Advertisement

Serum biomarkers for diagnosis and prediction of type 1 diabetes

Published:August 01, 2018DOI:https://doi.org/10.1016/j.trsl.2018.07.009
      Type 1 diabetes (T1D) culminates in the autoimmune destruction of the pancreatic β cells, leading to insufficient production of insulin and development of hyperglycemia. Serum biomarkers including a combination of glucose, glycated molecules, C-peptide, and autoantibodies have been well established for the diagnosis of T1D. However, these molecules often mark a late stage of the disease when ∼90% of the pancreatic insulin-producing β -cells have already been lost. With the prevalence of T1D increasing worldwide and because of the physical and psychological burden induced by this disease, there is a great need for prognostic biomarkers to predict T1D development or progression. This would allow us to identify individuals at high risk for early prevention and intervention. Therefore, considerable efforts have been dedicated to the understanding of disease etiology and the discovery of novel biomarkers in the last few decades. The advent of high-throughput and sensitive "-omics" technologies for the study of proteins, nucleic acids, and metabolites have allowed large scale profiling of protein expression and gene changes in T1D patients relative to disease-free controls. In this review, we briefly discuss the classical diagnostic biomarkers of T1D but mainly focus on the novel biomarkers that are identified as markers of β -cell destruction and screened with the use of state-of-the-art "-omics" technologies.

      Abbreviations:

      AAb (autoantibody), HbA1c (hemoglobin A1c), GAD (glutamic acid decarboxylase), GADA (GAD autoantibody), FPG (fasting plasma glucose), IA-2A (insulinoma 2-associated autoantibody), IAA (insulin autoantibody), ICA (islet-cell cytoplasmic autoantibody), OGTT (oral glucose tolerance test), PTM (post-translational modifications), T1D (type 1 diabetes), T2D (type 2 diabetes), ZnT8A (zinc transporter 8 autoantibody.)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eisenbarth GS
        Type I diabetes Mellitus. A chronic autoimmune disease.
        New Engl J Med. 1986; 314: 1360-1368
        • Rigby MR
        • Ehlers MR
        Targeted immune interventions for type 1 diabetes: not as easy as it looks.
        Curr Opin Endocrinol Diabetes Obes. 2014; 21: 271-278
        • Maahs DM
        • West NA
        • Lawrence JM
        • Mayer-Davis EJ
        Epidemiology of type 1 diabetes.
        Endocrinol Metab Clin N Am. 2010; 39: 481-497
        • Katsarou A
        • Gudbjornsdottir S
        • Rawshani A
        • et al.
        Type 1 diabetes mellitus.
        Nat Rev Dis Primers. 2017; 3 (17016)
        • Kobos E
        • Imiela J
        Factors affecting the level of burden of caregivers of children with type 1 diabetes.
        Appl Nurs Res. 2015; 28: 142-149
        • Haugstvedt A
        • Wentzel-Larsen T
        • Rokne B
        • Graue M
        Perceived family burden and emotional distress: similarities and differences between mothers and fathers of children with type 1 diabetes in a population-based study.
        Pediatr Diabetes. 2011; 12: 107-114
        • Zhi W
        • Purohit S
        • Carey C
        • Wang M
        • She JX
        Proteomic technologies for the discovery of type 1 diabetes biomarkers.
        J Diabetes Sci Technol. 2010; 4: 993-1002
        • Saisho Y
        • Butler AE
        • Manesso E
        • Elashoff D
        • Rizza RA
        • Butler PC
        beta-cell mass and turnover in humans: effects of obesity and aging.
        Diabetes Care. 2013; 36: 111-117
        • Atkinson MA
        • von Herrath M
        • Powers AC
        • Clare-Salzler M
        Current concepts on the pathogenesis of type 1 diabetes–considerations for attempts to prevent and reverse the disease.
        Diabetes Care. 2015; 38: 979-988
        • Torn C
        • Mueller PW
        • Schlosser M
        • Bonifacio E
        • Bingley PJ
        • Participating L
        Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2.
        Diabetologia. 2008; 51: 846-852
        • Schlosser M
        • Mueller PW
        • Torn C
        • Bonifacio E
        • Bingley PJ
        • Participating L
        Diabetes antibody standardization program: evaluation of assays for insulin autoantibodies.
