Advertisement

Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma

Published:September 14, 2018DOI:https://doi.org/10.1016/j.trsl.2018.09.001
      Aflatoxin B1 (AFB1) is currently the most commonly studied mycotoxin due to its great toxicity, its distribution in a wide variety of foods such as grains and cereals and its involvement in the development of + (hepatocellular carcinoma; HCC). HCC is one of the main types of liver cancer, and has become a serious public health problem, due to its high incidence mainly in Southeast Asia and Africa. Studies show that AFB1 acts in synergy with other risk factors such as hepatitis B and C virus leading to the development of HCC through genetic and epigenetic modifications. The genetic modifications begin in the liver through the biomorphic AFB1, the AFB1-exo-8.9-Epoxy active, which interacts with DNA to form adducts of AFB1-DNA. These adducts induce mutation in codon 249, mediated by a transversion of G–T in the p53 tumor suppressor gene, causing HCC. Thus, this review provides an overview of the evidence for AFB1-induced epigenetic alterations and the potential mechanisms involved in the development of HCC, focusing on a critical analysis of the importance of severe legislation in the detection of aflatoxins.

      Abbreviations:

      AFB1 (Aflatoxin B1), AFM1 (Aflatoxin M1), AVF (averufin), AVN (averantine), AVNN (averufanin), CYP450 (cytochrome P450), DHDMST (dihydrodemethylsterigmatocystin), DHOMST (dihydro-O-methylsterigmatocystin), DNMT (DNA methyltransferases), HATs (histone acetyltransferases), HAVN (5′hydroxy averantine), HCC (hepatocarcinoma), HDACs (histone deacetylases enzymes), IL-1 (interleukin-1), IL-6 (interleukin-6), JAK (Janus kinases), NOR (norsolorinic acid), OMST (O-methylsterigmatocystin), ST (sterigmatocystin), TNF-α (tumor necrosis factor), VAL (versiconal), VER B (versicolorin B), VHA (versiconal hemiacetal acetate), STAT (signal transducer and activator of transcription), Wnt (Wnt family), HBc (Hepatitis B core), CG (guanine-cytosine), PCR (Polymerase Chain Reaction), ALFs (aflatoxins)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Lizárraga-paulín EG, Miranda-castro SP, Moreno-martínez E, Lara-sagahón AV. World’s largest science, technology & medicine open access book publisher novel methods for preventing and controlling aflatoxins in food: a worldwide daily challenge.

