Advertisement

Mitochondria in innate immune signaling

Published:August 06, 2018DOI:https://doi.org/10.1016/j.trsl.2018.07.014
      Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.

      Abbrevations

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Archibald JM.
        Endosymbiosis and eukaryotic cell evolution.
        Curr Biol. 2015; 25: R911-R921
        • Martin WF
        • Garg S
        • Zimorski V
        Endosymbiotic theories for eukaryote origin.
        Philos Trans R Soc Lond B Biol Sci. 2015; 37020140330
        • Ryan MT
        • Hoogenraad NJ
        Mitochondrial-nuclear communications.
        Annu Rev Biochem. 2007; 76: 701-722
        • Bonawitz ND
        • Clayton DA
        • Shadel GS
        Initiation and beyond: multiple functions of the human mitochondrial transcription machinery.
        Mol Cell. 2006; 24: 813-825
        • Bereiter-Hahn J
        Behavior of mitochondria in the living cell.
        Int Rev Cytol. 1990; 122: 1-63
        • Nunnari J
        • Marshall WF
        • Straight A
        • Murray A
        • Sedat JW
        • Walter P
        Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA.
        Mol Biol Cell. 1997; 8: 1233-1242
        • Vafai SB
        • Mootha VK
        Mitochondrial disorders as windows into an ancient organelle.
        Nature. 2012; 491: 374-383
        • Berry BJ
        • Trewin AJ
        • Amitrano AM
        • Kim M
        • Wojtovich AP
        Use the protonmotive force: Mitochondrial uncoupling and reactive oxygen species.
        J Mol Biol. 2018;
        • Kanaan GN
        • Harper ME
        Cellular redox dysfunction in the development of cardiovascular diseases.
        Biochim Biophys Acta. 2017; 1861: 2822-2829
        • Nakahira K
        • Hisata S
        • Choi AM
        The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases.
        Antioxid Redox Signal. 2015; 23: 1329-1350
        • Youle RJ
        • van der Bliek AM
        Mitochondrial fission, fusion, and stress.
        Science. 2012; 337: 1062-1065
        • Janeway Jr., CA
        • Medzhitov R.
        Innate immune recognition.
        Annu Rev Immunol. 2002; 20: 197-216
        • Medzhitov R.
        Innate immunity: quo vadis.
        Nat Immunol. 2010; 11: 551-553
        • Iwasaki A
        • Medzhitov R.
        Regulation of adaptive immunity by the innate immune system.
        Science. 2010; 327: 291-295
        • Iwasaki A
        • Medzhitov R
        Control of adaptive immunity by the innate immune system.
        Nat Immunol. 2015; 16: 343-353
        • Antonelli M
        • Kushner I
        It's time to redefine inflammation.
        FASEB J. 2017; 31: 1787-1791
        • Manthiram K
        • Zhou Q
        • Aksentijevich I
        • Kastner DL
        The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation.
        Nat Immunol. 2017; 18: 832-842
        • Slaats J
        • Ten Oever J
        • van de Veerdonk FL
        • Netea MG
        IL-1beta/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections.
        PLoS Pathog. 2016; 12e1005973
        • Bernardi P.
        The mitochondrial permeability transition pore: a mystery solved.
        Front Physiol. 2013; 4: 95
        • Kalkavan H
        • Green DR
        MOMP, cell suicide as a BCL-2 family business.
        Cell Death Differ. 2018; 25: 46-55
        • Hunter Jr., FE
        • Ford L
        Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions.
        J Biol Chem. 1955; 216: 357-369
        • Izzo V
        • Bravo-San Pedro JM
        • Sica V
        • Kroemer G
        • Galluzzi L
        Mitochondrial permeability transition: new findings and persisting uncertainties.
        Trends Cell Biol. 2016; 26: 655-667
        • Czabotar PE
        • Lessene G
        • Strasser A
        • Adams JM
        Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.
        Nat Rev Mol Cell Biol. 2014; 15: 49-63
        • McArthur K
        • Whitehead LW
        • Heddleston JM
        • et al.
        BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis.
        Science. 2018; 359
        • Tait SW
        • Parsons MJ
        • Llambi F
        • et al.
        Resistance to caspase-independent cell death requires persistence of intact mitochondria.
        Dev Cell. 2010; 18: 802-813
        • Spencer AC
        • Spremulli LL
        Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA.