        Diabetologia. 2010; 53: 2611-2620
        • Schlosser M
        • Mueller PW
        • Achenbach P
        • Lampasona V
        • Bingley PJ
        • Participating L
        Diabetes antibody standardization program: first evaluation of assays for autoantibodies to IA-2beta.
        Diabetes Care. 2011; 34: 2410-2412
        • Lampasona V
        • Schlosser M
        • Mueller PW
        • et al.
        Diabetes antibody standardization program: first proficiency evaluation of assays for autoantibodies to zinc transporter 8.
        Clin Chem. 2011; 57: 1693-1702
        • Sacks DB
        • Bruns DE
        • Goldstein DE
        • Maclaren NK
        • McDonald JM
        • Parrott M
        Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus.
        Clin Chem. 2002; 48: 436-472
        • Ziegler AG
        • Rewers M
        • Simell O
        • et al.
        Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children.
        JAMA. 2013; 309: 2473-2479
        • Scholin A
        • Torn C
        • Nystrom L
        • et al.
        Normal weight promotes remission and low number of islet antibodies prolong the duration of remission in type 1 diabetes.
        Diabet Med. 2004; 21: 447-455
        • Leighton E
        • Sainsbury CAR
        • Jones GC
        A practical review of C-peptide testing in diabetes.
        Diabetes Ther. 2017; 8: 475-487
        • HW Yu
        • YJ Lee
        • Wl Cho
        • YA Lee
        • CH Shin
        • SW Yang
        Preserved C-peptide levels in overweight or obese children with newly diagnosed type 1 diabetes.
        Ann Pediatr Endocrinol Metab. 2015; 20: 92-97
        • Palmer JP
        • Fleming GA
        • Greenbaum CJ
        • et al.
        C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve β-cell function.
        Diabetes. 2004; 53: 250-264
        • Knip M
        Disease-associated autoimmunity and prevention of insulin-dependent diabetes mellitus.
        Ann Med. 1997; 29: 447-451
        • Knip M
        • Korhonen S
        • Kulmala P
        • et al.
        Prediction of type 1 diabetes in the general population.
        Diabetes Care. 2010; 33: 1206-1212
        • Bonifacio E
        Predicting type 1 diabetes using biomarkers.
        Diabetes Care. 2015; 38: 989-996
        • Ilonen J
        • Lempainen J
        • Hammais A
        • et al.
        Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity.
        Pediatr Diabetes. 2018; 19: 284-292
        • Endesfelder D
        • Hagen M
        • Winkler C
        • et al.
        A novel approach for the analysis of longitudinal profiles reveals delayed progression to type 1 diabetes in a subgroup of multiple-islet-autoantibody-positive children.
        Diabetologia. 2016; 59: 2172-2180
        • Vehik K
        • Lynch KF
        • Schatz DA
        • et al.
        Reversion of beta-cell autoimmunity changes risk of type 1 diabetes: TEDDY study.
        Diabetes Care. 2016; 39: 1535-1542
        • Calderon B
        • Sacks DB
        Islet autoantibodies and type 1 diabetes: does the evidence support screening?.
        Clin Chem. 2014; 60: 438-440
        • Achenbach P
        • Koczwara K
        • Knopff A
        • Naserke H
        • Ziegler AG
        • Bonifacio E
        Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes.
        J Clin Invest. 2004; 114: 589-597
        • Bingley PJ
        Clinical applications of diabetes antibody testing.
        J Clin Endocr Metab. 2010; 95: 25-33
        • Winter WE
        • Schatz DA
        Autoimmune markers in diabetes.
        Clin Chem. 2011; 57: 168-175
        • Purohit S
        • She JX
        Biomarkers for type 1 diabetes.
        Int J Clin Exp Med. 2008; 1: 98-116
        • Jin Y
        • She JX
        Novel biomarkers in type 1 diabetes.
        Rev Diabetic Stud: RDS. 2012; 9: 224-235
        • Ziegler AG
        • Nepom GT
        Prediction and pathogenesis in type 1 diabetes.
        Immunity. 2010; 32: 468-478
      1. Classification and diagnosis of diabetes. Diabetes Care 38, 2015, S8–S16.

        • Cianciaruso C
        • Phelps EA
        • Pasquier M
        • et al.
        Primary human and rat beta-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity.
