Advertisement

Targeting mitochondria in cancer: current concepts and immunotherapy approaches

  • Sergey Pustylnikov
    Affiliations
    Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Francesca Costabile
    Affiliations
    Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Silvia Beghi
    Affiliations
    Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Andrea Facciabene
    Correspondence
    Reprint requests: Andrea Facciabene, University of Pennsylvania, Radiation Oncology, Ovarian Cancer Research Center, Smilow CTR, Room 8-133, 3400 Civic Center Blvd, Philadelphia, PA 19104.
    Affiliations
    Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

    Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
Published:August 01, 2018DOI:https://doi.org/10.1016/j.trsl.2018.07.013
      An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. Furthermore cancer cells can also modulate energy metabolism within the cancer microenvironment including immune cells and induce “metabolic anergy” of antitumor immune response. Classical approaches targeting the mitochondria of cancer cells usually aim at inducing changing energy metabolism or directly affecting functions of mitochondrial antiapoptotic proteins but most of such approaches miss the required specificity of action and carry important side effects. Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zong W-X
        • Rabinowitz JD
        • White E
        Mitochondria and cancer.
        Mol Cell. 2016; 61: 667-676
        • Wallace DC
        Mitochondria and cancer.
        Nat Rev Cancer. 2012; 12: 685-698
        • Arduíno DM
        • Esteves AR
        • Cardoso SM
        Mitochondrial fusion/fission, transport and autophagy in Parkinson's disease: when mitochondria get nasty.
        Parkinsons Dis. 2011; 2011767230
        • Mitchell P
        • Moyle J
        Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers.
        Biochem J. 1967; 104: 588-600
        • Finkel T
        • Holbrook NJ
        Oxidants, oxidative stress and the biology of ageing.
        Nature. 2000; 408: 239-247
      1. Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. 241–242

        • Hanahan D
        • Weinberg RA
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674
        • Warburg O
        On the origin of cancer cells.
        Science. 1956; 123: 309-314
        • Guppy M
        • Greiner E
        • Brand K
        The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes.
        Eur J Biochem. 1993; 212: 95-99
        • Vander Heiden MG
        • Cantley LC
        • Thompson CB
        Understanding the Warburg effect: the metabolic requirements of cell proliferation.
        Science. 2009; 324: 1029-1033
        • Liu VWS
        • Wang Y
        • Yang H-J
        • et al.
        Mitochondrial DNA variant 16189T>C is associated with susceptibility to endometrial cancer.
        Hum Mutat. 2003; 22: 173-174
        • Zhai K
        • Chang L
        • Zhang Q
        • Liu B
        • Wu Y
        Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection.
        Mitochondrion. 2011; 11: 559-563
        • Canter JA
        • Kallianpur AR
        • Parl FF
        • Millikan RC
        Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women.
        Cancer Res. 2005; 65: 8028-8033
        • Permuth-Wey J
        • Chen YA
        • Tsai Y-Y
        • et al.
        Inherited variants in mitochondrial biogenesis genes may influence epithelial ovarian cancer risk.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 1131-1145
        • Wallace DC
        • Fan W
        • Procaccio V
        Mitochondrial energetics and therapeutics.
        Annu Rev Pathol. 2010; 5: 297-348
        • Kurelac I
        • Romeo G
        • Gasparre G
        Mitochondrial metabolism and cancer.
        Mitochondrion. 2011; 11: 635-637
        • Bardella C
        • Pollard PJ
        • Tomlinson I
        SDH mutations in cancer.
        Biochim Biophys Acta. 2011; 1807: 1432-1443
        • Frezza C
        • Zheng L
        • Folger O
        • et al.
        Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase.
        Nature. 2011; 477: 225-228
        • Adam J
        • Hatipoglu E
        • O'Flaherty L
        • et al.
        Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling.
        Cancer Cell. 2011; 20: 524-537
        • Picaud S
        • Kavanagh KL
        • Yue WW
        • et al.
        Structural basis of fumarate hydratase deficiency.