        Nucleic Acids Res. 2004; 32: 5464-5470
        • Schiffmann E
        • Corcoran BA
        • Wahl SM
        N-formylmethionyl peptides as chemoattractants for leucocytes.
        Proc Natl Acad Sci USA. 1975; 72: 1059-1062
        • Carp H
        Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils.
        J Exp Med. 1982; 155: 264-275
        • Wenceslau CF
        • McCarthy CG
        • Goulopoulou S
        • Szasz T
        • NeSmith EG
        • Webb RC
        Mitochondrial-derived N-formyl peptides: novel links between trauma, vascular collapse and sepsis.
        Med Hypotheses. 2013; 81: 532-535
        • Wenceslau CF
        • McCarthy CG
        • Webb RC
        Formyl peptide receptor activation elicits endothelial cell contraction and vascular leakage.
        Front Immunol. 2016; 7: 297
        • Dorward DA
        • Lucas CD
        • Doherty MK
        • et al.
        Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome.
        Thorax. 2017; 72: 928-936
        • Ren M
        • Phoon CK
        • Schlame M
        Metabolism and function of mitochondrial cardiolipin.
        Prog Lipid Res. 2014; 55: 1-16
        • Shen Z
        • Ye C
        • McCain K
        • Greenberg ML
        The role of cardiolipin in cardiovascular health.
        Biomed Res Int. 2015; 2015891707
        • Gebert N
        • Joshi AS
        • Kutik S
        • et al.
        Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome.
        Curr Biol. 2009; 19: 2133-2139
        • Schlame M
        • Greenberg ML
        Biosynthesis, remodeling and turnover of mitochondrial cardiolipin.
        Biochim Biophys Acta. 2017; 1862: 3-7
        • Tatsuta T
        • Langer T
        Intramitochondrial phospholipid trafficking.
        Biochim Biophys Acta. 2017; 1862: 81-89
        • Schlame M
        • Ren M
        The role of cardiolipin in the structural organization of mitochondrial membranes.
        Biochim Biophys Acta. 2009; 1788: 2080-2083
        • Dudek J
        Role of cardiolipin in mitochondrial signaling pathways.
        Front Cell Dev Biol. 2017; 5: 90
        • Elliott EI
        • Sutterwala FS
        Initiation and perpetuation of NLRP3 inflammasome activation and assembly.
        Immunol Rev. 2015; 265: 35-52
        • Iyer SS
        • He Q
        • Janczy JR
        • et al.
        Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation.
        Immunity. 2013; 39: 311-323
        • Toksoy A
        • Sennefelder H
        • Adam C
        • et al.
        Potent NLRP3 inflammasome activation by the HIV reverse transcriptase inhibitor Abacavir.
        J Biol Chem. 2017; 292: 2805-2814
        • Rossen RD
        • Michael LH
        • Hawkins HK
        • et al.
        Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion.
        Circ Res. 1994; 75: 546-555
        • Chu CT
        • Ji J
        • Dagda RK
        • et al.
        Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells.
        Nat Cell Biol. 2013; 15: 1197-1205
        • Balasubramanian K
        • Maeda A
        • Lee JS
        • et al.
        Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity.
        Sci Signal. 2015; 8: ra95
        • Thorslund T
        • Sunesen M
        • Bohr VA
        • Stevnsner T
        Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias.
        DNA Repair (Amst). 2002; 1: 261-273
        • Alexeyev M
        • Shokolenko I
        • Wilson G
        • LeDoux S
        The maintenance of mitochondrial DNA integrity—critical analysis and update.
        Cold Spring Harb Perspect Biol. 2013; 5a012641
        • Collins LV
        • Hajizadeh S
        • Holme E
        • Jonsson IM
        • Tarkowski A
        Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses.
        J Leukoc Biol. 2004; 75: 995-1000
        • Hauser CJ
        • Sursal T
        • Rodriguez EK
        • Appleton PT
        • Zhang Q
        • Itagaki K
        Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase.
        J Orthop Trauma. 2010; 24: 534-538
        • Zhang Q
        • Raoof M
        • Chen Y
        • et al.
        Circulating mitochondrial DAMPs cause inflammatory responses to injury.
        Nature. 2010; 464: 104-107
        • Zhang Q
        • Itagaki K
        • Hauser CJ
        Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase.
        Shock. 2010; 34: 55-59
        • Rodero MP
        • Crow YJ
        Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview.
