Advertisement

Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes

  • CiarÁn E. Fealy
    Affiliations
    Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
    Search for articles by this author
  • Anny Mulya
    Affiliations
    Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
    Search for articles by this author
  • Christopher L. Axelrod
    Affiliations
    Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

    Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
    Search for articles by this author
  • John P. Kirwan
    Correspondence
    Reprint request: John P. Kirwan, Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana, 70808.
    Affiliations
    Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

    Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
    Search for articles by this author
Published:August 01, 2018DOI:https://doi.org/10.1016/j.trsl.2018.07.011
      The traditional view of mitochondria as isolated, spherical, energy producing organelles, is undergoing a revolutionary change. Emerging data show that mitochondria form a dynamic reticulum that is regulated by cycles of fission and fusion. The discovery of proteins that modulate these activities has led to important advances in understanding human disease. Here, we review the latest evidence that connects the emerging field of mitochondrial dynamics to skeletal muscle insulin resistance and propose some potential mechanisms that may explain the long debated link between mitochondria and the development of type 2 diabetes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

      1. CDC. National Diabetes Statistics Report: estimates of diabetes and its burden in the United States, 2014. US Department of Health and Human Services.

        • Whiting DR
        • Guariguata L
        • Weil C
        • Shaw J
        IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030.
        Diabetes Res Clin Pract. 2011; 94: 311-321
        • Skinner AC
        • Skelton JA
        Prevalence and trends in obesity and severe obesity among children in the United States, 1999-2012.
        JAMA Pediatr. 2014; 168: 561-566
        • American Diabetes Association
        Position statement: type 2 diabetes in children and adolescents.
        Diabetes Care. 2000; 22: 381
        • Wing RR
        • Bolin P
        • et al.
        • Look Ahead Research Group
        Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes.
        N Engl J Med. 2013; 369: 145-154
        • Korner J
        • Bessler M
        • Cirilo LJ
        • et al.
        Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin.
        J Clin Endocrinol Metab. 2005; 90: 359-365
        • Schauer PR
        • Bhatt DL
        • Kirwan JP
        • et al.
        Bariatric surgery versus intensive medical therapy for diabetes–3-year outcomes.
        N Engl J Med. 2014; 370: 2002-2013
        • Schauer PR
        • Kashyap SR
        • Wolski K
        • et al.
        Bariatric surgery versus intensive medical therapy in obese patients with diabetes.
        N Engl J Med. 2012; 366: 1567-1576
        • Detmer SA
        • Chan DC
        Functions and dysfunctions of mitochondrial dynamics.
        Nat Rev Mol Cell Biol. 2007; 8: 870-879
        • Westermann B
        Mitochondrial fusion and fission in cell life and death.
        Nat Rev Mol Cell Biol. 2010; 11: 872-884
        • Kwong JQ
        • Molkentin JD
        Physiological and pathological roles of the mitochondrial permeability transition pore in the heart.
        Cell Metab. 2015; 21: 206-214
        • Fealy CE
        • Mulya A
        • Lai N
        • Kirwan JP
        Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin resistant human skeletal muscle.
        J Appl Physiol (1985). 2014; 117: 239-245
        • Jheng HF
        • Tsai PJ
        • Guo SM
        • et al.
        Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle.
        Mol Cell Biol. 2012; 32: 309-319
        • del Campo A
        • Parra V
        • Vasquez-Trincado C
        • et al.
        Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake.
        Am J Physiol Endocrinol Metab. 2014; 306: E1-E13
        • Sebastian D
        • Hernandez-Alvarez MI
        • Segales J
        • et al.
        Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.
        Proc Natl Acad Sci U S A. 2012; 109: 5523-5528
        • Kong D
        • Song G
        • Wang C
        • et al.
        Overexpression of mitofusin 2 improves translocation of glucose transporter 4 in skeletal muscle of high-fat diet fed rats through AMPactivated protein kinase signaling.
        Mol Med Rep. 2013; 8: 205-210
        • Krssak M
        • Brehm A
        • Bernroider E
        • et al.
        Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes.
        Diabetes. 2004; 53: 3048-3056
        • Pan DA
        • Lillioja S
        • Kriketos AD
        • et al.
        Skeletal muscle triglyceride levels are inversely related to insulin action.
        Diabetes. 1997; 46: 983-988
        • Moro C
        • Galgani JE
        • Luu L
        • et al.
        Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals.
        J Clin Endocrinol Metab. 2009; 94: 3440-3447
        • Haus JM
        • Kashyap SR
        • Kasumov T
        • et al.
        Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance.