        • Urrego J
        • Díaz G
        Aflatoxinas: mecanismos de toxicidad en la etiología de cáncer hepático celular.
        Rev Fac Med Univ Nac Colomb. 2006; 54: 9
        • Santos AL
        • Bando E
        • Machinski Junior M
        Ocorrência de aflatoxina M1 em leite bovino comercializado no estado do Paraná, Brasil.
        Semina Ciênc Agrár. 2014; 35: 371https://doi.org/10.5433/1679-0359.2014v35n1p371
        • Beizaei A
        • O’ Kane SL
        • Kamkar A
        • Misaghi A
        • Henehan G
        • Cahill DJ
        Highly sensitive toxin microarray assay for aflatoxin B1 detection incereals.
        Food Control. 2015; 57: 210-215https://doi.org/10.1016/j.foodcont.2015.03.039
        • Kumar P
        • Mahato DK
        • Kamle M
        • Mohanta TK
        • Kang SG
        Aflatoxins: a global concern for food safety, human health and their management.
        Front Microbiol. 2017; 7: 1-10https://doi.org/10.3389/fmicb.2016.02170
        • Rotimi OA
        • Rotimi SO
        • Duru CU
        • et al.
        Acute aflatoxin B1—Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats.
        Toxicol Rep. 2017; 4: 408-414https://doi.org/10.1016/j.toxrep.2017.07.006
        • Ferlay J
        • Soerjomataram I
        • Dikshit R
        • et al.
        Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.
        Int J Cancer. 2015; 136: E359-E386https://doi.org/10.1002/ijc.29210
        • Mughal MJ
        • Peng X
        • Zhou Y
        • Fang J
        Aflatoxin B 1 invokes apoptosis via death receptor pathway in hepatocytes.
        Oncotarget. 2016; 8: 8239-8249https://doi.org/10.18632/oncotarget.14158
        • Liu Y
        • Wu F
        Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment.
        Environ Health Perspect. 2010; 118: 818-824https://doi.org/10.1289/ehp.0901388
        • Yu MW
        • Chiang YC
        • Lien JP
        • Chen CJ
        Plasma antioxidant vitamins, chronic hepatitis B virus infection and urinary aflatoxin B1-DNA adducts in healthy males.
        Carcinogenesis. 1997; 18: 1189-1194https://doi.org/10.1093/carcin/18.6.1189
        • Asim M
        • Sarma MP
        • Thayumanavan L
        • Kar P
        Role of aflatoxin B1 as a risk for primary liver cancer in north Indian population.
        Clin Biochem. 2011; 44: 1235-1240https://doi.org/10.1016/j.clinbiochem.2011.07.017
        • Qian GS
        • Ross RK
        • Yu MC
        • et al.
        A Follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People's Republic of China.
        Cancer Epidemiol Biomarkers Prev. 1994; 3 (Accessed August 25, 2018): 3-10
        • Kew MC
        Aflatoxins as a cause of hepatocellular carcinoma.
        J GastrointestLiver Dis. 2013; 22 (Accessed August 26, 2018): 305-310
        • Bbosa GS
        • Kitya D
        • Odda J
        • Ogwal-Okeng J
        Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis.
        Health (N Y). 2013; 05: 14-34https://doi.org/10.4236/health.2013.510A1003
        • Dohnal V
        • Wu Q
        • Kuča K
        Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences.
        Arch Toxicol. 2014; 88: 1635-1644https://doi.org/10.1007/s00204-014-1312-9
        • Poór M
        • Bálint M
        • Hetényi C
        • et al.
        Investigation of non-covalent interactions of aflatoxins (B1, B2, G1, G2, and M1) with serum albumin.
        Toxins. 2017; 9: 1-12https://doi.org/10.3390/toxins9110339
        • Moore GG
        • Olarte RA
        • Horn BW
        • et al.
        Global population structure and adaptive evolution of aflatoxin-producing fungi.
        Ecol Evol. 2017; : 9179-9191https://doi.org/10.1002/ece3.3464
        • Aiko V
        • Mehta A
        Occurrence, detection and detoxification of mycotoxins.
        J Biosci. 2015; 40: 943-954https://doi.org/10.1007/s12038-015-9569-6
        • Oliveira E
        • Bértolo E
        • Núñez C
        • et al.
        Green and red fluorescent dyes for translational applications in imaging and sensing analytes: a dual-color flag.
        ChemOpen. 2018; 7: 3https://doi.org/10.1002/open.201700177
        • Giovati L
        • Magliani W
        • Ciociola T
        • Santinoli C
        • Conti S
        • Polonelli L
        AFM1in milk: physical, biological, and prophylactic methods to mitigate contamination.
        Toxins. 2015; 7: 4330-4349https://doi.org/10.3390/toxins7104330
        • Yabe K
        • Matsushima KI
        • Koyama T
        • Hamasaki T
        Purification and characterization of O-methyltransferase I involved in conversion of demethylsterigmatocystin to sterigmatocystin and of dihydrodemethylsterigmatocystin to dihydrosterigmatocystin during aflatoxin biosynthesis.
        Appl Environ Microbiol. 1998; 64: 166-171
        • Bordini JG
        • Rossi CN
        • Hirooka EY
        • Ono EYS
        Impacto das Fumonisinas, aflatoxinas e ocratoxina a na avicultura.
        BBR. 2013; 2: 68-88https://doi.org/10.5433/2316-5200.2013v2n1p68
        • Gacem MA
        • Ould El Hadj-Khelil A
        Toxicology, biosynthesis, bio-control of aflatoxin and new methods of detection.
        Asian Pac J Trop Biomed. 2016; 6: 808-814https://doi.org/10.1016/j.apjtb.2016.07.012
        • Diao E
        • Hou H
        • Dong H
        Ozonolysis mechanism and influencing factors of aflatoxin B1: a review.
        Trends Food Sci Technol. 2013; 33: 21-26https://doi.org/10.1016/j.tifs.2013.06.002
      2. Ferreira H, Pittner E, Francisco Sanches H, Chagas Monteiro M. Aflatoxinas: um risco a saúde humana e animal aflatoxins: a risk animal and human health. 2006:113–127.

        • Karabulut S
        • Paytakov G
        • Leszczynski J
        Reduction of aflatoxin B1 to Aflatoxicol: a comprehensive DFT study provides clues to its toxicity.
        J Sci Food Agric. 2014; 94: 3134-3140https://doi.org/10.1002/jsfa.6663
        • Becker-Algeri TA
        • Castagnaro D
        • de Bortoli K
        • de Souza C
        • Drunkler DA
        • Badiale-Furlong E
        Mycotoxins in bovine milk and dairy products: a review.
        J Food Sci. 2016; 81: R544-R552https://doi.org/10.1111/1750-3841.13204
        • Cederbaum AI
        Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications.
        Redox Biol. 2015; 4: 60-73https://doi.org/10.1016/j.redox.2014.11.008
        • Fernandes De Oliveira CA
        • Leal Germano PM
        Aflatoxinas: conceitos sobre mecanismos de toxicidade e seu envolvimento na etiologia do cancer hepático celular.
        Rev Saude Publica. 1997; 31: 417-424https://doi.org/10.1590/S0034-89101997000400011
        • da Silva RA
        • Aguilar-da-Silva SH
        Avaliation of the stress metabolic in wistar rats intoxicated with aflatoxin B1.
        Braz J Med Sci Health. 2015; 3: 1-7
        • Biehl ML
        • Buck WB
        Chemical contaminants: their metabolism and their residues.
        J Food Nutr. 1987; 50: 1058-1073https://doi.org/10.4315/0362-028X-50.12.1058
        • Lin WC
        • Liao YC
        • Liau MC
        • Lii CK
        • Sheen LY
        Inhibitory effect of CDA-II, a urinary preparation, on aflatoxin B1-induced oxidative stress and DNA damage in primary cultured rat hepatocytes.
        Food Chem Toxicol. 2006; 44: 546-551https://doi.org/10.1016/j.fct.2005.08.029
        • Reddy L
        • Odhav B
        • Bhoola K
        Aflatoxin B1-induced toxicity in HepG2 cells inhibited by carotenoids: morphology, apoptosis and DNA damage.
        Biol Chem. 2006; 387: 87-93https://doi.org/10.1515/BC.2006.012
        • Hamid AS
        • Tesfamariam SG
        • Zhang Y
        • Zhang ZG
        Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention (Review).
        Oncol Lett. 2013; 5: 1087-1092https://doi.org/10.3892/ol.2013.1169
        • Hayes JD
        • Judah DJ
        • McLellan LI
        • Neal GE.
        Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1.
        Pharmacol Ther. 1991; 50: 443-472https://doi.org/10.1016/0163-7258(91)90053-O
        • Fatemi F
        • Allameh A
        • Dadkhah A
        • Forouzandeh M
        • Kazemnejad S
        • Sharifi R
        Changes in hepatic cytosolic glutathione S-transferase activity and expression of its class-P during prenatal and postnatal period in rats treated with aflatoxin B1.
        Arch Toxicol. 2006; 80: 572-579https://doi.org/10.1007/s00204-006-0076-2
        • Tong WM
        • Lee MK
        • Galendo D
        • Wang ZQ
        • Sabapathy K
        Aflatoxin-B exposure does not lead to p53 mutations but results in enhanced liver cancer of Hupki (human p53 knock-in) mice.
        Int J Cancer. 2006; 119: 745-749https://doi.org/10.1002/ijc.21890
      3. Alessandra Vincenzi Jager FSR, Oliveira LNZ and CAF. Biomarkers of aflatoxin exposure and its relationship with the hepatocellular carcinoma. http://dx.doi.org/10.5772/46845.

