol. 2009; 386: 814-827https://doi.org/10.1016/j.jmb.2008.12.081
        • Dunker AK
        • Obradovic Z
        • Romero P
        • Garner EC
        • Brown CJ
        Intrinsic protein disorder in complete genomes.
        Genome informatics. 2000; 11: 161-171https://doi.org/10.11234/gi1990.11.161
        • Weinreb PH
        • Zhen W
        • Poon AW
        • Conway KA
        • Lansbury PT
        NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded.
        Biochemistry. 1996; 35: 13709-13715https://doi.org/10.1021/bi961799n
        • Uversky VN
        • Oldfield CJ
        • Dunker AK
        Intrinsically disordered proteins in human diseases: introducing the D2 concept.
        Annu Rev Biophys. 2008; 37: 215-246https://doi.org/10.1146/annurev.biophys.37.032807.125924
        • van der Lee R
        • Lang B
        • Kruse K
        • et al.
        Intrinsically disordered segments affect protein half-life in the cell and during evolution.
        Cell Rep. 2014; 8: 1832-1844https://doi.org/10.1016/j.celrep.2014.07.055
        • Asher G
        • Tsvetkov P
        • Kahana C
        • Shaul Y
        A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73.
        Genes Dev. 2005; 19: 316-321https://doi.org/10.1101/gad.319905
        • Peña MMO
        • Xing YY
        • Koli S
        • Berger FG
        Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase.
        Biochem J. 2006; 394: 355-363https://doi.org/10.1042/BJ20051479
        • Wiggins CM
        • Tsvetkov P
        • Johnson M
        • et al.
        BIMEL, an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation.
        J Cell Sci. 2011; 124: 969-977https://doi.org/10.1242/jcs.058438
        • Popovic D
        • Vucic D
        • Dikic I
        Ubiquitination in disease pathogenesis and treatment.
        Nat Med. 2014; 20: 1242-1253https://doi.org/10.1038/nm.3739
        • Walker LC
        • LeVine H
        The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly.
        Mol Neurobiol. 2000; 21: 83-95https://doi.org/10.1385/MN:21:1-2:083
        • Sherman MY
        • Goldberg AL
        Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases.
        Neuron. 2001; 29: 15-32https://doi.org/10.1016/S0896-6273(01)00177-5
        • Dantuma NP
        • Bott LC
        The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution.
        Front Mol Neurosci. 2014; 7: 1-18https://doi.org/10.3389/fnmol.2014.00070
        • Ruby JG
        • Smith M
        • Buffenstein R
        Naked mole-rat mortality rates defy gompertzian laws by not increasing with age.
        Elife. 2018; 7: 1-18https://doi.org/10.7554/eLife.31157
        • Chondrogianni N
        • Petropoulos I
        • Franceschi C
        • Friguet B
        • Gonos ES
        Fibroblast cultures from healthy centenarians have an active proteasome.
        Exp Gerontol. 2000; 35: 721-728https://doi.org/10.1016/S0531-5565(00)00137-6
        • Deger JM
        • Gerson JE
        • Kayed R
        The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration.
        Aging Cell. 2015; 14: 715-724https://doi.org/10.1111/acel.12359
        • Levine ZA
        • Larini L
        • LaPointe NE
        • Feinstein SC
        • Shea J-E
        Regulation and aggregation of intrinsically disordered peptides.
        Proc Natl Acad Sci. 2015; 112: 2758-2763https://doi.org/10.1073/pnas.1418155112
        • Ciechanover A
        • Brundin P
        The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.
        Neuron. 2003; 40 (https://doi:S0896627303006068): 427-446
        • Dennissen FJA
        • Kholod N
        • van Leeuwen FW
        The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim?.
        Prog Neurobiol. 2012; 96: 190-207https://doi.org/10.1016/j.pneurobio.2012.01.003
        • Kniepert A
        • Groettrup M
        The unique functions of tissue-specific proteasomes.
        Trends Biochem Sci. 2014; 39: 17-24https://doi.org/10.1016/j.tibs.2013.10.004
        • Ferrington DA
        • Gregerson DS
        Immunoproteasomes: structure, function, and antigen presentation.
        Prog Mol Biol Transl Sci. 2012; 109: 75-112https://doi.org/10.1016/B978-0-12-397863-9.00003-1
        • Uversky VN
        Alpha-synuclein misfolding and neurodegenerative diseases.
        Curr Protein Pept Sci. 2008; 9: 507-540https://doi.org/10.1038/35081564
        • Huang Y
        • Mucke L
        Alzheimer mechanisms and therapeutic strategies.