        J Inherit Metab Dis. 2011; 34: 671-676
        • Koivunen P
        • Lee S
        • Duncan CG
        • et al.
        Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation.
        Nature. 2012; 483: 484-488
        • Figueroa ME
        • Lugthart S
        • Li Y
        • et al.
        DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia.
        Cancer Cell. 2010; 17: 13-27
        • Chowdhury R
        • Yeoh KK
        • Tian Y-M
        • et al.
        The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases.
        EMBO Rep. 2011; 12: 463-469
        • Turcan S
        • Rohle D
        • Goenka A
        • et al.
        IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype.
        Nature. 2012; 483: 479-483
        • Yoon JC
        • Ng A
        • Kim BH
        • Bianco A
        • Xavier RJ
        • Elledge SJ
        Wnt signaling regulates mitochondrial physiology and insulin sensitivity.
        Genes Dev. 2010; 24: 1507-1518
        • Brandon M
        • Baldi P
        • Wallace DC
        Mitochondrial mutations in cancer.
        Oncogene. 2006; 25: 4647-4662
        • Pavlides S
        • Whitaker-Menezes D
        • Castello-Cros R
        • et al.
        The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
        Cell Cycle. 2009; 8: 3984-4001
        • Mills EL
        • Kelly B
        • O'Neill LAJ
        Mitochondria are the powerhouses of immunity.
        Nat Immunol. 2017; 18: 488-498
        • Zhang L
        • Conejo-Garcia JR
        • Katsaros D
        • et al.
        Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.
        N Engl J Med. 2003; 348: 203-213
        • Erdag G
        • Schaefer JT
        • Smolkin ME
        • et al.
        Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma.
        Cancer Res. 2012; 72: 1070-1080
        • Gu-Trantien C
        • Loi S
        • Garaud S
        • et al.
        CD4+ follicular helper T cell infiltration predicts breast cancer survival.
        J Clin Invest. 2013; 123: 2873-2892
        • Scharping NE
        • Menk AV
        • Moreci RS
        • et al.
        The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction.
        Immunity. 2016; 45: 701-703
        • Schietinger A
        • Greenberg PD
        Tolerance and exhaustion: defining mechanisms of T cell dysfunction.
        Trends Immunol. 2014; 35: 51-60
        • Wherry EJ
        • Kurachi M
        Molecular and cellular insights into T cell exhaustion.
        Nat Rev Immunol. 2015; 15: 486-499
        • Jiang Y
        • Li Y
        • Zhu B
        T-cell exhaustion in the tumor microenvironment.
        Cell Death Dis. 2015; 6: e1792
        • Siska PJ
        • Rathmell JC
        T cell metabolic fitness in antitumor immunity.
        Trends Immunol. 2015; 36: 257-264
        • Fernandez-Marcos PJ
        • Auwerx J
        Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.
        Am J Clin Nutr. 2011; 93: 884S-890S
        • Shaw RJ
        • Cantley LC
        Ras, PI(3)K and mTOR signalling controls tumour cell growth.
        Nature. 2006; 441: 424-430
        • Crompton JG
        • Sukumar M
        • Roychoudhuri R
        • et al.
        Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics.
        Cancer Res. 2015; 75: 296-305
        • Jones RG
        • Thompson CB
        Tumor suppressors and cell metabolism: a recipe for cancer growth.
        Genes Dev. 2009; 23: 537-548
        • Pauken KE
        • Wherry EJ
        Overcoming T cell exhaustion in infection and cancer.
        Trends Immunol. 2015; 36: 265-276
        • Patsoukis N
        • Bardhan K
        • Chatterjee P
        • et al.
        PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation.
        Nat Commun. 2015; 6: 6692
        • Chuang E
        • Fisher TS
        • Morgan RW
        • et al.
        The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A.
        Immunity. 2000; 13: 313-322
        • Ron-Harel N
        • Santos D
        • Ghergurovich JM
        • et al.
        Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation.
        Cell Metab. 2016; 24: 104-117
        • Buck MD
        • O'Sullivan D
        • Klein Geltink RI
        • et al.