        • Lin YC
        • Li L
        • Makarova AV
        • Burgers PM
        • Stone MP
        • Lloyd RS
        Error-prone replication bypass of the primary aflatoxin B1 DNA adduct, AFB1-N7-Gua.
        J Biol Chem. 2014; 289: 18497-18506https://doi.org/10.1074/jbc.M114.561563
        • Aguilar F
        • Hussain SP
        • Cerutti P
        Aflatoxin B1 induces the transversion of G–>T in codon 249 of the p53 tumor suppressor gene in human hepatocytes.
        PNAS. 1993; 90: 8586-8590https://doi.org/10.1073/pnas.90.18.8586
        • Rieswijk L
        • Claessen SMH
        • Bekers O
        • et al.
        Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma.
        Toxicology. 2016; 350-352: 31-39https://doi.org/10.1016/j.tox.2016.05.002
        • Chawanthayatham S
        • Valentine CC
        • Fedeles BI
        • et al.
        Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma.
        Proc Natl Acad Sci. 2017; 114: E3101-E3109https://doi.org/10.1073/pnas.1700759114
        • Harris CC.
        Chemical and physical carcinogenesis : advances and perspectives for the 1990s1.
        Cancer Res. 1991; 51: 5023s-5044s
        • Bressac B
        • Puisieux A
        • Kew M
        • et al.
        P53 mutation in hepatocellular carcinoma after aflatoxin exposure.
        Lancet North Am Ed. 1991; 338: 1356-1359https://doi.org/10.1016/0140-6736(91)92236-U
        • Taş M
        • Güney Saruhan B
        • Kurt D
        • Yokuş B
        • Denli M
        Ratlarda aflatoksin B1’in spermatozoa özellikleri ve testislerde yarattiǧi hasar üzerine likopenin koruyucu etkisi.
        Kafkas Univ Vet Fak Derg. 2010; 16: 597-604https://doi.org/10.9775/kvfd.2009.1236
        • Hsieh DP
        • Atkinson DN
        Bisfuranoid mycotoxins: their genotoxicity and carcinogenicity.
        Adv Exp Med Biol. 1991; 283: 525-532
        • Bathaie SZ
        • Bolhassani A
        • Tamanoi F
        1st ed. Anticancer effect and molecular targets of saffron carotenoids. Vol 36. Elsevier Inc., 2014https://doi.org/10.1016/B978-0-12-802215-3.00004-5
        • Siddiqui IA
        • Sanna V
        • Ahmad N
        • Sechi M
        • Mukhtar H
        Resveratrol nanoformulation for cancer prevention and therapy.
        Ann N Y Acad Sci. 2015; 1348: 20-31https://doi.org/10.1111/nyas.12811
        • Monson M
        • Coulombe R
        • Reed K
        Aflatoxicosis: lessons from toxicity and responses to aflatoxin B1 in poultry.
        Agriculture. 2015; 5: 742-777https://doi.org/10.3390/agriculture5030742
        • Rawal S
        • Kim JE
        • Coulombe R
        Aflatoxin B1 in poultry: toxicology, metabolism and prevention.
        Res Vet Sci. 2010; 89: 325-331https://doi.org/10.1016/j.rvsc.2010.04.011
        • Scholl PF
        • Groopman JD
        Long-term stability of human aflatoxin B1 albumin adducts assessed by isotope dilution mass spectrometry and high-performance liquid chromatography-fluorescence.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 1436-1439https://doi.org/10.1158/1055-9965.EPI-07-2926
      4. Diaz GJ, Murcia HW. Biotranformation of aflatoxin B1 and its relationship with the differential toxicological response to aflatoxin in commercial poultry species. Aflatoxins Biochem Mol Biol. 2011:3–20. http://dx.doi.org/10.5772/22109.