        Cell. 2012; 148: 1204-1222https://doi.org/10.1016/j.cell.2012.02.040
        • San Martín Á
        • Rodriguez-Aliaga P
        • Molina JA
        • Martin A
        • Bustamante C
        • Baez M
        Knots can impair protein degradation by ATP-dependent proteases.
        Proc Natl Acad Sci. 2017; 114201705916https://doi.org/10.1073/pnas.1705916114
        • Thibaudeau TA
        • Anderson RT
        • Smith DM
        A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers.
        Nat Commun. 2018; https://doi.org/10.1038/s41467-018-03509-0
        • Bennett EJ
        • Bence NF
        • Jayakumar R
        • Kopito RR
        Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation.
        Mol Cell. 2005; 17: 351-365https://doi.org/10.1016/j.molcel.2004.12.021
        • Lin MT
        • Beal MF
        Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.
        Nature. 2006; 443: 787-795https://doi.org/10.1038/nature05292
        • Reichmann D
        • Voth W
        • Jakob U
        Maintaining a healthy proteome during oxidative stress.
        Mol Cell. 2018; 69: 203-213https://doi.org/10.1016/j.molcel.2017.12.021
        • Li J
        • Powell SR
        • Wang X
        Enhancement of proteasome function by PA28 overexpression protects against oxidative stress.
        FASEB J. 2011; 25: 883-893https://doi.org/10.1096/fj.10-160895
        • Li X
        • Matilainen O
        • Jin C
        • Glover-Cutter KM
        • Holmberg CI
        • Blackwell TK
        Specific SKN-1/NrF stress responses to perturbations in translation elongation and proteasome activity.
        PLoS Genet. 2011; 7: 9-11https://doi.org/10.1371/journal.pgen.1002119
        • Pickering AM
        • Staab TA
        • Tower J
        • Sieburth D
        • Davies KJA
        A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster.
        J Exp Biol. 2013; 216: 543-553https://doi.org/10.1242/jeb.074757
        • Wang X
        • Chemmama IE
        • Yu C
        • et al.
        The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress.
        J Biol Chem. 2017; 292: 16310-16320https://doi.org/10.1074/jbc.M117.803619
        • Fabre B
        • Lambour T
        • Garrigues L
        • et al.
        Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines.
        J Proteome Res. 2014; 13: 3027-3037https://doi.org/10.1021/pr500193k
        • Masson P
        • Lundin D
        • Söderbom F
        • Young P
        Characterization of a REG/PA28 proteasome activator homolog in dictyostelium discoideum indicates that the ubiquitin- and ATP-independent REGγ proteasome is an ancient nuclear protease.
        Eukaryot Cell. 2009; 8: 844-851https://doi.org/10.1128/EC.00165-08
        • Schmidt M
        • Finley D
        Regulation of proteasome activity in health and disease.
        Biochim Biophys Acta. 2014; 1843: 13-25https://doi.org/10.1016/j.bbamcr.2013.08.012
        • Lee C
        • Klopp RG
        • Weindruch R
        • Prolla TA
        Gene expression pro le of aging and its retardation by caloric restriction.
        Science. 1999; 285: 1390-1393https://doi.org/10.1126/science.285.5432.1390
        • Hwang JS
        • Hwang JS
        • Chang I
        • Kim S
        Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons.
        J Gerontol. 2007; 62 (doi:62/5/490 [pii]): 490-499
        • Han DH
        • Na H-K
        • Choi WH
        • et al.
        Direct cellular delivery of human proteasomes to delay tau aggregation.
        Nat Commun. 2014; 5: 5633https://doi.org/10.1038/ncomms6633
        • Choi WH
        • de Poot SAH
        • Lee JH
        • et al.
        Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation.
        Nat Commun. 2016; 7: 10963https://doi.org/10.1038/ncomms10963
        • Lee B-H
        • Lee MJ
        • Park S
        • et al.
        Enhancement of proteasome activity by a small-molecule inhibitor of USP14.
        Nature. 2010; 467: 179-184https://doi.org/10.1038/nature09299
        • Boselli M
        • Lee BH
        • Robert J
        • et al.
        An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons.
        J Biol Chem. 2017; 292: 19209-19225https://doi.org/10.1074/jbc.M117.815126
        • Vilchez D
        • Saez I
        • Dillin A
        Organismal ageing and age-related diseases.
        Nat Commun. 2014; 5: 1-13https://doi.org/10.1038/ncomms6659
        • Kim KB
        • Myung J
        • Sin N
        • Crews CM
        Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency.