        Mitochondrial dynamics controls T cell fate through metabolic programming.
        Cell. 2016; 166: 63-76
        • Frank M
        • Duvezin-Caubet S
        • Koob S
        • et al.
        Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner.
        Biochim Biophys Acta. 2012; 1823: 2297-2310
        • Bird L
        T cells: Mitochondrial shape shifters.
        Nat Rev Immunol. 2016; 16: 402-403
        • Sena LA
        • Li S
        • Jairaman A
        • et al.
        Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling.
        Immunity. 2013; 38: 225-236
        • Gomes LC
        • Di Benedetto G
        • Scorrano L
        During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.
        Nat Cell Biol. 2011; 13: 589-598
        • Dang EV
        • Barbi J
        • Yang HY
        • et al.
        Control of T H 17/T reg balance by hypoxia-inducible factor 1.
        Cell. 2011; 146: 772-784
        • Lukashev D
        • Klebanov B
        • Kojima H
        • et al.
        Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes.
        J Immunol. 2006; 177: 4962-4965
        • Pearce EL
        • Pearce EJ
        Metabolic pathways in immune cell activation and quiescence.
        Immunity. 2013; 38: 633-643
        • Tannahill GM
        • Curtis AM
        • Adamik J
        • et al.
        Succinate is an inflammatory signal that induces IL-1β through HIF-1α.
        Nature. 2013; 496: 238-242
        • Mills EL
        • Kelly B
        • Logan A
        • et al.
        Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
        Cell. 2016; 167 (457-470.e13)
        • Tan Z
        • Xie N
        • Cui H
        • et al.
        Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism.
        J Immunol. 2015; 194: 6082-6089
        • Huang SC-C
        • Everts B
        • Ivanova Y
        • et al.
        Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages.
        Nat Immunol. 2014; 15: 846-855
        • Vats D
        • Mukundan L
        • Odegaard JI
        • et al.
        Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.
        Cell Metab. 2006; 4: 13-24
        • Namgaladze D
        • Lips S
        • Leiker TJ
        • et al.
        Inhibition of macrophage fatty acid β-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses.
        Diabetologia. 2014; 57: 1067-1077
        • Michalek RD
        • Gerriets VA
        • Jacobs SR
        • et al.
        Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.
        J Immunol. 2011; 186: 3299-3303
        • van der Windt GJW
        • Everts B
        • Chang C-H
        • et al.
        Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development.
        Immunity. 2012; 36: 68-78
        • Chistiakov DA
        • Orekhov AN
        • Sobenin IA
        • Bobryshev YV
        Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation.
        Front Physiol. 2014; 5: 279
        • Benn CS
        • Netea MG
        • Selin LK
        • Aaby P
        A small jab - a big effect: nonspecific immunomodulation by vaccines.
        Trends Immunol. 2013; 34: 431-439
        • Cline SD
        Mitochondrial DNA damage and its consequences for mitochondrial gene expression.
        Biochim Biophys Acta. 2012; 1819: 979-991
        • Birben E
        • Sahiner UM
        • Sackesen C
        • Erzurum S
        • Kalayci O
        Oxidative stress and antioxidant defense.
        World Allergy Organiz J. 2012; 5: 9-19
        • Alexeyev M
        • Shokolenko I
        • Wilson G
        • LeDoux S
        The maintenance of mitochondrial DNA integrity–critical analysis and update.
        Cold Spring Harb Perspect Biol. 2013; 5a012641
        • Akhmedov AT
        • Marín-García J
        Mitochondrial DNA maintenance: an appraisal.
        Mol Cell Biochem. 2015; 409: 283-305
        • McKinnon PJ
        • Caldecott KW
        DNA strand break repair and human genetic disease.
        Annu Rev Genomics Hum Genet. 2007; 8: 37-55
        • Moretton A
        • Morel F
        • Macao B
        • et al.
        Selective mitochondrial DNA degradation following double-strand breaks.
        PLoS One. 2017; 12e0176795
        • Jones E
        • Gaytan N
        • Garcia I
        • et al.