        • Caloni F
        • Stammati A
        • Friggè G
        • De Angelis I
        Aflatoxin M1absorption and cytotoxicity on human intestinal in vitro model.
        Toxicon. 2006; 47: 409-415https://doi.org/10.1016/j.toxicon.2005.12.003
      5. Ilic Z, Crawford D, Egner Pa, Sell S NIH Public Access. 2011;242(3):1–12. http://dx.doi.org/10.1016/j.taap.2009.10.008.Glutathione-S-transferase.

        • McLean M
        • Dutton MF
        Cellular interactions and metabolism of aflatoxins.
        Pharmac Ther. 1995; 65: 163-192
        • Massey TE
        • Stewart RK
        • Daniels JM
        • Liu L
        Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B1 carcinogenicity.
        Exp Biol Med. 1995; 208: 213-227https://doi.org/10.3181/00379727-208-43852A
        • Cusumano V
        • Costa GB
        • Seminara S
        Effect of aflatoxins on rat peritoneal macrophages.
        Appl Environ Microbiol. 1990; 56: 3482-3484
        • Jakab GJ
        • Hmieleski RR
        • Zarba A
        • Hemenway DR
        • Groopman JD
        Respiratory aflatoxicosis: suppression of pulmonary and systemic host defenses in rats and mice.
        Toxicol Appl Pharmacol. 1994; 125: 198-205https://doi.org/10.1006/taap.1994.1065
        • Moon EY
        • Rhee DK
        • Pyo S
        In vitro suppressive effect of Aflatoxin B1 on murine peritoneal macrophage functions.
        Toxicology. 1999; 133: 171-179
        • Kumar M
        • Zhao X
        • Wang XW
        Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine?.
        Cell Biosci. 2011; 1: 5https://doi.org/10.1186/2045-3701-1-5
        • Chacko S
        • Samanta S
        Hepatocellular carcinoma: a life-threatening disease.
        Biomed Pharmacother. 2016; 84: 1679-1688https://doi.org/10.1016/j.biopha.2016.10.078
        • Gomes MA
        • Priolli DG
        • Tralhão JG
        • Botelho MF
        Carcinoma hepatocelular: epidemiologia, biologia, diagnóstico e terapias.
        Rev Assoc Med Bras. 2013; 59: 514-524https://doi.org/10.1016/j.ramb.2013.03.005
        • Dimitroulis D
        • Damaskos C
        • Valsami S
        • et al.
        From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world.
        World J Gastroenterol. 2017; 23: 5282-5294https://doi.org/10.3748/wjg.v23.i29.5282
        • Noel Pin Vieito
        • Alberto Guerrero Montañés MDBS
        Hepatocarcinoma: estado actual.
        Galicia Clín. 2014; 75: 171https://doi.org/10.22546/30/703
      6. Kew MC. A atoxins as a cause of hepatocellular carcinoma. 2013;22(3):305–310.