        J Exp Med. 2016; 213: 2527-2538
        • West AP
        • Shadel GS
        • Ghosh S
        Mitochondria in innate immune responses.
        Nat Rev Immunol. 2011; 11: 389-402
        • Kroller-Schon S
        • Steven S
        • Kossmann S
        • et al.
        Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models.
        Antioxid Redox Signal. 2014; 20: 247-266
        • Lambeth JD
        NOX enzymes and the biology of reactive oxygen.
        Nat Rev Immunol. 2004; 4: 181-189
        • West AP
        • Brodsky IE
        • Rahner C
        • et al.
        TLR signalling augments macrophage bactericidal activity through mitochondrial ROS.
        Nature. 2011; 472: 476-U543
        • Brunelle JK
        • Bell EL
        • Quesada NM
        • et al.
        Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.
        Cell Metab. 2005; 1: 409-414
        • Chandel NS
        • Trzyna WC
        • McClintock DS
        • Schumacker PT
        Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin.
        J Immunol. 2000; 165: 1013-1021
        • Gottfredsen RH
        • Goldstrohm DA
        • Hartney JM
        • Larsen UG
        • Bowler RP
        • Petersen SV
        The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the naturally occurring R213G substitution.
        Free Radic Biol Med. 2014; 69: 348-356
        • Karnati S
        • Luers G
        • Pfreimer S
        • Baumgart-Vogt E
        Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes.
        Histochem Cell Biol. 2013; 140: 105-117
        • Kawamata H
        • Manfredi G
        Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.
        Antioxid Redox Signal. 2010; 13: 1375-1384
        • Vozza A
        • Parisi G
        • De Leonardis F
        • et al.
        UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation.
        Proc Natl Acad Sci USA. 2014; 111: 960-965
        • Lupfer C
        • Thomas PG
        • Anand PK
        • et al.
        Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection.
        Nat Immunol. 2013; 14: 480-488
        • Iyer SS
        • Pulskens WP
        • Sadler JJ
        • et al.
        Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome.
        Proc Natl Acad Sci USA. 2009; 106: 20388-20393
        • Elliott MR
        • Chekeni FB
        • Trampont PC
        • et al.
        Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance.
        Nature. 2009; 461: 282-286
        • Kang D
        • Kim SH
        • Hamasaki N
        Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions.
        Mitochondrion. 2007; 7: 39-44
        • Chaung WW
        • Wu R
        • Ji Y
        • Dong W
        • Wang P
        Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock.
        Int J Mol Med. 2012; 30: 199-203
        • Julian MW
        • Shao G
        • Vangundy ZC
        • Papenfuss TL
        • Crouser ED
        Mitochondrial transcription factor A, an endogenous danger signal, promotes TNFalpha release via RAGE- and TLR9-responsive plasmacytoid dendritic cells.
        PLoS One. 2013; 8: e72354
        • West AP
        • Shadel GS
        Mitochondrial DNA in innate immune responses and inflammatory pathology.
        Nat Rev Immunol. 2017; 17: 363-375
        • Kumar H
        • Kawai T
        • Akira S
        Pathogen recognition by the innate immune system.
        Int Rev Immunol. 2011; 30: 16-34
        • Carneiro FRG
        • Lepelley A
        • Seeley JJ
        • Hayden MS
        • Ghosh S
        An essential role for ECSIT in mitochondrial complex i assembly and mitophagy in macrophages.
        Cell Rep. 2018; 22: 2654-2666
        • Schreck R
        • Rieber P
        • Baeuerle PA
        Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1.
        EMBO J. 1991; 10: 2247-2258
        • Matsuzawa A
        • Saegusa K
        • Noguchi T
        • et al.
        ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity.
        Nat Immunol. 2005; 6: 587-592
        • Wi SM
        • Moon G
        • Kim J
        • et al.
        TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-kappaB.
        J Biol Chem. 2014; 289: 35205-35214
        • Shi HX
        • Liu X
        • Wang Q
        • et al.
        Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action.
        PLoS Pathog. 2011; 7e1002057
        • Suliman HB
        • Welty-Wolf KE
        • Carraway MS
        • Schwartz DA
        • Hollingsworth JW
        • Piantadosi CA
        Toll-like receptor 4 mediates mitochondrial DNA damage and biogenic responses after heat-inactivated E. coli..
        FASEB J. 2005; 19: 1531-1533
        • Sweeney TE
        • Suliman HB
        • Hollingsworth JW
        • Piantadosi CA
        Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis.