        Diabetes. 2009; 58: 337-343
        • Perseghin G
        • Scifo P
        • Danna M
        • et al.
        Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation.
        Am J Physiol Endocrinol Metab. 2002; 283: E556-E564
        • Kelley DE
        • He J
        • Menshikova EV
        • Ritov VB
        Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.
        Diabetes. 2002; 51: 2944-2950
        • Kelley DE
        • Goodpaster B
        • Wing RR
        • Simoneau J
        Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss.
        Endocrinol Metab. 1999; 40: E1130-E1141
        • Simoneau JA
        • Veerkamp JH
        • Turcotte LP
        • Kelley DE
        Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss.
        FASEB J. 1999; 13: 2051-2060
        • He J
        • Watkins S
        • Kelley DE
        Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity.
        Diabetes. 2001; 50: 817-823
        • Ritov VB
        • Menshikova EV
        • He J
        • Ferrell RE
        • Goodpaster BH
        • Kelley DE
        Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes.
        Diabetes. 2005; 54: 8-14
        • Morino K
        • Petersen KF
        • Dufour S
        • et al.
        Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.
        J Clin Invest. 2005; 115: 3587-3593
        • Dube JJ
        • Amati F
        • Stefanovic-Racic M
        • Toledo FG
        • Sauers SE
        • Goodpaster BH
        Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited.
        Am J Physiol Endocrinol Metab. 2008; 294: E882-E888
        • Schrauwen-Hinderling VB
        • Kooi ME
        • Hesselink MK
        • et al.
        Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects.
        Diabetologia. 2007; 50: 113-120
        • van de Weijer T
        • Sparks LM
        • Phielix E
        • et al.
        Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus.
        PLoS One. 2013; 8: e51648
        • Phielix E
        • Schrauwen-Hinderling VB
        • Mensink M
        • et al.
        Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients.
        Diabetes. 2008; 57: 2943-2949
        • Szendroedi J
        • Schmid AI
        • Meyerspeer M
        • et al.
        Impaired mitochondrial function and insulin resistance of skeletal muscle in mitochondrial diabetes.
        Diabetes Care. 2009; 32: 677-679
        • Wang M
        • Wang XC
        • Zhang ZY
        • Mou B
        • Hu RM
        Impaired mitochondrial oxidative phosphorylation in multiple insulin-sensitive tissues of humans with type 2 diabetes mellitus.
        J Int Med Res. 2010; 38: 769-781
        • Larsen S
        • Ara I
        • Rabol R
        • et al.
        Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes.
        Diabetologia. 2009; 52: 1400-1408
        • Ara I
        • Larsen S
        • Stallknecht B
        • et al.
        Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans.
        Int J Obes (Lond). 2011; 35: 99-108
        • Boushel R
        • Gnaiger E
        • Schjerling P
        • Skovbro M
        • Kraunsoe R
        • Dela F
        Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle.
        Diabetologia. 2007; 50: 790-796
        • Berggren JR
        • Boyle KE
        • Chapman WH
        • Houmard JA
        Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise.
        Am J Physiol Endocrinol Metab. 2008; 294: E726-E732
        • Civitarese AE
        • Carling S
        • Heilbronn LK
        • et al.
        Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.
        PLoS Med. 2007; 4: e76
        • Chavez AO
        • Kamath S
        • Jani R
        • et al.
        Effect of short-term free fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals.
        J Clin Endocrinol Metab. 2010; 95: 422-429
        • Richardson DK
        • Kashyap S
        • Bajaj M
        • et al.
        Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle.
        J Biol Chem. 2005; 280: 10290-10297
        • Wredenberg A
        • Freyer C
        • Sandstrom ME
        • et al.
        Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance.
        Biochem Biophys Res Commun. 2006; 350: 202-207
        • Morino K
        • Petersen KF
        • Shulman GI
        Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction.
        Diabetes. 2006; 55: S9-S15
        • Goodpaster BH
        Mitochondrial deficiency is associated with insulin resistance.
        Diabetes. 2013; 62: 1032-1035
        • De Vogel-van den Bosch J
        • van den Berg SA
        • Bijland S
        • et al.
        High-fat diets rich in medium- versus long-chain fatty acids induce distinct patterns of tissue specific insulin resistance.
        J Nutr Biochem. 2011; 22: 366-371
        • Holloszy JO
        Skeletal muscle "mitochondrial deficiency" does not mediate insulin resistance.
        Am J Clin Nutr. 2009; 89: 463S-466S
        • Marsin AS
        • Bertrand L
        • Rider MH
        • et al.
        Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia.