        A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1.
        Cell Mol Life Sci. 2017; 74: 1347-1363
        • Rossignol R
        • Faustin B
        • Rocher C
        • Malgat M
        • Mazat J-P
        • Letellier T
        Mitochondrial threshold effects.
        Biochem J. 2003; 370: 751-762
        • Szczepanowska K
        • Trifunovic A
        Origins of mtDNA mutations in ageing.
        Essays Biochem. 2017; 61: 325-337
        • Pinto M
        • Moraes CT
        Mechanisms linking mtDNA damage and aging.
        Free Radic Biol Med. 2015; 85: 250-258
        • Kennedy SR
        • Salk JJ
        • Schmitt MW
        • Loeb LA
        Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage.
        PLoS Genet. 2013; 9e1003794
        • Copeland WC
        • Longley MJ
        Mitochondrial genome maintenance in health and disease.
        DNA Repair. 2014; 19: 190-198
        • Jäger S
        • Handschin C
        • St-Pierre J
        • Spiegelman BM
        AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.
        Proc Natl Acad Sci USA. 2007; 104: 12017-12022
        • Ploumi C
        • Daskalaki I
        • Tavernarakis N
        Mitochondrial biogenesis and clearance: a balancing act.
        FEBS J. 2017; 284: 183-195
        • Palikaras K
        • Tavernarakis N
        Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis.
        Exp Gerontol. 2014; 56: 182-188
        • Xu J
        • Ji J
        • Yan X-H
        Cross-talk between AMPK and mTOR in regulating energy balance.
        Crit Rev Food Sci Nutr. 2012; 52: 373-381
        • Jovaisaite V
        • Mouchiroud L
        • Auwerx J
        The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease.
        J Exp Biol. 2014; 217: 137-143
        • Burman JL
        • Pickles S
        • Wang C
        • et al.
        Mitochondrial fission facilitates the selective mitophagy of protein aggregates.
        J Cell Biol. 2017; 216: 3231-3247
        • Ni H-M
        • Williams JA
        • Ding W-X
        Mitochondrial dynamics and mitochondrial quality control.
        Redox Biol. 2015; 4: 6-13
        • Soubannier V
        • McLelland G-L
        • Zunino R
        • et al.
        A vesicular transport pathway shuttles cargo from mitochondria to lysosomes.
        Curr Biol. 2012; 22: 135-141
        • McLelland GL
        • Fon EA
        Principles of mitochondrial vesicle transport.
        Curr Opin Physiol. 2018; 3: 25-33
        • Westermann B
        Mitochondrial fusion and fission in cell life and death.
        Nat Rev Mol Cell Biol. 2010; 11: 872-884
        • Youle RJ
        • Narendra DP
        Mechanisms of mitophagy.
        Nat Rev Mol Cell Biol. 2011; 12: 9-14
        • Steffen J
        • Koehler CM
        ER-mitochondria contacts: actin dynamics at the ER control mitochondrial fission via calcium release.
        J Cell Biol. 2018; 217: 15-17
        • Lee JE
        • Westrate LM
        • Wu H
        • Page C
        • Voeltz GK
        Multiple dynamin family members collaborate to drive mitochondrial division.
        Nature. 2016; 540: 139-143
        • Hu C
        • Huang Y
        • Li L
        Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals.
        Int J Mol Sci. 2017; https://doi.org/10.3390/ijms18010144
        • Williams JA
        • Ding W-X
        Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights.
        Biol Chem. 2018; 399: 147-178
        • Jin SM
        • Lazarou M
        • Wang C
        • Kane LA
        • Narendra DP
        • Youle RJ
        Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.
        J Cell Biol. 2010; 191: 933-942
        • Pickrell AM
        • Youle RJ
        The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
        Neuron. 2015; 85: 257-273
        • Rasool S
        • Soya N
        • Truong L
        • Croteau N
        • Lukacs GL
        • Trempe J-F
        PINK1 autophosphorylation is required for ubiquitin recognition.