        PLoS One. 2010; 5: e11606
        • Suliman HB
        • Sweeney TE
        • Withers CM
        • Piantadosi CA
        Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis.
        J Cell Sci. 2010; 123: 2565-2575
        • Sweeney TE
        • Suliman HB
        • Hollingsworth JW
        • Welty-Wolf KE
        • Piantadosi CA
        A toll-like receptor 2 pathway regulates the Ppargc1a/b metabolic co-activators in mice with Staphylococcal aureus sepsis.
        PLoS One. 2011; 6: e25249
        • Shi J
        • Zhao Y
        • Wang K
        • et al.
        Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
        Nature. 2015; 526: 660-665
        • Kayagaki N
        • Stowe IB
        • Lee BL
        • et al.
        Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
        Nature. 2015; 526: 666-671
        • Hoffman HM
        • Mueller JL
        • Broide DH
        • Wanderer AA
        • Kolodner RD
        Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome.
        Nat Genet. 2001; 29: 301-305
        • Aganna E
        • Martinon F
        • Hawkins PN
        • et al.
        Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis.
        Arthritis Rheum. 2002; 46: 2445-2452
        • Aksentijevich I
        • Nowak M
        • Mallah M
        • et al.
        De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases.
        Arthritis Rheum. 2002; 46: 3340-3348
        • Guarda G
        • Zenger M
        • Yazdi AS
        • et al.
        Differential expression of NLRP3 among hematopoietic cells.
        J Immunol. 2011; 186: 2529-2534
        • Bauernfeind FG
        • Horvath G
        • Stutz A
        • et al.
        Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression.
        J Immunol. 2009; 183: 787-791
        • Franchi L
        • Eigenbrod T
        • Nunez G
        Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation.
        J Immunol. 2009; 183: 792-796
        • Juliana C
        • Fernandes-Alnemri T
        • Kang S
        • Farias A
        • Qin F
        • Alnemri ES
        Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation.
        J Biol Chem. 2012; 287: 36617-36622
        • Schroder K
        • Sagulenko V
        • Zamoshnikova A
        • et al.
        Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction.
        Immunobiology. 2012; 217: 1325-1329
        • Py BF
        • Kim MS
        • Vakifahmetoglu-Norberg H
        • Yuan J
        Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity.
        Mol Cell. 2013; 49: 331-338
        • Stutz A
        • Kolbe CC
        • Stahl R
        • et al.
        NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain.
        J Exp Med. 2017; 214: 1725-1736
        • Song N
        • Liu ZS
        • Xue W
        • et al.
        NLRP3 Phosphorylation Is an Essential Priming Event for Inflammasome Activation.
        Mol Cell. 2017; 68 (185-97.e6)
        • Hara H
        • Tsuchiya K
        • Kawamura I
        • et al.
        Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity.
        Nat Immunol. 2013; 14: 1247-1255
        • Lopez-Castejon G
        • Luheshi NM
        • Compan V
        • et al.
        Deubiquitinases regulate the activity of caspase-1 and interleukin-1beta secretion via assembly of the inflammasome.
        J Biol Chem. 2013; 288: 2721-2733
        • Rodgers MA
        • Bowman JW
        • Fujita H
        • et al.
        The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation.
        J Exp Med. 2014; 211: 1333-1347
        • Weng L
        • Mitoma H
        • Trichot C
        • et al.
        The E3 ubiquitin ligase tripartite motif 33 is essential for cytosolic RNA-induced NLRP3 inflammasome activation.
        J Immunol. 2014; 193: 3676-3682
        • Zhou R
        • Yazdi AS
        • Menu P
        • Tschopp J
        A role for mitochondria in NLRP3 inflammasome activation.
        Nature. 2011; 469: 221-225
        • Elliott EI
        • Miller AN
        • Banoth B
        • et al.
        Cutting edge: mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming.
        J Immunol. 2018;
        • Subramanian N
        • Natarajan K
        • Clatworthy MR
        • Wang Z
        • Germain RN
        The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation.
        Cell. 2013; 153: 348-361
        • Park S
        • Juliana C
        • Hong S
        • et al.
        The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity.
        J Immunol. 2013; 191: 4358-4366
        • Wu YH
        • Kuo WC
        • Wu YJ
        • et al.
        Participation of c-FLIP in NLRP3 and AIM2 inflammasome activation.