        Diabetes. 2017; 66: 460-473
        • Robitaille K
        • Rourke JL
        • McBane JE
        • et al.
        High-throughput functional genomics identifies regulators of primary human beta cell proliferation.
        J Biol Chem. 2016; 291: 4614-4625
        • Bader E
        • Migliorini A
        • Gegg M
        • et al.
        Identification of proliferative and mature beta-cells in the islets of Langerhans.
        Nature. 2016; 535: 430-434
        • Rondas D
        • Crevecoeur I
        • D'Hertog W
        • et al.
        Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes.
        Diabetes. 2015; 64: 573-586
        • El Ouaamari A
        • Zhou JY
        • Liew CW
        • et al.
        Compensatory islet response to insulin resistance revealed by quantitative proteomics.
        J Proteome Res. 2015; 14: 3111-3122
        • Burch TC
        • Morris MA
        • Campbell-Thompson M
        • Pugliese A
        • Nadler JL
        • Nyalwidhe JO
        Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes.
        PLoS One. 2015; 10e0135663
        • Zhang L
        • Lanzoni G
        • Battarra M
        • Inverardi L
        • Zhang Q
        Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection.
        J Proteomics. 2017; 150: 149-159
        • Nyalwidhe JO
        • Grzesik WJ
        • Burch TC
        • et al.
        Comparative quantitative proteomic analysis of disease stratified laser captured microdissected human islets identifies proteins and pathways potentially related to type 1 diabetes.
        PLoS One. 2017; 12e0183908
        • Zhu Y
        • Piehowski PD
        • Zhao R
        • et al.
        Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells.
        Nat Commun. 2018; 9: 882
        • Muraro MJ
        • Dharmadhikari G
        • Grun D
        • et al.
        A single-cell transcriptome atlas of the human pancreas.
        Cell Syst. 2016; 3 (385-394.e3)
        • Klein D
        • Misawa R
        • Bravo-Egana V
        • et al.
        MicroRNA expression in alpha and beta cells of human pancreatic islets.
        PLoS One. 2013; 8: e55064
        • Qian WJ
        • Kaleta DT
        • Petritis BO
        • et al.
        Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy.
        Mol Cell Proteom. 2008; 7: 1963-1973
        • Tu CJ
        • Rudnick PA
        • Martinez MY
        • et al.
        Depletion of abundant plasma proteins and limitations of plasma proteomics.
        J Proteome Res. 2010; 9: 4982-4991
        • Jin WH
        • Dai J
        • Li SJ
        • Xia QC
        • Zou HF
        • Zeng R
        Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification.
        J Proteome Res. 2005; 4: 613-619
        • Zhi WB
        • Sharma A
        • Purohit S
        • et al.
        Discovery and validation of serum protein changes in type 1 diabetes patients using high throughput two dimensional liquid chromatography-mass spectrometry and immunoassays.
        Mol Cell Proteom. 2011; 10 (M111.012203)
        • Von Tornerne C
        • Laimighofer M
        • Achenbach P
        • et al.
        Peptide serum markers in islet autoantibody-positive children.
        Diabetologia. 2017; 60: 287-295
        • Metz TO
        • Qian WJ
        • Jacobs JM
        • et al.
        Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset.
        J Proteome Res. 2008; 7: 698-707
        • Zhang Q
        • Fillmore TL
        • Schepmoes AA
        • et al.
        Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes.
        J Exp Med. 2013; 210: 191-203
        • Moudler R
        • Bhosale SD
        • Erkkila T
        • et al.
        Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility.
        Diabetes. 2015; 64: 2265-2278
        • Liu CW
        • Bramer L
        • Webb-Robertson BJ
        • Waugh K
        • Rewers MJ
        • Zhang QB
        Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 diabetes progression.
        J Proteom. 2018; 172: 100-110
        • Wiese S
        • Reidegeld KA
        • Meyer HE
        • Warscheid B
        Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research.
        Proteomics. 2007; 7: 340-350
        • Thompson A
        • Schafer J
        • Kuhn K
        • et al.
        Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS.
        Anal Chem. 2003; 75: 1895-1904
        • Geyer PE
        • Holdt LM
        • Teupser D
        • Mann M
        Revisiting biomarker discovery by plasma proteomics.
        Mol Syst Biol. 2017; 13: 942
        • Eizirik DL
        • Cnop M
        ER stress in pancreatic beta cells: the thin red line between adaptation and failure.