        EMBO Rep. 2018; https://doi.org/10.15252/embr.201744981
        • Okatsu K
        • Koyano F
        • Kimura M
        • et al.
        Phosphorylated ubiquitin chain is the genuine Parkin receptor.
        J Cell Biol. 2015; 209: 111-128
        • Lazarou M
        • Sliter DA
        • Kane LA
        • et al.
        The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.
        Nature. 2015; 524: 309-314
        • Kwon YT
        • Ciechanover A
        The ubiquitin code in the ubiquitin-proteasome system and autophagy.
        Trends Biochem Sci. 2017; 42: 873-886
        • Tanida I
        • Ueno T
        • Kominami E
        LC3 and autophagy.
        Methods Mol Biol. 2008; 445: 77-88
        • Gong Y
        • Zack TI
        • Morris LGT
        • et al.
        Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins.
        Nat Genet. 2014; 46: 588-594
        • Veeriah S
        • Taylor BS
        • Meng S
        • et al.
        Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies.
        Nat Genet. 2010; 42: 77-82
        • Morris LG
        • Veeriah S
        • Chan TA
        Genetic determinants at the interface of cancer and neurodegenerative disease.
        Oncogene. 2010; 29
        • Fujiwara M
        • Marusawa H
        • Wang HQ
        • et al.
        Parkin as a tumor suppressor gene for hepatocellular carcinoma.
        Oncogene. 2008; 27: 6002-6011
        • Lin D-C
        • Xu L
        • Chen Y
        • et al.
        Genomic and functional analysis of the E3 ligase PARK2 in glioma.
        Cancer Res. 2015; 75: 1815-1827
        • Xu L
        • Lin D
        • Yin D
        • Koeffler HP
        An emerging role of PARK2 in cancer.
        J Mol Med. 2014; 92: 31-42
        • Ribatti D
        The concept of immune surveillance against tumors. The first theories.
        Oncotarget. 2017; 8: 7175-7180
        • Arnoult D
        • Soares F
        • Tattoli I
        • Girardin SE
        Mitochondria in innate immunity.
        EMBO Rep. 2011; 12: 901-910
        • West AP
        • Shadel GS
        Mitochondrial DNA in innate immune responses and inflammatory pathology.
        Nat Rev Immunol. 2017; 17: 363-375
        • Matheoud D
        • Sugiura A
        • Bellemare-Pelletier A
        • et al.
        Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation.
        Cell. 2016; 166: 314-327
        • Zhang Q
        • Raoof M
        • Chen Y
        • et al.
        Circulating mitochondrial DAMPs cause inflammatory responses to injury.
        Nature. 2010; 464: 104-107
        • Galluzzi L
        • Kepp O
        • Kroemer G
        Mitochondria: master regulators of danger signalling.
        Nat Rev Mol Cell Biol. 2012; 13: 780-788
        • Xu MM
        • Pu Y
        • Han D
        • et al.
        Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling.
        Immunity. 2017; 47 (e5): 363-373
        • Ingelsson B
        • Söderberg D
        • Strid T
        • et al.
        Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C.
        Proc Natl Acad Sci USA. 2018; 115: E478-E487
        • Wang L
        • Liebmen MN
        • Wang X
        Roles of mitochondrial DNA signaling in immune responses.
        Adv Exp Med Biol. 2017; 1038: 39-53
        • Gu Y
        • Wang C
        • Roifman CM
        • Cohen A
        Role of MHC class I in immune surveillance of mitochondrial DNA integrity.
        J Immunol. 2003; 170: 3603-3607
        • Chen L
        • Duvvuri B
        • Grigull J
        • Jamnik R
        • Wither JE
        • Wu GE
        Experimental evidence that mutated-self peptides derived from mitochondrial DNA somatic mutations have the potential to trigger autoimmunity.
        Hum Immunol. 2014; 75: 873-879
        • Duvvuri B
        • Duvvuri VR
        • Wang C
        • et al.
        The human immune system recognizes neopeptides derived from mitochondrial DNA deletions.