        • The Cancer Genome Atlas Research Network
        Comprehensive and integrative genomic characterization of hepatocellular carcinoma.
        Cell. 2017; 169 (e23): 1327-1341https://doi.org/10.1016/J.CELL.2017.05.046
        • Lee S-M
        • Kim-Ha J
        • Choi W-Y
        • et al.
        Interplay of genetic and epigenetic alterations in hepatocellular carcinoma.
        Epigenomics. 2016; 8: 993-1005https://doi.org/10.2217/epi-2016-0027
        • Villanueva A
        • Hoshida Y
        Depicting the role of TP53 in hepatocellular carcinoma progression.
        J Hepatol. 2011; 55: 724-725https://doi.org/10.1016/j.jhep.2011.03.018
        • Conte VP
        Carcinoma hepatocelular. Parte 1. Considera????es gerais e diagn??stico.
        Arq Gastroenterol. 2000; 37: 58-68https://doi.org/10.1590/S0004-28032000000100012
        • Abdel-Aziz A
        • Ahmed RA
        • Ibrahiem AT
        Expression of pRb, Ki67 and HER 2/neu in gastric carcinomas: relation to different histopathological grades and stages.
        Ann Diagn Pathol. 2017; 30: 1-7https://doi.org/10.1016/j.anndiagpath.2017.05.003
        • Liedtke C
        • Zschemisch NH
        • Cohrs A
        • et al.
        Silencing of caspase-8 in murine hepatocellular carcinomas is mediated via methylation of an essential promoter element.
        Gastroenterology. 2005; 129: 1602-1615https://doi.org/10.1053/j.gastro.2005.08.007
        • Yang S
        • Luo C
        • Gu Q
        • et al.
        Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma.
        Oncotarget. 2015; 7https://doi.org/10.18632/oncotarget.6684
        • Saxena NK
        • Sharma D
        • Ding X
        • et al.
        Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells.
        Cancer Res. 2007; 67: 2497-2507https://doi.org/10.1158/0008-5472.CAN-06-3075
        • Lamarca A
        • Mendiola M
        • Barriuso J
        Hepatocellular carcinoma: exploring the impact of ethnicity on molecular biology.
        Crit Rev Oncol Hematol. 2016; 105: 65-72https://doi.org/10.1016/j.critrevonc.2016.06.007
        • Shibata T
        • Aburatani H
        Exploration of liver cancer genomes.
        Nat Rev Gastroenterol Hepatol. 2014; 11: 340-349https://doi.org/10.1038/nrgastro.2014.6
        • Coleman WB
        Mechanisms of human hepatocarcinogenesis.
        Curr Mol Med. 2003; 3: 573-588https://doi.org/10.2174/1566524033479546
        • Zucman-Rossi J
        Molecular classification of hepatocellular carcinoma.
        Digest Liver Dis . 2010; 42 (10): S235-S241https://doi.org/10.1016/S1590-8658(10)60511-7
        • Zucman-Rossi J
        • Villanueva A
        • Nault JC
        • Llovet JM
        Genetic Landscape and biomarkers of hepatocellular carcinoma.
        Gastroenterology. 2015; 149: 1226-1239https://doi.org/10.1053/j.gastro.2015.05.061
        • Lee J-S
        The mutational landscape of hepatocellular carcinoma.
        Clin Mol Hepatol. 2015; 21: 220https://doi.org/10.3350/cmh.2015.21.3.220
        • Shi J
        • He J
        • Lin J
        • et al.
        Distinct response of the hepatic transcriptome to aflatoxin B 1 induced hepatocellular carcinogenesis and resistance in rats.
        Sci Rep. 2016; 6https://doi.org/10.1038/srep31898
        • Rao C V.
        • Asch AS
        • Yamada HY
        Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer.
        Carcinogenesis. 2017; 38: 2-11https://doi.org/10.1093/carcin/bgw118
        • Zhang YJ
        • Chen Y
        • Ahsan H
        • et al.
        Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutation in hepatocellular carcinoma.
        Int J Cancer. 2003; 103: 440-444https://doi.org/10.1002/ijc.10852
        • Zhang YJ
        • Ahsan H
        • Chen Y
        • et al.
        High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma.
        Mol Carcinog. 2002; 35: 85-92https://doi.org/10.1002/mc.10076
        • Zhang Y-J
        • Rossner P
        • Chen Y
        • et al.
        Aflatoxin B1 and polycyclic aromatic hydrocarbon adducts, p53 mutations and p16 methylation in liver tissue and plasma of hepatocellular carcinoma patients.
        Int J Cancer. 2006; 119: 985-991https://doi.org/10.1002/ijc.21699
        • Wang S
        • He Z
        • Li D
        • et al.
        Aberrant methylation of RUNX3 is present in aflatoxin B1-induced transformation of the L02R cell line.
        Toxicology. 2017; 385: 1-9https://doi.org/10.1016/j.tox.2017.04.011
        • Zhu L
        • Gao J
        • Huang K
        • Luo Y
        • Zhang B
        • Xu W
        miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in aflatoxin B1 induced hepatotoxicity.
        Sci Rep. 2015; 5: 16732https://doi.org/10.1038/srep16732
        • Libbrecht L
        • Desmet V
        • Roskams T
        Preneoplastic lesions in human hepatocarcinogenesis.
        Liver Int. 2005; 25: 16-27https://doi.org/10.1111/j.1478-3231.2005.01016.x
        • Höfler M.
        The Bradford Hill considerations on causality: a counterfactual perspective.
        Emerg Themes Epidemiol. 2005; 2: 1-9https://doi.org/10.1186/1742-7622-2-11
        • Swaen G
        • van Amelsvoort L
        A weight of evidence approach to causal inference.
        J Clin Epidemiol. 2009; https://doi.org/10.1016/j.jclinepi.2008.06.013
        • de Araújo LFSC
        • Dalgalarrondo P
        • Banzato CEM
        Sobre a noção de causalidade na medicina: aproximando Austin Bradford Hill e John L. Mackie.
        Revista de Psiquiatria Clinica. 2014; 41: 56-61https://doi.org/10.1590/0101-60830000000010
        • Bbosa GS
        • Kitya D
        • Odda J
        • Ogwal-Okeng J
        Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis.
        Health (N Y). 2013; 05: 14-34https://doi.org/10.4236/health.2013.510A1003
        • Chappell G
        • Pogribny IP
        • Guyton KZ
        • Rusyn I
        Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review.
        Mutat Res Rev Mutat Res. 2016; 768: 27-45https://doi.org/10.1016/j.mrrev.2016.03.004
        • Wahid B
        • Ali A
        • Rafique S
        • Idrees M
        New insights into the epigenetics of hepatocellular carcinoma.
        BioMed Res Int. 2017; 2017https://doi.org/10.1155/2017/1609575
        • Zhang YJ
        • Wu HC
        • Shen J
        • et al.
        Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA.
        Clin Cancer Res. 2007; 13: 2378-2384https://doi.org/10.1158/1078-0432.CCR-06-1900
        • Su H
        • Zhao J
        • Xiong Y
        • et al.
        Large-scale analysis of the genetic and epigenetic alterations in hepatocellular carcinoma from Southeast China.
        Mutat Res Fundam Mol Mech Mutagen. 2008; 641: 27-35https://doi.org/10.1016/j.mrfmmm.2008.02.005
        • Zhang YJ
        • Wu HC
        • Yazici H
        • Yu MW
        • Lee PH
        • Santella RM
        Global hypomethylation in hepatocellular carcinoma and its relationship to aflatoxin B1exposure.
        World J Hepatol. 2012; 4: 169-175https://doi.org/10.4254/wjh.v4.i5.169
      7. FERNANDO AGUILAR, S. PERWEZ HUSSAIN APCD. Aflatoxin B1 induces the transversion of G – T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. 1993;90(2):8586–8590.