        Curr Biol. 2000; 10: 1247-1255
        • Koves TR
        • Ussher JR
        • Noland RC
        • et al.
        Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.
        Cell Metab. 2008; 7: 45-56
        • Schooneman MG
        • Vaz FM
        • Houten SM
        • Soeters MR
        Acylcarnitines: reflecting or inflicting insulin resistance.
        Diabetes. 2013; 62: 1-8
        • Keung W
        • Ussher JR
        • Jaswal JS
        • et al.
        Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.
        Diabetes. 2013; 62: 711-720
        • Mehta NN
        • McGillicuddy FC
        • Anderson PD
        • et al.
        Experimental endotoxemia induces adipose inflammation and insulin resistance in humans.
        Diabetes. 2010; 59: 172-181
        • Liang H
        • Tantiwong P
        • Sriwijitkamol A
        • et al.
        Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.
        J Physiol. 2013; 591: 2897-2909
        • Muscogiuri G
        • Salmon AB
        • Aguayo-Mazzucato C
        • et al.
        Genetic disruption of SOD1 gene causes glucose intolerance and impairs beta-cell function.
        Diabetes. 2013; 62: 4201-4207
        • Nowotny B
        • Zahiragic L
        • Krog D
        • et al.
        Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans.
        Diabetes. 2013; 62: 2240-2248
        • Considine RV
        • Caro JF
        Protein kinase C: mediator or inhibitor of insulin action.
        J Cell Biochem. 1993; 52: 8-13
        • Taddeo EP
        • Laker RC
        • Breen DS
        • et al.
        Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle.
        Mol Metab. 2014; 3: 124-134
        • Yu T
        • Sheu SS
        • Robotham JL
        • Yoon Y
        Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species.
        Cardiovasc Res. 2008; 79: 341-351
        • Papanicolaou KN
        • Khairallah RJ
        • Ngoh GA
        • et al.
        Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes.
        Mol Cell Biol. 2011; 31: 1309-1328
        • Kirkwood SP
        • Munn EA
        • Brooks GA
        Mitochondrial reticulum in limb skeletal muscle.
        Am J Physiol. 1986; 251: C395-C402
        • Dahl R
        • Larsen S
        • Dohlmann TL
        • et al.
        Three-dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization.
        Acta Physiol (Oxf). 2015; 213: 145-155
        • Chan DC.
        Mitochondria: dynamic organelles in disease, aging, and development.
        Cell. 2006; 125: 1241-1252
        • Suen DF
        • Norris KL
        • Youle RJ
        Mitochondrial dynamics and apoptosis.
        Genes Dev. 2008; 22: 1577-1590
        • Twig G
        • Elorza A
        • Molina AJ
        • et al.
        Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.
        EMBO J. 2008; 27: 433-446
        • Olichon A
        • Emorine LJ
        • Descoins E
        • et al.
        The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space.
        FEBS Lett. 2002; 523: 171-176
        • Marchi S
        • Patergnani S
        • Pinton P
        The endoplasmic reticulum-mitochondria connection: one touch, multiple functions.
        Biochim Biophys Acta. 2014; 1837: 461-469
        • Leboucher GP
        • Tsai YC
        • Yang M
        • et al.
        Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis.
        Mol Cell. 2012; 47: 547-557
        • Li J
        • Li Y
        • Jiao J
        • et al.
        Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis.
        Mol Cell Biol. 2014; 34: 1788-1799
        • Pyakurel A
        • Savoia C
        • Hess D
        • Scorrano L
        Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis.
        Mol Cell. 2015; 58: 244-254
        • Anand R
        • Wai T
        • Baker MJ
        • et al.
        The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission.
        J Cell Biol. 2014; 204: 919-929
        • Merkwirth C
        • Dargazanli S
        • Tatsuta T
        • et al.
        Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria.
        Genes Dev. 2008; 22: 476-488
        • Duvezin-Caubet S
        • Jagasia R
        • Wagener J
        • et al.
        Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology.
        J Biol Chem. 2006; 281: 37972-37979
        • Ishihara N
        • Fujita Y
        • Oka T
        • Mihara K
        Regulation of mitochondrial morphology through proteolytic cleavage of OPA1.
        EMBO J. 2006; 25: 2966-2977
        • Parra V
        • Verdejo HE
        • Iglewski M
        • et al.
        Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway.
        Diabetes. 2014; 63: 75-88
        • Li J
        • Donath S
        • Li Y
        • Qin D
        • Prabhakar BS
        • Li P
        miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway.