        Sci Signal. 2010; 3 (pe7)
        • Hotamisligil GS
        Endoplasmic reticulum stress and the inflammatory basis of metabolic disease.
        Cell. 2010; 140: 900-917
        • Massa O
        • Alessio M
        • Russo L
        • et al.
        Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes.
        J Proteom. 2013; 82: 263-273
        • McGinty JW
        • Chow IT
        • Greenbaum C
        • Odegard J
        • Kwok WW
        • James EA
        Recognition of posttranslationally modified GAD65 epitopes in subjects with type 1 diabetes.
        Diabetes. 2014; 63: 3033-3040
        • Rondas D
        • Crèvecoeur I
        • Hertog WD'
        • et al.
        Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes.
        Diabetes. 2015; 64: 573-586
        • van Lummel M
        • Duinkerken G
        • van Veelen PA
        • et al.
        Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes.
        Diabetes. 2014; 63: 237-247
        • Strollo R
        • Rizzo P
        • Spoletini M
        • et al.
        HLA-dependent autoantibodies against post-translationally modified collagen type II in type 1 diabetes mellitus.
        Diabetologia. 2013; 56: 563-572
        • Strollo R
        • Vinci C
        • Napoli N
        • Pozzilli P
        • Ludvigsson J
        • Nissim A
        Antibodies to post-translationally modified insulin as a novel biomarker for prediction of type 1 diabetes in children.
        Diabetologia. 2017; 60: 1467-1474
        • Doran TM
        • Morimoto J
        • Simanski S
        • et al.
        Discovery of phosphorylated peripherin as a major humoral autoantigen in type 1 diabetes mellitus.
        Cell Chem Biol. 2016; 23: 618-628
        • Mannering SI
        • Harrison LC
        • Williamson NA
        • et al.
        The insulin A-chain epitope recognized by human T cells is posttranslationally modified.
        J Exp Med. 2005; 202: 1191-1197
        • Bezu L
        • Sauvat A
        • Humeau J
        • et al.
        eIF2alpha phosphorylation is pathognomonic for immunogenic cell death.
        Cell Death Differ. 2018;
        • Ganesan L
        • Levental I
        Pharmacological inhibition of protein lipidation.
        J Membr Biol. 2015; 248: 929-941
        • Freitas PAC
        • Ehlert LR
        • Camargo JL
        Glycated albumin: a potential biomarker in diabetes.
        Arch Endocrinol Metab. 2017; 61: 296-304
        • Delong T
        • Wiles TA
        • Baker RL
        • et al.
        Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion.
        Science. 2016; 351: 711-714
        • Eizirik DL
        • Colli ML
        • Ortis F
        The role of inflammation in insulitis and beta-cell loss in type 1 diabetes.
        Nat Rev Endocrinol. 2009; 5: 219-226
        • Stechova K
        • Bohmova K
        • Vrabelova Z
        • et al.
        High T-helper-1 cytokines but low T-helper-3 cytokines, inflammatory cytokines and chemokines in children with high risk of developing type 1 diabetes.
        Diabetes Metab Res Rev. 2007; 23: 462-471
        • Yeung WCG
        • Al-Shabeeb A
        • Pang CNI
        • et al.
        Children with islet autoimmunity and enterovirus infection demonstrate a distinct cytokine profile.
        Diabetes. 2012; 61: 1500-1508
        • Takahashi K
        • Ohara M
        • Sasai T
        • et al.
        Serum CXCL1 concentrations are elevated in type 1 diabetes mellitus, possibly reflecting activity of anti-islet autoimmune activity.
        Diabetes Metab Res Rev. 2011; 27: 830-833
        • Purohit S
        • Sharma A
        • Hopkins D
        • et al.
        Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1 beta in patients with type 1 diabetes.
        J Clin Endocrinol Metab. 2015; 100 (E1179-E1187)
        • Mack CL
        Serum cytokines as biomarkers of disease and clues to pathogenesis.
        Hepatology. 2007; 46: 6-8
        • Ali AM
        • DiPersio JF
        • Schroeder MA
        The role of biomarkers in the diagnosis and risk stratification of acute graft-versus-host disease: a systematic review.