        Cell Death Differ. 2014; 21: 451-461
        • Nakahira K
        • Haspel JA
        • Rathinam VA
        • et al.
        Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome.
        Nat Immunol. 2011; 12: 222-230
        • Shimada K
        • Crother TR
        • Karlin J
        • et al.
        Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.
        Immunity. 2012; 36: 401-414
        • Misawa T
        • Takahama M
        • Kozaki T
        • et al.
        Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome.
        Nat Immunol. 2013; 14: 454-460
        • Murakami T
        • Ockinger J
        • Yu J
        • et al.
        Critical role for calcium mobilization in activation of the NLRP3 inflammasome.
        Proc Natl Acad Sci USA. 2012; 109: 11282-11287
        • Zhong Z
        • Zhai Y
        • Liang S
        • et al.
        TRPM2 links oxidative stress to the NLRP3 inflammasome activation (P1268).
        J Immunol. 2013; : 190
        • Ichinohe T
        • Yamazaki T
        • Koshiba T
        • Yanagi Y
        Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection.
        Proc Natl Acad Sci USA. 2013; 110: 17963-17968
        • Moore CB
        • Bergstralh DT
        • Duncan JA
        • et al.
        NLRX1 is a regulator of mitochondrial antiviral immunity.
        Nature. 2008; 451: 573-577
        • Tattoli I
        • Carneiro LA
        • Jehanno M
        • et al.
        NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production.
        EMBO Rep. 2008; 9: 293-300
        • Guo H
        • Konig R
        • Deng M
        • et al.
        NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses.
        Cell Host Microbe. 2016; 19: 515-528
        • Xia X
        • Cui J
        • Wang HY
        • et al.
        NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK.
        Immunity. 2011; 34: 843-853
        • Soares F
        • Tattoli I
        • Wortzman ME
        • Arnoult D
        • Philpott DJ
        • Girardin SE
        NLRX1 does not inhibit MAVS-dependent antiviral signalling.
        Innate Immun. 2013; 19: 438-448
        • Rebsamen M
        • Vazquez J
        • Tardivel A
        • Guarda G
        • Curran J
        • Tschopp J
        NLRX1/NOD5 deficiency does not affect MAVS signalling.
        Cell Death Differ. 2011; 18: 1387
        • Feng H
        • Lenarcic EM
        • Yamane D
        • et al.
        NLRX1 promotes immediate IRF1-directed antiviral responses by limiting dsRNA-activated translational inhibition mediated by PKR.
        Nat Immunol. 2017; 18: 1299-1309
        • Arnoult D
        • Soares F
        • Tattoli I
        • Castanier C
        • Philpott DJ
        • Girardin SE
        An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix.
        J Cell Sci. 2009; 122: 3161-3168
        • Abdul-Sater AA
        • Said-Sadier N
        • Lam VM
        • et al.
        Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1.
        J Biol Chem. 2010; 285: 41637-41645
        • Lei Y
        • Wen H
        • Yu Y
        • et al.
        The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy.
        Immunity. 2012; 36: 933-946
        • Unger BL
        • Ganesan S
        • Comstock AT
        • Faris AN
        • Hershenson MB
        • Sajjan US
        Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells.
        J Virol. 2014; 88: 3705-3718
        • Stokman G
        • Kors L
        • Bakker PJ
        • et al.
        NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity.
        J Exp Med. 2017; 214: 2405-2420
        • Costford SR
        • Tattoli I
        • Duan FT
        • et al.
        Male mice lacking NLRX1 are partially protected from high-fat diet-induced hyperglycemia.
        J Endocr Soc. 2018; 2: 336-347
        • Kato H
        • Sato S
        • Yoneyama M
        • et al.
        Cell type-specific involvement of RIG-I in antiviral response.
        Immunity. 2005; 23: 19-28
        • Yoneyama M
        • Kikuchi M
        • Natsukawa T
        • et al.
        The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.
        Nat Immunol. 2004; 5: 730-737
        • Seth RB
        • Sun L
        • Ea CK
        • Chen ZJ
        Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3.
        Cell. 2005; 122: 669-682
        • Meylan E
        • Curran J
        • Hofmann K
        • et al.
        Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.
        Nature. 2005; 437: 1167-1172
        • Xu LG
        • Wang YY
        • Han KJ
        • Li LY
        • Zhai Z
        • Shu HB
        VISA is an adapter protein required for virus-triggered IFN-beta signaling.