        PLoS Genet. 2010; 6e1000795
        • Pagliuso A
        • Cossart P
        • Stavru F
        The ever-growing complexity of the mitochondrial fission machinery.
        Cell Mol Life Sci. 2018; 75: 355-374
        • Din S
        • Mason M
        • Volkers M
        • et al.
        Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation.
        Proc Natl Acad Sci U S A. 2013; 110: 5969-5974
        • Han XJ
        • Lu YF
        • Li SA
        • et al.
        CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology.
        J Cell Biol. 2008; 182: 573-585
        • Wang W
        • Wang Y
        • Long J
        • et al.
        Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells.
        Cell Metab. 2012; 15: 186-200
        • Taguchi N
        • Ishihara N
        • Jofuku A
        • Oka T
        • Mihara K
        Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission.
        J Biol Chem. 2007; 282: 11521-11529
        • Qi X
        • Disatnik MH
        • Shen N
        • Sobel RA
        • Mochly-Rosen D
        Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo.
        Mol Biol Cell. 2011; 22: 256-265
        • Twig G
        • Hyde B
        • Shirihai OS
        Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view.
        Biochim Biophys Acta. 2008; 1777: 1092-1097
        • Uchiyama Y
        Circadian alterations in tubular structures on the outer mitochondrial membrane of rat hepatocytes.
        Cell Tissue Res. 1981; 214: 519-527
        • Kohsaka A
        • Das P
        • Hashimoto I
        • et al.
        The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice.
        PLoS One. 2014; 9e112811
        • Schmitt K
        • Grimm A
        • Dallmann R
        • et al.
        Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics.
        Cell Metab. 2018; 27 (e655): 657-666
        • Andrews JL
        • Zhang X
        • McCarthy JJ
        • et al.
        CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function.
        Proc Natl Acad Sci U S A. 2010; 107: 19090-19095
        • van Moorsel D
        • Hansen J
        • Havekes B
        • et al.
        Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.
        Mol Metab. 2016; 5: 635-645
        • Woldt E
        • Sebti Y
        • Solt LA
        • et al.
        Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy.
        Nat Med. 2013; 19: 1039-1046
        • Mishra P
        • Varuzhanyan G
        • Pham AH
        • Chan DC
        Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization.
        Cell Metab. 2015; 22: 1033-1044
        • Liesa M
        • Shirihai OS
        Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.
        Cell Metab. 2013; 17: 491-506
        • Cabodevilla AG
        • Sanchez-Caballero L
        • Nintou E
        • et al.
        Cell survival during complete nutrient deprivation depends on lipid droplet-fueled beta-oxidation of fatty acids.
        J Biol Chem. 2013; 288: 27777-27788
        • Molina AJ
        • Wikstrom JD
        • Stiles L
        • et al.
        Mitochondrial networking protects beta-cells from nutrient-induced apoptosis.
        Diabetes. 2009; 58: 2303-2315
        • Fan X
        • Hussien R
        • Brooks GA
        H2O2-induced mitochondrial fragmentation in C2C12 myocytes.
        Free Radic Biol Med. 2010; 49: 1646-1654
        • Bach D
        • Pich S
        • Soriano FX
        • et al.
        Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity.
        J Biol Chem. 2003; 278: 17190-17197
        • Pich S
        • Bach D
        • Briones P
        • et al.
        The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system.
        Hum Mol Genet. 2005; 14: 1405-1415
        • Chen H
        • Chomyn A
        • Chan DC
        Disruption of fusion results in mitochondrial heterogeneity and dysfunction.
        J Biol Chem. 2005; 280: 26185-26192
        • Buck MD
        • O'Sullivan D
        • Klein Geltink RI
        • et al.
        Mitochondrial dynamics controls T cell fate through metabolic programming.
        Cell. 2016; 166: 63-76
        • Zhang Z
        • Wakabayashi N
        • Wakabayashi J
        • et al.
        The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells.
        Mol Biol Cell. 2011; 22: 2235-2245
        • Cogliati S
        • Frezza C
        • Soriano ME
        • et al.
        Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency.
        Cell. 2013; 155: 160-171
        • Kulkarni SS
        • Joffraud M
        • Boutant M
        • et al.
        Mfn1 deficiency in the liver protects against diet-induced insulin resistance and enhances the hypoglycemic effect of metformin.
        Diabetes. 2016; 65: 3552-3560
        • Ishihara N
        • Eura Y
        • Mihara K
        Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity.
        J Cell Sci. 2004; 117: 6535-6546
        • Galloway CA
        • Lee H
        • Nejjar S
        • et al.
        Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress.