        • Shen HM
        • Ong CN
        Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis.
        Mutat Res Rev Genet Toxicol. 1996; 366: 23-44https://doi.org/10.1016/S0165-1110(96)90005-6
        • Hussain SP
        • Schwank J
        • Staib F
        • Wang XW
        • Harris CC
        TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer.
        Oncogene. 2007; 26: 2166-2176https://doi.org/10.1038/sj.onc.1210279
        • Chappell G
        • Pogribny IP
        • Guyton KZ
        • Rusyn I
        Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review.
        Mutat Res Rev Mutat Res. 2016; 768: 27-45https://doi.org/10.1016/j.mrrev.2016.03.004
        • Rieswijk L
        • Claessen SMH
        • Bekers O
        • et al.
        Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma.
        Toxicology. 2016; 350-352: 31-39https://doi.org/10.1016/j.tox.2016.05.002
        • Kew M.
        Hepatocellular carcinoma: epidemiology and risk factors.
        J Hepatocell Carcinoma. 2014; 1: 115https://doi.org/10.2147/JHC.S44381
        • Pogribny IP
        • Rusyn I
        Environmental toxicants, epigenetics, and cancer.
        Springer, New York, NY2013: 215-232https://doi.org/10.1007/978-1-4419-9967-2_11
        • Santella RM
        • Wu H-C
        Environmental Exposures and hepatocellular carcinoma.
        J Clin Transl Hepatol. 2013; 1: 138-143https://doi.org/10.14218/JCTH.2013.008XX
        • Dai Y
        • Huang K
        • Zhang B
        • Zhu L
        • Xu W
        Aflatoxin B1-induced epigenetic alterations: an overview.
        Food Chem Toxicol. 2017; 109: 683-689https://doi.org/10.1016/j.fct.2017.06.034
        • Bestor TH
        Cloning of a mammalian DNA methyltransferase.
        Gene. 1988; 74: 9-12
        • Bergman Y
        • Mostoslavsky R
        DNA demethylation: turning genes on.
        Biol Chem. 1998; 379: 401-407
        • Goel N
        • Karir P
        • Garg VK
        Role of DNA methylation in human age prediction.
        Mech Ageing Dev. 2017; 166: 33-41https://doi.org/10.1016/j.mad.2017.08.012
      8. A RH, Grigg and GW. DNA methylation and mutation R. 1983;2:2002.

        • Ehrlich M
        DNA hypomethylation in cancer cells.
        Epigenomics. 2009; 1: 239-259https://doi.org/10.2217/epi.09.33
      9. Herranz M, Esteller M. DNA methylation and histone modifications potential prognostic and therapeutic Targets. Options. 361.

        • Song J
        • Teplova M
        • Ishibe-Murakami S
        • Patel DJ
        Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation.
        Science. 2012; 335: 709-712https://doi.org/10.1126/science.1214453
        • Razin A
        • Cedar H
        DNA methylation and gene expression.
        Microbiol Rev. 1991; 55: 451-458https://doi.org/10.1002/wsbm.64
        • Di Ruscio A
        • Ebralidze AK
        • Benoukraf T
        • et al.
        DNMT1-interacting RNAs block gene-specific DNA methylation.
        Nature. 2013; 503: 371-376https://doi.org/10.1038/nature12598
        • Robertson BJ
        • KD
        Epigenet Alterations Oncog. 2013; 754https://doi.org/10.1007/978-1-4419-9967-2
      10. Zhou W, Zhang C, Liu H. Curcumol controls choriocarcinoma stem- like cells self-renewal via repression of DNA methyltransferase (DNMT) - and histone deacetylase (HDAC)-mediated epigenetic regulation. 2018:461–472. https://doi.org/10.12659/MSM.908430.

        • Udali S
        • Guarini P
        • Moruzzi S
        • Choi SW
        • Friso S
        Cardiovascular epigenetics: from DNA methylation to microRNAs.
        Mol Aspects Med. 2013; 34: 883-901https://doi.org/10.1016/j.mam.2012.08.001
        • Ng PKS
        • Lau CPY
        • Lam EKY
        • et al.
        Hypermethylation of NF-κB-activating protein-like (NKAPL) promoter in hepatocellular carcinoma suppresses its expression and predicts a poor prognosis.
        Dig Dis Sci. 2018; (Published)
        • Silvia Udali P
        Hepcidin and DNA promoter methylation in hepatocellular carcinoma.
        ARPN J Eng Appl Sci. 2017; 12: 3218-3221https://doi.org/10.1111/ijlh.12426
        • Kim GH
        • Ryan JJ
        • Marsboom G
        • Archer SL
        Epigenetic Mechanisms of pulmonary hypertension.
        Pulm Circ. 2011; 1: 347-356https://doi.org/10.4103/2045-8932.87300
        • You J
        • Jones P
        Cancer genetics and epigenetics : two sides of the same coin ?.
        Cancer Cell. 2012; 22: 9-20https://doi.org/10.1016/j.ccr.2012.06.008.Cancer
      11. Zhu J. DNA methylation and hepatocellular carcinoma. 2006:265–273. https://doi.org/10.1007/s00534-005-1054-4.