        Mol Cell. 2005; 19: 727-740
        • Kawai T
        • Takahashi K
        • Sato S
        • et al.
        IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.
        Nat Immunol. 2005; 6: 981-988
        • Hornung V
        • Ellegast J
        • Kim S
        • et al.
        5′-Triphosphate RNA is the ligand for RIG-I.
        Science. 2006; 314: 994-997
        • Kato H
        • Takeuchi O
        • Sato S
        • et al.
        Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
        Nature. 2006; 441: 101-105
        • Pichlmair A
        • Schulz O
        • Tan CP
        • et al.
        RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates.
        Science. 2006; 314: 997-1001
        • Satoh T
        • Kato H
        • Kumagai Y
        • et al.
        LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.
        Proc Natl Acad Sci U S A. 2010; 107: 1512-1517
        • Childs KS
        • Randall RE
        • Goodbourn S
        LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.
        PLoS One. 2013; 8: e64202
        • Deddouche S
        • Goubau D
        • Rehwinkel J
        • et al.
        Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells.
        Elife. 2014; 3: e01535
        • Rothenfusser S
        • Goutagny N
        • DiPerna G
        • et al.
        The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I.
        J Immunol. 2005; 175: 5260-5268
        • Yoneyama M
        • Kikuchi M
        • Matsumoto K
        • et al.
        Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.
        J Immunol. 2005; 175: 2851-2858
        • Dixit E
        • Boulant S
        • Zhang Y
        • et al.
        Peroxisomes are signaling platforms for antiviral innate immunity.
        Cell. 2010; 141: 668-681
        • Odendall C
        • Dixit E
        • Stavru F
        • et al.
        Diverse intracellular pathogens activate type III interferon expression from peroxisomes.
        Nat Immunol. 2014; 15: 717-726
        • Hou F
        • Sun L
        • Zheng H
        • Skaug B
        • Jiang QX
        • Chen ZJ
        MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response.
        Cell. 2011; 146: 448-461
        • Peisley A
        • Wu B
        • Xu H
        • Chen ZJ
        • Hur S
        Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I.
        Nature. 2014; 509: 110-114
        • Takeuchi O
        • Akira S
        Pattern recognition receptors and inflammation.
        Cell. 2010; 140: 805-820
        • Gack MU
        • Shin YC
        • Joo CH
        • et al.
        TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.
        Nature. 2007; 446: 916-920
        • Oshiumi H
        • Matsumoto M
        • Seya T
        Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I.
        J Biochem. 2012; 151: 5-11
        • Wies E
        • Wang MK
        • Maharaj NP
        • et al.
        Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling.
        Immunity. 2013; 38: 437-449
        • Zeng W
        • Sun L
        • Jiang X
        • et al.
        Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity.
        Cell. 2010; 141: 315-330
        • Zhong B
        • Zhang Y
        • Tan B
        • Liu TT
        • Wang YY
        • Shu HB
        The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation.
        J Immunol. 2010; 184: 6249-6255
        • Yasukawa K
        • Oshiumi H
        • Takeda M
        • et al.
        Mitofusin 2 inhibits mitochondrial antiviral signaling.
        Sci Signal. 2009; 2: ra47
        • Castanier C
        • Garcin D
        • Vazquez A
        • Arnoult D
        Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway.
        EMBO Rep. 2010; 11: 133-138
        • Onoguchi K
        • Onomoto K
        • Takamatsu S
        • et al.
        Virus-infection or 5′ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1.
        PLoS Pathog. 2010; 6e1001012
        • Vitour D
        • Dabo S
        • Ahmadi Pour M
        • et al.
        Polo-like kinase 1 (PLK1) regulates interferon (IFN) induction by MAVS.
        J Biol Chem. 2009; 284: 21797-21809
        • Xu L
        • Xiao N
        • Liu F
        • Ren H
        • Gu J
        Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria.
        Proc Natl Acad Sci USA. 2009; 106: 1530-1535
        • Koshiba T
        • Yasukawa K
        • Yanagi Y
        • Kawabata S
        Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling.
        Sci Signal. 2011; 4: ra7
        • Tal MC
        • Sasai M
        • Lee HK
        • Yordy B
        • Shadel GS
        • Iwasaki A
        Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling.
        Proc Natl Acad Sci USA. 2009; 106: 2770-2775
        • Soucy-Faulkner A
        • Mukawera E
        • Fink K
        • et al.
        Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression.
        PLoS Pathog. 2010; 6e1000930
        • O'Neill LA
        DNA makes RNA makes innate immunity.
        Cell. 2009; 138: 428-430
        • Ishikawa H
        • Barber GN
        STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.
        Nature. 2008; 455: 674-678
        • Sun W
        • Li Y
        • Chen L
        • et al.
        ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.
        Proc Natl Acad Sci USA. 2009; 106: 8653-8658
        • Carroll EC
        • Jin L
        • Mori A
        • et al.
        The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons.
        Immunity. 2016; 44: 597-608
        • West AP
        • Khoury-Hanold W
        • Staron M
        • et al.
        Mitochondrial DNA stress primes the antiviral innate immune response.
        Nature. 2015; 520: 553-557
        • Rongvaux A
        • Jackson R
        • Harman CC
        • et al.
        Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA.
        Cell. 2014; 159: 1563-1577
        • White MJ
        • McArthur K
        • Metcalf D
        • et al.
        Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.
        Cell. 2014; 159: 1549-1562
        • Collins AC
        • Cai H
        • Li T
        • et al.
        Cyclic GMP-AMP synthase is an innate immune DNA sensor for mycobacterium tuberculosis.
        Cell Host Microbe. 2015; 17: 820-828
        • Storek KM
        • Gertsvolf NA
        • Ohlson MB
        • Monack DM
        cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection.
        J Immunol. 2015; 194: 3236-3245
        • Marinho FV
        • Benmerzoug S
        • Oliveira SC
        • Ryffel B
        • Quesniaux VFJ
        The emerging roles of STING in bacterial infections.
        Trends Microbiol. 2017; 25: 906-918
        • Wu J
        • Sun L
        • Chen X
        • et al.
        Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA.
        Science. 2013; 339: 826-830
        • Ablasser A
        • Goldeck M
        • Cavlar T
        • et al.
        cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING.
        Nature. 2013; 498: 380-384
        • Diner EJ
        • Burdette DL
        • Wilson SC
        • et al.
        The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING.
        Cell Rep. 2013; 3: 1355-1361
        • Gao P
        • Ascano M
        • Wu Y
        • et al.
        Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase.
        Cell. 2013; 153: 1094-1107
        • Zhang X
        • Shi H
        • Wu J
        • et al.
        Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.
        Mol Cell. 2013; 51: 226-235
        • Sun L
        • Wu J
        • Du F
        • Chen X
        • Chen ZJ
        Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.
        Science. 2013; 339: 786-791
        • Gao P
        • Ascano M
        • Zillinger T
        • et al.
        Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA.
        Cell. 2013; 154: 748-762
        • Saitoh T
        • Fujita N
        • Hayashi T
        • et al.
        Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response.
        Proc Natl Acad Sci USA. 2009; 106: 20842-20846
        • Liu S
        • Cai X
        • Wu J
        • et al.
        Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation.
        Science. 2015; 347: aaa2630
        • Tanaka Y
        • Chen ZJ
        STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway.
        Sci Signal. 2012; 5: ra20
        • Boulay F
        • Tardif M
        • Brouchon L
        • Vignais P
        Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA.
        Biochem Biophys Res Commun. 1990; 168: 1103-1109
        • Le Y
        • Oppenheim JJ
        • Wang JM
        Pleiotropic roles of formyl peptide receptors.
        Cytokine Growth Factor Rev. 2001; 12: 91-105
        • Bao L
        • Gerard NP
        • Eddy Jr., RL
        • Shows TB
        • Gerard C
        Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19.
        Genomics. 1992; 13: 437-440
        • Zabel BA
        • Rott A
        • Butcher EC
        Leukocyte chemoattractant receptors in human disease pathogenesis.
        Annu Rev Pathol. 2015; 10: 51-81
        • Forsman H
        • Winther M
        • Gabl M
        • et al.
        Structural changes of the ligand and of the receptor alters the receptor preference for neutrophil activating peptides starting with a formylmethionyl group.
        Biochim Biophys Acta. 2015; 1853: 192-200
        • He HQ
        • Troksa EL
        • Caltabiano G
        • Pardo L
        • Ye RD
        Structural determinants for the interaction of formyl peptide receptor 2 with peptide ligands.
        J Biol Chem. 2014; 289: 2295-2306
        • Ye RD
        • Boulay F
        Structure and function of leukocyte chemoattractant receptors.