        J Immunol. 2014; 192: 4581-4591
        • Oliveira CC
        • van Hall T
        Alternative antigen processing for MHC class I: multiple roads lead to rome.
        Front Immunol. 2015; 6: 298
        • Münz C
        Autophagy proteins in antigen processing for presentation on MHC molecules.
        Immunol Rev. 2016; 272: 17-27
        • Carew JS
        • Huang P
        Mitochondrial defects in cancer.
        Mol Cancer. 2002; 1: 9
        • Ubah OC
        • Wallace HM
        Cancer therapy: Targeting mitochondria and other sub-cellular organelles.
        Curr Pharm Des. 2014; 20: 201-222
        • Weinberg SE
        • Chandel NS
        Targeting mitochondria metabolism for cancer therapy.
        Nat Chem Biol. 2015; 11: 9-15
        • Marchetti P
        • Guerreschi P
        • Mortier L
        • Kluza J
        Integration of mitochondrial targeting for molecular cancer therapeutics.
        Int J Cell Biol. 2015; 2015283145
        • Fulda S
        • Galluzzi L
        • Kroemer G
        Targeting mitochondria for cancer therapy.
        Nat Rev Drug Discov. 2010; 9: 447-464
        • Tan AS
        • Baty JW
        • Dong L-F
        • et al.
        Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.
        Cell Metab. 2015; 21: 81-94
        • Ganapathy-Kanniappan S
        • Geschwind J-FH
        Tumor glycolysis as a target for cancer therapy: progress and prospects.
        Mol Cancer. 2013; 12: 152
        • Zhao Y
        • Butler EB
        • Tan M
        Targeting cellular metabolism to improve cancer therapeutics.
        Cell Death Dis. 2013; 4: e532
        • Liu Y
        • Cao Y
        • Zhang W
        • et al.
        A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo.
        Mol Cancer Ther. 2012; 11: 1672-1682
        • Simons AL
        • Ahmad IM
        • Mattson DM
        • Dornfeld KJ
        • Spitz DR
        2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells.
        Cancer Res. 2007; 67: 3364-3370
        • Dunbar EM
        • Coats BS
        • Shroads AL
        • et al.
        Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors.
        Invest New Drugs. 2014; 32: 452-464
        • Hawley SA
        • Gadalla AE
        • Olsen GS
        • Hardie DG
        The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism.
        Diabetes. 2002; 51: 2420-2425
        • Owen MR
        • Doran E
        • Halestrap AP
        Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.
        Biochem J. 2000; 348: 607-614
        • Evans JMM
        • Donnelly LA
        • Emslie-Smith AM
        • Alessi DR
        • Morris AD
        Metformin and reduced risk of cancer in diabetic patients.
        BMJ. 2005; 330: 1304-1305
        • Kasznicki J
        • Sliwinska A
        • Drzewoski J
        Metformin in cancer prevention and therapy.
        Ann Transl Med. 2014; 2: 57
        • Birsoy K
        • Sabatini DM
        • Possemato R
        Untuning the tumor metabolic machine: Targeting cancer metabolism: a bedside lesson.
        Nat Med. 2012; 18: 1022-1023
        • Pollak M
        The insulin and insulin-like growth factor receptor family in neoplasia: an update.
        Nat Rev Cancer. 2012; 12: 159-169
        • Bridges HR
        • Jones AJY
        • Pollak MN
        • Hirst J
        Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria.
        Biochem J. 2014; 462: 475-487
        • Hardie DG
        AMPK: a target for drugs and natural products with effects on both diabetes and cancer.
        Diabetes. 2013; 62: 2164-2172
        • Mallik R
        • Chowdhury TA
        Metformin in cancer.
        Diabetes Res Clin Pract. 2018; https://doi.org/10.1016/j.diabres.2018.05.023
        • Nogueira V
        • Hay N
        Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy.
        Clin Cancer Res. 2013; 19: 4309-4314
        • Weinberg F
        • Hamanaka R
        • Wheaton WW
        • et al.
        Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
        Proc Natl Acad Sci USA. 2010; 107: 8788-8793
        • Porporato PE
        • Filigheddu N
        • Pedro JMB-S
        • Kroemer G
        • Galluzzi L
        Mitochondrial metabolism and cancer.
        Cell Res. 2018; 28: 265-280
        • Kirshner JR
        • He S
        • Balasubramanyam V
        • et al.
        Elesclomol induces cancer cell apoptosis through oxidative stress.
        Mol Cancer Ther. 2008; 7: 2319-2327
        • Berkenblit A
        • Eder JP
        • Ryan DP
        • et al.
        Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors.
        Clin Cancer Res. 2007; 13: 584-590
        • O'Day S
        • Gonzalez R
        • Lawson D
        • et al.
        Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma.
        J Clin Oncol. 2009; 27: 5452-5458
        • Xiao D
        • Powolny AA
        • Moura MB
        • et al.
        Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells.
        J Biol Chem. 2010; 285: 26558-26569
        • Chan DK
        • Miskimins WK
        Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures.
        J Ovarian Res. 2012; 5: 19
        • Kroemer G
        • Galluzzi L
        • Brenner C
        Mitochondrial membrane permeabilization in cell death.
        Physiol Rev. 2007; 87: 99-163
        • Bernardi P
        • Di Lisa F
        The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection.
        J Mol Cell Cardiol. 2015; 78: 100-106
        • Belzacq AS
        • El Hamel C
        • Vieira HL
        • et al.
        Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437.
        Oncogene. 2001; 20: 7579-7587
        • Guo L
        • Shestov AA
        • Worth AJ
        • et al.
        Inhibition of mitochondrial complex II by the anticancer agent lonidamine.
        J Biol Chem. 2016; 291: 42-57
        • Oudard S
        • Carpentier A
        • Banu E
        • et al.
        Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme.
        J Neurooncol. 2003; 63: 81-86
        • Horsley L
        • Cummings J
        • Middleton M
        • et al.
        A phase 1 trial of intravenous 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide (GSAO) in patients with advanced solid tumours.
        Cancer Chemother Pharmacol. 2013; 72: 1343-1352
        • Park D
        • Chiu J
        • Perrone GG
        • Dilda PJ
        • Hogg PJ
        The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase.
        Cancer Cell Int. 2012; 12: 11
      2. First-in-man trial of 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid (PENAO) as a continuous intravenous infusion (CIVI), in patients (pt) with advanced solid tumours. J Clin Oncol: Vol 34, No 15_suppl.

        • Pavlov EV
        • Priault M
        • Pietkiewicz D
        • et al.
        A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast.
        J Cell Biol. 2001; 155: 725-731
        • Rooswinkel RW
        • van de Kooij B
        • Verheij M
        • Borst J
        Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B.
        Cell Death Dis. 2012; 3: e366
        • Reshi L
        • Wang H-V
        • Hui C-F
        • Su Y-C
        • Hong J-R
        Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells.
        Fish Shellfish Immunol. 2017; 61: 120-129
        • Oltersdorf T
        • Elmore SW
        • Shoemaker AR
        • et al.
        An inhibitor of Bcl-2 family proteins induces regression of solid tumours.
        Nature. 2005; 435: 677-681
        • Konopleva M
        • Contractor R
        • Tsao T
        • et al.
        Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia.
        Cancer Cell. 2006; 10: 375-388
        • Kang MH
        • Kang YH
        • Szymanska B
        • et al.
        Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo.
        Blood. 2007; 110: 2057-2066
        • Hann CL
        • Daniel VC
        • Sugar EA
        • et al.
        Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer.
        Cancer Res. 2008; 68: 2321-2328
        • Tagscherer KE
        • Fassl A
        • Campos B
        • et al.
        Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins.
        Oncogene. 2008; 27: 6646-6656
        • Tse C
        • Shoemaker AR
        • Adickes J
        • et al.
        ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor.
        Cancer Res. 2008; 68: 3421-3428
        • Lock R
        • Carol H
        • Houghton PJ
        • et al.
        Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program.