        Biol Blood Marrow Transplant. 2016; 22: 1552-1564
        • Lee AH
        • Heidtman K
        • Hotamisligil GS
        • Glimcher LH
        Dual and opposing roles of the unfolded protein response regulated by IRE1 alpha and XBP1 in proinsulin processing and insulin secretion.
        Proc Natl Acad Sci USA. 2011; 108: 8885-8890
        • Roder ME
        • Knip M
        • Hartling SG
        • et al.
        Disproportionately elevated proinsulin levels precede the onset of insulin-dependent diabetes-mellitus in siblings with low first-phase insulin responses.
        J Clin Endocrinol Metab. 1994; 79: 1570-1575
        • Sims EK
        • Chaudhry Z
        • Watkins R
        • et al.
        Elevations in the fasting serum proinsulin-to-C-peptide ratio precede the onset of type 1 diabetes.
        Diabetes Care. 2016; 39: 1519-1526
        • Truyen I
        • Pauw P
        • Jorgensen PN
        • et al.
        Proinsulin levels and the proinsulin: C-peptide ratio complement autoantibody measurement for predicting type 1 diabetes.
        Diabetologia. 2005; 48: 2322-2329
        • McLaughlin KA
        • Richardson CC
        • Ravishankar A
        • et al.
        Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes.
        Diabetes. 2016; 65: 1690-1698
        • Van De Winkel M
        • Smets G
        • Gepts W
        • Pipeleers D
        Islet cell surface antibodies from insulin-dependent diabetics bind specifically to pancreatic B cells.
        J Clin Invest. 1982; 70: 41-49
        • Astorri E
        • Guglielmi C
        • Bombardieri M
        • et al.
        Circulating Reg1alpha proteins and autoantibodies to Reg1alpha proteins as biomarkers of beta-cell regeneration and damage in type 1 diabetes.
        Horm Metab Res. 2010; 42: 955-960
        • Li SW
        • Koya V
        • Li Y
        • et al.
        Pancreatic duodenal homeobox 1 protein is a novel beta-cell-specific autoantigen for type I diabetes.
        Lab Invest. 2010; 90: 31-39
        • Shehadeh N
        • Pollack S
        • Wildbaum G
        • et al.
        Selective autoantibody production against CCL3 is associated with human type 1 diabetes mellitus and serves as a novel biomarker for its diagnosis.
        J Immunol. 2009; 182: 8104-8109
        • Fierabracci A
        • Saura F
        Identification of a common autoantigenic epitope of protein disulfide isomerase, golgin-160 and voltage-gated potassium channel in type 1 diabetes.
        Diabetes Res Clin Pract. 2010; 88 (e14-e16)
        • Endo T
        • Takizawa S
        • Tanaka S
        • et al.
        Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes.
        Diabetes. 2009; 58: 732-737
        • Wan EC
        • Gordon TP
        • Jackson MW
        Autoantibodies to calcium channels in type 1 diabetes mediate autonomic dysfunction by different mechanisms in colon and bladder and are neutralized by antiidiotypic antibodies.
        J Autoimmun. 2008; 31: 66-72
        • Jackson MW
        • Gordon TP
        A novel impedance-based cellular assay for the detection of anti-calcium channel autoantibodies in type 1 diabetes.
        J Immunol Methods. 2010; 361: 31-36
        • Park SG
        • Park HS
        • Jeong IK
        • et al.
        Autoantibodies against aminoacyl-tRNA synthetase: novel diagnostic marker for type 1 diabetes mellitus.
        Biomarkers. 2010; 15: 358-366
        • Kaufman DL
        • Erlander MG
        • Clare-Salzler M
        • Atkinson MA
        • Maclaren NK
        • Tobin AJ
        Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus.
        J Clin Invest. 1992; 89: 283-292
        • Wasmeier C
        • Hutton JC
        Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes.
        J Biol Chem. 1996; 271: 18161-18170
        • Liu H
        • Wang Z
        • Li S
        • Zhang Y
        • Yan YC
        • Li YP
        Utilization of an intron located polyadenlyation site resulted in four novel glutamate decarboxylase transcripts.
        Mol Biol Rep. 2009; 36: 1469-1474
        • Diez J
        • Park Y
        • Zeller M
        • et al.
        Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen.
        Diabetes. 2001; 50: 895-900
        • Marchand L
        • Polychronakos C
        Evaluation of polymorphic splicing in the mechanism of the association of the insulin gene with diabetes.