        • Zhang H
        • Nie W
        • Huang F
        The correlation relationship between P14ARF Gene DNA methylation and primary liver cancer.
        Med Sci Monit. 2015; 21: 3077-3082https://doi.org/10.12659/MSM.894395
        • Fu X-L
        • Liu D-J
        • Yan T-T
        • et al.
        Analysis of long non-coding RNA expression profiles in pancreatic ductal adenocarcinoma.
        Sci Rep. 2016; 6: 33535https://doi.org/10.1038/srep33535
        • Mori T
        • Nomoto S
        • Koshikawa K
        • et al.
        Decreased expression and frequent allelic inactivation of the RUNX3 gene at 1p36 in human hepatocellular carcinoma.
        Liver Int. 2005; 25: 380-388https://doi.org/10.1111/j.1478-3231.2005.01059.x
      12. Zhang Y, Chen Y, Ahsan H, et al. Silencing of glutathione S-transferase P1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. 2005;221:135–143. https://doi.org/10.1016/j.canlet.2004.08.028.

        • Anestopoulos I
        • Voulgaridou GP
        • Georgakilas AG
        • Franco R
        • Pappa A
        • Panayiotidis MI
        Epigenetic therapy as a novel approach in hepatocellular carcinoma.
        Pharmacol Ther. 2015; 145: 103-119https://doi.org/10.1016/j.pharmthera.2014.09.005
        • Ma L
        • Chua MS
        • Andrisani O
        • So S
        Epigenetics in hepatocellular carcinoma: an update and future therapy perspectives.
        World J Gastroenterol. 2014; 20: 333-345https://doi.org/10.3748/wjg.v20.i2.333
        • Chrun ES
        • Modolo F
        • Daniel FI
        Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis.
        Pathol Res Pract. 2017; 213: 1329-1339https://doi.org/10.1016/j.prp.2017.06.013
        • Zhao N
        • Li S
        • Wang R
        • et al.
        Expression of microRNA-195 is transactivated by Sp1 but inhibited by histone deacetylase 3 in hepatocellular carcinoma cells.
        BBA Gene Regul Mech. 2016; https://doi.org/10.1016/j.bbagrm.2016.05.006
        • Valinluck V
        • Tsai HH
        • Rogstad DK
        • Burdzy A
        • Bird A
        • Sowers LC
        Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2).
        Nucleic Acids Res. 2004; 32: 4100-4108https://doi.org/10.1093/nar/gkh739
        • Buurman R
        • Sandbothe M
        • Schlegelberger B
        • Skawran B
        HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma.
        Eur J Med Res. 2016; 21: 1-6https://doi.org/10.1186/s40001-016-0217-x
        • Lai YCC
        • Cheng CC
        • Lai YS
        • Liu YH
        Cytokeratin 18-associated histone 3 modulation in hepatocellular carcinoma: a mini review.
        Cancer Genomics Proteomics. 2017; 14: 219-223https://doi.org/10.21873/cgp.20033
        • Kanno K
        • Kanno S
        • Nitta H
        • et al.
        Overexpression of histone deacetylase 6 contributes to accelerated migration and invasion activity of hepatocellular carcinoma cells.
        Oncol Rep. 2012; 28: 867-873https://doi.org/10.3892/or.2012.1898
        • Wu J
        • Du C
        • Lv Z
        • et al.
        The up-regulation of histone deacetylase 8 promotes proliferation and inhibits apoptosis in hepatocellular carcinoma.
        Dig Dis Sci. 2013; 58: 3545-3553https://doi.org/10.1007/s10620-013-2867-7
        • Hayashi A
        • Yamauchi N
        • Shibahara J
        • et al.
        Concurrent activation of acetylation and tri-methylation of H3K27 in a subset of hepatocellular carcinoma with aggressive behavior.
        PLoS One. 2014; 9: 1-9https://doi.org/10.1371/journal.pone.0091330
        • Liu KY
        • Wang LT
        • Hsu SH
        Modification of epigenetic histone acetylation in hepatocellular carcinoma.
        Cancers. 2018; 10: 1-13https://doi.org/10.3390/cancers10010008
        • Rodrigues DVS
        • Monteiro VVS
        • Navegantes-Lima KC
        • et al.
        MicroRNAs in cell cycle progression and proliferation: molecular mechanisms and pathways.
        Noncoding RNA Invest. 2018; 2: 1-19https://doi.org/10.21037/ncri.2018.04.06
        • Djebali S
        • Davis CA
        • Merkel A
        • Gingeras TR
        Landscape of transcription in human cells.
        Nature. 2012; 489: 101-108https://doi.org/10.1038/nature11233.Landscape
        • Catalanotto C
        • Cogoni C
        • Zardo G
        MicroRNA in control of gene expression: an overview of nuclear functions.
        Int J Mol Sci. 2016; 17https://doi.org/10.3390/ijms17101712
        • Klingenberg M
        • Matsuda A
        • Diederichs S
        • Patel T
        Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets.
        J Hepatol. 2017; 67: 603-618https://doi.org/10.1016/j.jhep.2017.04.009
        • Eichhorn SW
        • Guo H
        • McGeary SE
        • et al.
        MRNA Destabilization Is the dominant effect of mammalian microRNAs by the time substantial repression ensues.
        Mol Cell. 2014; 56: 104-115https://doi.org/10.1016/j.molcel.2014.08.028
        • Valencia-Quintana R
        • Sánchez-Alarcón J
        • Tenorio-Arvide MG
        • et al.
        The microRNAs as potential biomarkers for predicting the onset of aflatoxin exposure in human beings: a review.
        Front Microbiol. 2014; 5: 1-14https://doi.org/10.3389/fmicb.2014.00102
        • Bao L
        • Yan Y
        • Xu C
        • et al.
        MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathor2.
        Cancer Lett. 2013; 337: 226-236https://doi.org/10.1016/j.canlet.2013.05.007
        • Bae HJ
        • Jung KH
        • Eun JW
        • et al.
        MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer.
        J Hepatol. 2015; 63: 408-419https://doi.org/10.1016/j.jhep.2015.03.019
        • Hamano R
        • Miyata H
        • Yamasaki M
        • et al.
        Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway.
        Clin Cancer Res. 2011; 17: 3029-3038https://doi.org/10.1158/1078-0432.CCR-10-2532
        • Ma D
        • Tao X
        • Gao F
        • Fan C
        • Wu D
        miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling.
        Oncol Lett. 2012; 4: 483-488https://doi.org/10.3892/ol.2012.742
        • Imre G
        • Berthelet J
        • Heering J
        • et al.
        Apoptosis inhibitor 5 is an endogenous inhibitor of caspase‐2.
        EMBO Rep. 2017; 18: 733-744https://doi.org/10.15252/embr.201643744
        • Sun J
        • Lu H
        • Wang X
        • Jin H
        MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications.
        Sci World J. 2013; 2013924206https://doi.org/10.1155/2013/924206
        • Li X
        • Yu Z
        • Li Y
        • et al.
        The tumor suppressor miR-124 inhibits cell proliferation by targeting STAT3 and functions as a prognostic marker for postoperative NSCLC patients.
        Int J Oncol. 2015; 46: 798-808https://doi.org/10.3892/ijo.2014.2786
        • Galán-Cobo A
        • Ramírez-Lorca R
        • Toledo-Aral JJ
        • Echevarría M
        Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.
        J Cell Physiol. 2016; 231: 243-256https://doi.org/10.1002/jcp.25078
        • Chen G
        • Shi Y
        • Liu M
        • Sun J
        CircHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma.
        Cell Death Dis. 2018; 9https://doi.org/10.1038/s41419-017-0204-3
      13. Marrone AK, Tryndyak V, Beland FA, Pogribny IP. MicroRNA responses to the genotoxic carcinogens aflatoxin B 1 and Benzo [a] pyrene in human HepaRG cells. 2018;149(February):496–502. https://doi.org/10.1093/toxsci/kfv253.