        Adv Pharmacol. 1997; 39: 221-289
        • Ye RD
        • Boulay F
        • Wang JM
        • et al.
        International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family.
        Pharmacol Rev. 2009; 61: 119-161
        • Marques PE
        • Amaral SS
        • Pires DA
        • et al.
        Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure.
        Hepatology. 2012; 56: 1971-1982
        • McDonald B
        • Pittman K
        • Menezes GB
        • et al.
        Intravascular danger signals guide neutrophils to sites of sterile inflammation.
        Science. 2010; 330: 362-366
        • O'Flaherty JT
        • Jacobson DP
        • Redman JF
        • Rossi AG
        Translocation of protein kinase C in human polymorphonuclear neutrophils. Regulation by cytosolic Ca2(+)-independent and Ca2(+)-dependent mechanisms.
        J Biol Chem. 1990; 265: 9146-9152
        • Rabiet MJ
        • Huet E
        • Boulay F
        The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview.
        Biochimie. 2007; 89: 1089-1106
        • Crouser ED
        • Shao G
        • Julian MW
        • et al.
        Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors.
        Crit Care Med. 2009; 37: 2000-2009
        • Kang HK
        • Lee HY
        • Kim MK
        • et al.
        The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocyte-derived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2.
        J Immunol. 2005; 175: 685-692
        • O'Neill LA
        • Kishton RJ
        • Rathmell J
        A guide to immunometabolism for immunologists.
        Nat Rev Immunol. 2016; 16: 553-565
        • Milenkovic D
        • Blaza JN
        • Larsson NG
        • Hirst J
        The enigma of the respiratory chain supercomplex.
        Cell Metab. 2017; 25: 765-776
        • Letts JA
        • Sazanov LA
        Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.
        Nat Struct Mol Biol. 2017; 24: 800-808
        • Guo R
        • Zong S
        • Wu M
        • Gu J
        • Yang M
        Architecture of human mitochondrial respiratory megacomplex I2III2IV2.
        Cell. 2017; 170 (e12): 1247-1257
        • Garaude J
        • Acin-Perez R
        • Martinez-Cano S
        • et al.
        Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense.
        Nat Immunol. 2016; 17: 1037-1045
        • Mehta MM
        • Weinberg SE
        • Chandel NS
        Mitochondrial control of immunity: beyond ATP.
        Nat Rev Immunol. 2017; 17: 608-620
        • O'Neill LA
        A broken krebs cycle in macrophages.
        Immunity. 2015; 42: 393-394
        • Strelko CL
        • Lu W
        • Dufort FJ
        • et al.
        Itaconic acid is a mammalian metabolite induced during macrophage activation.
        J Am Chem Soc. 2011; 133: 16386-16389
        • Jha AK
        • Huang SC
        • Sergushichev A
        • et al.
        Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.
        Immunity. 2015; 42: 419-430
        • Lampropoulou V
        • Sergushichev A
        • Bambouskova M
        • et al.
        Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
        Cell Metab. 2016; 24: 158-166
        • Naujoks J
        • Tabeling C
        • Dill BD
        • et al.
        IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid.
        PLoS Pathog. 2016; 12e1005408
        • Michelucci A
        • Cordes T
        • Ghelfi J
        • et al.
        Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.
        Proc Natl Acad Sci USA. 2013; 110: 7820-7825
        • Mills EL
        • Kelly B
        • Logan A
        • et al.
        Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
        Cell. 2016; 167 (457-70.e13)
        • Tannahill GM
        • Curtis AM
        • Adamik J
        • et al.
        Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha.
        Nature. 2013; 496: 238-242
        • Anthony RM
        • Urban Jr., JF
        • Alem F
        • et al.
        Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites.
        Nat Med. 2006; 12: 955-960
        • Vats D
        • Mukundan L
        • Odegaard JI
        • et al.
        Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.
        Cell Metab. 2006; 4: 13-24
        • Rodriguez-Prados JC
        • Traves PG
        • Cuenca J
        • et al.
        Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation.
        J Immunol. 2010; 185: 605-614
        • Wu D
        • Sanin DE
        • Everts B
        • et al.
        Type 1 interferons induce changes in core metabolism that are critical for immune function.
        Immunity. 2016; 44: 1325-1336
        • Lachmandas E
        • Boutens L
        • Ratter JM
        • et al.
        Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes.
        Nat Microbiol. 2016; 2: 16246