        Diabetes. 2012; 61: 2093-2104
        • Parone PA
        • Da Cruz S
        • Tondera D
        • et al.
        Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.
        PLoS One. 2008; 3: e3257
        • Zepeda R
        • Kuzmicic J
        • Parra V
        • et al.
        Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury.
        J Cardiovasc Pharmacol. 2014; 63: 477-487
        • Zhang H
        • Wang P
        • Bisetto S
        • et al.
        A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration.
        Cardiovasc Res. 2017; 113: 160-170
        • Itoh K
        • Nakamura K
        • Iijima M
        • Sesaki H
        Mitochondrial dynamics in neurodegeneration.
        Trends Cell Biol. 2013; 23: 64-71
        • Thomas KJ
        • Jacobson MR
        Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.
        PLoS One. 2012; 7: e45319
        • Zhao J
        • Zhang J
        • Yu M
        • et al.
        Mitochondrial dynamics regulates migration and invasion of breast cancer cells.
        Oncogene. 2013; 32: 4814-4824
        • Anello M
        • Lupi R
        • Spampinato D
        • et al.
        Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients.
        Diabetologia. 2005; 48: 282-289
        • Holmstrom MH
        • Iglesias-Gutierrez E
        • Zierath JR
        • Garcia-Roves PM
        Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes.
        Am J Physiol Endocrinol Metab. 2012; 302: E731-E739
        • Toledo FG
        • Menshikova EV
        • Ritov VB
        • et al.
        Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes.
        Diabetes. 2007; 56: 2142-2147
        • Liu R
        • Jin P
        • Yu L
        • et al.
        Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle.
        PLoS One. 2014; 9: e92810
        • Joseph AM
        • Joanisse DR
        • Baillot RG
        • Hood DA
        Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions.
        Exp Diabetes Res. 2012; 2012642038
        • Bach D
        • Naon D
        • Pich S
        • et al.
        Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6.
        Diabetes. 2005; 54: 2685-2693
        • Leduc-Gaudet JP
        • Reynaud O
        • Chabot F
        • et al.
        The impact of a short-term high-fat diet on mitochondrial respiration, reactive oxygen species production, and dynamics in oxidative and glycolytic skeletal muscles of young rats.
        Physiol Rep. 2018; 6
        • Wang L
        • Ishihara T
        • Ibayashi Y
        • et al.
        Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration.
        Diabetologia. 2015; 58: 2371-2380
        • Li J
        • Kanasaki M
        • Xu L
        • et al.
        A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus.
        Biochim Biophys Acta. 2018; 1862: 1547-1555
        • Mingrone G
        • Manco M
        • Calvani M
        • Castagneto M
        • Naon D
        • Zorzano A
        Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity.
        Diabetologia. 2005; 48: 2108-2114
        • Sacks J
        • Mulya A
        • Fealy CE
        • et al.
        Effect of Roux-en-Y gastric bypass on liver mitochondrial dynamics in a rat model of obesity.
        Physiol Rep. 2018; 6
        • Pereira RO
        • Tadinada SM
        • Zasadny FM
        • et al.
        OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.
        EMBO J. 2017; 36: 2126-2145
        • Zezina E
        • Snodgrass RG
        • Schreiber Y
        • et al.
        Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses.
        Biochim Biophys Acta. 2018; 1863: 433-446
        • Filippi BM
        • Abraham MA
        • Silva PN
        • et al.
        Dynamin-related protein 1-dependent mitochondrial fission changes in the dorsal vagal complex regulate insulin action.
        Cell Rep. 2017; 18: 2301-2309
        • Nie Q
        • Wang C
        • Song G
        • et al.
        Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells.
        Mol Biol Rep. 2014; 41: 6975-6983
        • Brownlee M
        Biochemistry and molecular cell biology of diabetic complications.
        Nature. 2001; 414: 813-820
        • Green K
        • Brand MD
        • Murphy MP
        Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes.
        Diabetes. 2004; 53: S110-S118
        • Anderson EJ
        • Lustig ME
        • Boyle KE
        • et al.
        Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans.
        J Clin Invest. 2009; 119: 573-581
        • Ghosh S
        • Lertwattanarak R
        • Lefort N
        • et al.
        Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance.
        Diabetes. 2011; 60: 2051-2060
        • Solomon TP
        • Haus JM
        • Marchetti CM
        • Stanley WC
        • Kirwan JP
        Effects of exercise training and diet on lipid kinetics during free fatty acid-induced insulin resistance in older obese humans with impaired glucose tolerance.
        Am J Physiol Endocrinol Metab. 2009; 297: E552-E559