        Pediatr Blood Cancer. 2008; 50: 1181-1189
        • Gandhi L
        • Camidge DR
        • Ribeiro de Oliveira M
        • et al.
        Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors.
        J Clin Oncol. 2011; 29: 909-916
        • Rudin CM
        • Hann CL
        • Garon EB
        • et al.
        Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer.
        Clin Cancer Res. 2012; 18: 3163-3169
        • Azmi AS
        • Mohammad RM
        Non-peptidic small molecule inhibitors against Bcl-2 for cancer therapy.
        J Cell Physiol. 2009; 218: 13-21
        • Liu G
        • Kelly WK
        • Wilding G
        • Leopold L
        • Brill K
        • Somer B
        An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer.
        Clin Cancer Res. 2009; 15: 3172-3176
        • Kitada S
        • Kress CL
        • Krajewska M
        • Jia L
        • Pellecchia M
        • Reed JC
        Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048).
        Blood. 2008; 111: 3211-3219
        • Murphy MP
        Selective targeting of bioactive compounds to mitochondria.
        Trends Biotechnol. 1997; 15: 326-330
        • Ross MF
        • Filipovska A
        • Smith RAJ
        • Gait MJ
        • Murphy MP
        Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers.
        Biochem J. 2004; 383: 457-468
        • Kelso GF
        • Porteous CM
        • Coulter CV
        • et al.
        Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties.
        J Biol Chem. 2001; 276: 4588-4596
        • Mukhopadhyay A
        • Ni L
        • Yang CS
        • Weiner H
        Bacterial signal peptide recognizes HeLa cell mitochondrial import receptors and functions as a mitochondrial leader sequence.
        Cell Mol Life Sci. 2005; 62: 1890-1899
        • Vestweber D
        • Schatz G
        DNA-protein conjugates can enter mitochondria via the protein import pathway.
        Nature. 1989; 338: 170-172
        • Yousif LF
        • Stewart KM
        • Kelley SO
        Targeting mitochondria with organelle-specific compounds: strategies and applications.
        Chembiochem. 2009; 10: 1939-1950
        • Yousif LF
        • Stewart KM
        • Horton KL
        • Kelley SO
        Mitochondria-penetrating peptides: sequence effects and model cargo transport.
        Chembiochem. 2009; 10: 2081-2088
        • Horton KL
        • Stewart KM
        • Fonseca SB
        • Guo Q
        • Kelley SO
        Mitochondria-penetrating peptides.
        Chem Biol. 2008; 15: 375-382
        • Lu P
        • Bruno BJ
        • Rabenau M
        • Lim CS
        Delivery of drugs and macromolecules to the mitochondria for cancer therapy.
        J Control Release. 2016; 240: 38-51
        • Fliss MS
        • Usadel H
        • Caballero OL
        • et al.
        Facile detection of mitochondrial DNA mutations in tumors and bodily fluids.
        Science. 2000; 287: 2017-2019
        • Chatterjee A
        • Mambo E
        • Sidransky D
        Mitochondrial DNA mutations in human cancer.
        Oncogene. 2006; 25: 4663-4674
        • Voo KS
        • Zeng G
        • Mu J-B
        • Zhou J
        • Su X-Z
        • Wang R-F
        CD4+ T-cell response to mitochondrial cytochrome B in human melanoma.
        Cancer Res. 2006; 66: 5919-5926
        • Hernandez DG
        • Reed X
        • Singleton AB
        Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance.
        J Neurochem. 2016; 139: 59-74
        • Gao F
        • Yang J
        • Wang D
        • et al.
        Mitophagy in parkinson's disease: pathogenic and therapeutic implications.
        Front Neurol. 2017; 8: 527
        • Yang B
        • Jeang J
        • Yang A
        • Wu TC
        • Hung C-F
        DNA vaccine for cancer immunotherapy.
        Hum Vaccin Immunother. 2014; 10: 3153-3164
        • Pierini S
        • Fang C
        • Rafail S
        • et al.
        A tumor mitochondria vaccine protects against experimental renal cell carcinoma.
        J Immunol. 2015; 195: 4020-4027