        Diabetes. 2007; 56: 709-713
        • Zavialov A
        • Ankelo M
        • Westerlund-Karlsson A
        • Knip M
        • Ilonen J
        • Hinkkanen A
        Novel fusion proteins in the analysis of diabetes-associated autoantibodies to GAD65 and IA-2.
        J Immunol Methods. 2000; 246: 91-96
        • Massa O
        • Alessio M
        • Russo L
        • et al.
        Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes.
        J Proteomics. 2013; 82: 263-273
        • Wenzlau JM
        • Hutton JC
        Novel diabetes autoantibodies and prediction of type 1 diabetes.
        Curr Diab Rep. 2013; 13: 608-615
        • van der Vaart M
        • Pretorius PJ
        The origin of circulating free DNA.
        Clin Chem. 2007; 53: 2215
        • Wang W
        • Kong P
        • Ma G
        • et al.
        Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines.
        Oncotarget. 2017; 8: 43180-43191
        • Syed F
        • Evans-Molina C
        Nucleic acid biomarkers of beta cell stress and death in type 1 diabetes.
        Curr Opin Endocrinol. 2016; 23: 312-317
        • Herold KC
        • Usmani-Brown S
        • Ghazi T
        • et al.
        beta Cell death and dysfunction during type 1 diabetes development in at-risk individuals.
        J Clin Invest. 2015; 125: 1163-1173
        • Akirav EM
        • Lebastchi J
        • Galvan EM
        • et al.
        Detection of beta cell death in diabetes using differentially methylated circulating DNA.
        Proc Natl Acad Sci USA. 2011; 108: 19018-19023
        • Lehmann-Werman R
        • Neiman D
        • Zemmour H
        • et al.
        Identification of tissue-specific cell death using methylation patterns of circulating DNA.
        Proc Natl Acad Sci USA. 2016; 113 (E1826-E1834)
        • Usmani-Brown S
        • Lebastchi J
        • Steck AK
        • Beam C
        • Herold KC
        • Ledizet M
        Analysis of beta-cell death in type 1 diabetes by droplet digital PCR.
        Endocrinology. 2014; 155: 3694-3698
        • Fisher MM
        • Watkins RA
        • Blum J
        • et al.
        Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes.
        Diabetes. 2015; 64: 3867-3872
        • Lebastchi J
        • Deng SY
        • Lebastchi AH
        • et al.
        Immune therapy and beta-cell death in type 1 diabetes.
        Diabetes. 2013; 62: 1676-1680
        • Olsen JA
        • Kenna LA
        • Spelios MG
        • Hessner MJ
        • Akirav EM
        Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes.
        Plos One. 2016; 11 (e0152662)
        • Kallionpaa H
        • Elo LL
        • Laajala E
        • et al.
        Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
        Diabetes. 2014; 63: 2402-2414
        • Jin YL
        • Sharma A
        • Bai S
        • et al.
        Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function.
        Diabetes. 2014; 63: 2506-2515
        • Ferreira RC
        • Guo H
        • Coulson RMR
        • et al.
        A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes.
        Diabetes. 2014; 63: 2538-2550
        • Irvine KM
        • Gallego P
        • An XY
        • et al.
        Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes.
        Diabetes. 2012; 61: 1281-1290
        • Assmann TS
        • Recamonde-Mendoza M
        • De Souza BM
        • Crispim D
        MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis.
        Endocr Connect. 2017; 6: 773-790
        • Seyhan AA
        • Lopez YON
        • Xie H
        • et al.
        Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study.
        Sci Rep. 2016; 6 (31479)
        • Karolina DS
        • Tavintharan S
        • Armugam A
        • et al.
        Circulating miRNA profiles in patients with metabolic syndrome.
        J Clin Endocrinol Metab. 2012; 97 (E2271-E2276)
        • Latreille M
        • Herrmanns K
        • Renwick N
        • et al.
        miR-375 gene dosage in pancreatic beta-cells: implications for regulation of beta-cell mass and biomarker development.
        J Mol Med (Berl). 2015; 93: 1159-1169
        • Marchand L
        • Jalabert A
        • Meugnier E
        • et al.
        miRNA-375 a sensor of glucotoxicity is altered in the serum of children with newly diagnosed type 1 diabetes.