        Bioorg Med Chem Lett. 1999; 9: 3335-3340https://doi.org/10.1016/S0960-894X(99)00612-5
        • McDaniel TJ
        • Lansdell TA
        • Dissanayake AA
        • et al.
        Substituted quinolines as noncovalent proteasome inhibitors.
        Bioorganic Med Chem. 2016; 24: 2441-2450https://doi.org/10.1016/j.bmc.2016.04.005
        • Orlowski N
        • Wilk S
        A multicatalytical protease complex from pituitary that forms enkephalin and enkephalin containing peptides.
        Biochem Biophys Res Commun. 1981; 101: 814-822https://doi.org/10.1016/0006-291X(81)91823-4
        • Wilk S
        • Orlowski M
        Evidence that pituitary cation‐sensitive neutral endopeptidase is a multicatalytic protease complex.
        J Neurochem. 1983; 40: 842-849https://doi.org/10.1111/j.1471-4159.1983.tb08056.x
        • Ohkubo I
        • Gasa S
        • Namikawa C
        • Makita A
        • Sasaki M
        Human erythrocyte multicatalytic proteinase: activation and binding to sulfated galacto- and lactosylceramides.
        Biochem Biophys Res Commun. 1991; 174: 1133-1140
        • Ruiz de Mena I
        • Mahillo E
        • Arribas J
        • Castaño JG
        Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase.
        Biochem J. 1993; 296: 93-97https://doi.org/10.1042/bj2960093
        • Watanabe N
        • Yamada S
        Activation of 20S proteasomes from spinach leaves by fatty acids.
        Plant Cell Physiol. 1996; 37: 147-151https://doi.org/10.1093/oxfordjournals.pcp.a028925
        • Tanakas K
        • Yoshimura T
        • Ichihara A
        • et al.
        A high molecular weight protease in the cytosol of rat liver.
        J Biol Chem. 1986; 261: 15204-15207
        • Katsiki M
        • Chondrogianni N
        • Chinou I
        • Rivett AJ
        • Gonos ES
        The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts.
        Rejuvenation Res. 2007; 10: 157-172https://doi.org/10.1089/rej.2006.0513
        • Kashiwada Y
        • Hashimoto F
        • Cosentino LM
        • Chen CH
        • Garrett PE
        • Lee KH
        Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents.
        J Med Chem. 1996; 39: 1016-1017https://doi.org/10.1021/jm950922q
        • Huang L
        • Ho P
        • Chen CH
        Activation and inhibition of the proteasome by betulinic acid and its derivatives.
        FEBS Lett. 2007; 581: 4955-4959https://doi.org/10.1016/j.febslet.2007.09.031
        • Trader DJ
        • Simanski S
        • Dickson P
        • Kodadek T
        Establishment of a suite of assays that support the discovery of proteasome stimulators.
        Biochim Biophys Acta. 2017; 1861: 892-899https://doi.org/10.1016/j.bbagen.2017.01.003
        • Jones CL
        • Njomen E
        • Sjögren B
        • Dexheimer TS
        • Tepe JJ
        Small molecule enhancement of 20S proteasome activity targets intrinsically disordered proteins.
        ACS Chem Biol. 2017; 12: 2240-2247https://doi.org/10.1021/acschembio.7b00489
        • Coleman RA
        • Trader DJ
        Development and application of a sensitive peptide reporter to discover 20S proteasome stimulators.
        ACS Comb Sci. 2018; (acscombsci.7b00193): 269-276https://doi.org/10.1021/acscombsci.7b00193
        • Gillette TG
        • Kumar B
        • Thompson D
        • Slaughter CA
        • DeMartino GN
        Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26S proteasome.
        J Biol Chem. 2008; 283: 31813-31822https://doi.org/10.1074/jbc.M805935200
        • Kim Y-C
        • DeMartino GN
        C Termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26S proteasome.
        J Biol Chem. 2011; 286: 26652-26666https://doi.org/10.1074/jbc.M111.246793
        • Witkowska J
        • Gizyńska M
        • Grudnik P
        • et al.
        Crystal structure of a low molecular weight activator Blm-pep with yeast 20S proteasome - insights into the enzyme activation mechanism.
        Sci Rep. 2017; 7: 1-11https://doi.org/10.1038/s41598-017-05997-4
        • Baell JB
        • Nissink JWM
        Seven year itch: pan-assay interference compounds (PAINS) in 2017 - utility and limitations.
        ACS Chem Biol. 2018; 13: 36-44https://doi.org/10.1021/acschembio.7b00903