        J Diabetes Res. 2016; (1869082)
        • Erener S
        • Marwaha A
        • Tan R
        • Kieffer TJ
        Profiling of circulating microRNAs in children with recent onset of type 1 diabetes.
        JCI Insight. 2017; 2 (e89656)
        • Osipova J
        • Fischer DC
        • Dangwal S
        • et al.
        Diabetes-associated MicroRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study.
        J Clin Endocrinol Metab. 2014; 99 (E1661-E1665)
        • Nielsen LB
        • Wang C
        • Sorensen K
        • et al.
        Circulating levels of MicroRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression.
        Exp Diabetes Res. 2012; 2012896362
        • Erener S
        • Mojibian M
        • Fox JK
        • Denroche HC
        • Kieffer TJ
        Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice.
        Endocrinology. 2013; 154: 603-608
        • Nabih ES
        • Andrawes NG
        The association between circulating levels of miRNA-181a and pancreatic beta cells dysfunction via SMAD7 in Type 1 diabetic children and adolescents.
        J Clin Lab Anal. 2016; 30: 727-731
        • Valadi H
        • Ekstrom K
        • Bossios A
        • Sjostrand M
        • Lee JJ
        • Lotvall JO
        Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.
        Nat Cell Biol. 2007; 9: 654-659
        • Lakhter AJ
        • Pratt RE
        • Moore RE
        • et al.
        Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes.
        Diabetologia. 2018; 61: 1124-1134
        • Garcia-Contreras M
        • Shah SH
        • et al.
        Plasma-derived exosome characterization reveals a distinct microRNA signature in long duration Type 1 diabetes.
        Sci Rep. 2017; 7 (5998)
        • Pflueger M
        • Seppanen-Laakso T
        • Suortti T
        • et al.
        Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes.
        Diabetes. 2011; 60: 2740-2747
        • Bervoets L
        • Massa G
        • Guedens W
        • Louis E
        • Noben JP
        • Adriaensens P
        Metabolic profiling of type 1 diabetes mellitus in children and adolescents: a case-control study.
        Diabetol Metab Syndr. 2017; 9: 48
        • Leslie RD
        • Beyan H
        Metabolomics makes a mark: early changes associated with autoimmune diabetes.
        Diabetes. 2011; 60: 2688-2690
        • Fox TE
        • Bewley MC
        • Unrath KA
        • et al.
        Circulating sphingolipid biomarkers in models of type 1 diabetes.
        J Lipid Res. 2011; 52: 509-517
        • La Torre D
        • Seppanen-Laakso T
        • Larsson HE
        • et al.
        Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes.
        Diabetes. 2013; 62: 3951-3956
        • Oresic M
        • Simell S
        • Sysi-Aho M
        • et al.
        Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes.
        J Exp Med. 2008; 205: 2975-2984
        • Oresic M
        • Gopalacharyulu P
        • Mykkanen J
        • et al.
        Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes.
        Diabetes. 2013; 62: 3268-3274
        • Shi T
        • Song E
        • Nie S
        • et al.
        Advances in targeted proteomics and applications to biomedical research.
        Proteomics. 2016; 16: 2160-2182
        • Garcia-Contreras M
        • Brooks RW
        • Boccuzzi L
        • Robbins PD
        • Ricordi C
        Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus.
        Eur Rev Med Pharmacol Sci. 2017; 21: 2940-2956
        • Saeedi Borujeni MJ
        • Esfandiary E
        • et al.
        Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome.
        J Cell Biochem. 2018; 119: 1257-1272
        • Tramontano AF
        • Lyubarova R
        • Tsiakos J
        • Palaia T
        • Deleon JR
        • Ragolia L
        Circulating endothelial microparticles in diabetes mellitus.
        Mediators Inflamm. 2010; 2010250476
        • Lietz CB
        • Toneff T
        • Mosier C
        • Podvin S
        • O'Donoghue AJ
        • Hook V
        Phosphopeptidomics reveals differential phosphorylation states and novel SxE phosphosite motifs of neuropeptides in dense core secretory vesicles.
        J Am Soc Mass Spectr. 2018; 29: 935-947
        • Berezin AE
        • Kremzer AA
        • Samura TA
        • Berezina TA
        • Kruzliak P
        Impaired immune phenotype of circulating endothelial-derived microparticles in patients with metabolic syndrome and diabetes mellitus.
        J Endocrinol Invest. 2015; 38: 865-874