        • Lewis AP
        • Jopling CL
        Regulation and biological function of the liver-specific miR-122 : Figure 1.
        Biochem Soc Trans. 2010; 38: 1553-1557https://doi.org/10.1042/BST0381553
        • Fang Y
        • Feng Y
        • Wu T
        • et al.
        Aflatoxin B1 Negatively regulates Wnt/β-Catenin signaling pathway through activating miR-33a.
        PLoS One. 2013; 8: 1-12https://doi.org/10.1371/journal.pone.0073004
        • Huang K
        • Zhang JX
        • Han L
        • et al.
        MicroRNA roles in beta-catenin pathway.
        Mol Cancer. 2010; 9: 813-829https://doi.org/10.1186/1476-4598-9-252
        • Zhu L
        • Gao J
        • Huang K
        • Luo Y
        • Zhang B
        • Xu W
        miR-34a screened by miRNA profiling negatively regulates Wnt / β -catenin signaling pathway in aflatoxin B1 induced hepatotoxicity.
        Nature Publishing Group, 2015: 1-13https://doi.org/10.1038/srep16732 (April)
        • Huang XY
        • Yao JG
        • Huang HD
        • et al.
        MicroRNA-429 modulates hepatocellular carcinoma prognosis and tumorigenesis.
        Gastroenterol Res Pract. 2013; 2013: 15-18https://doi.org/10.1155/2013/804128
        • Liu YX
        • Long XD
        • Xi ZF
        • et al.
        MicroRNA-24 modulates aflatoxin B1-related hepatocellular carcinoma prognosis and tumorigenesis.
        BioMed Res Int. 2014; 2014https://doi.org/10.1155/2014/482926
        • Wu X-M
        • Xi Z-F
        • Liao P
        • et al.
        Diagnostic and prognostic potential of serum microRNA-4651 for patients with hepatocellular carcinoma related to aflatoxin B1.
        Oncotarget. 2017; 8: 81235-81249https://doi.org/10.18632/oncotarget.16027
        • Huang JL
        • Zheng L
        • Hu YW
        • Wang Q
        Characteristics of long non-coding RNA and its relation to hepatocellular '.
        Carcinogenesis. 2014; 35: 507-514https://doi.org/10.1093/carcin/bgt405
      14. Liu X, Hummel M, Abecassis M. Non-coding RNA Era is Dawning. 2014.

        • Qiu L
        • Tang Q
        • Li G
        • Chen K
        Long non-coding RNAs as biomarkers and therapeutic targets: recent insights into hepatocellular carcinoma.
        Life Sci. 2017; 191: 273-282https://doi.org/10.1016/j.lfs.2017.10.007
        • Yang X
        • Xie X
        • Xiao YF
        • et al.
        The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma.
        Cancer Lett. 2015; 360: 119-124https://doi.org/10.1016/j.canlet.2015.02.035
        • Niu Z-S
        • Niu X-J
        • Wang W-H
        Long non-coding RNAs in hepatocellular carcinoma: potential roles and clinical implications.
        World J Gastroenterol. 2017; 23: 5860https://doi.org/10.3748/wjg.v23.i32.5860
        • He Y
        • Meng XM
        • Huang C
        • et al.
        Long noncoding RNAs: novel insights into hepatocelluar carcinoma.
        Cancer Lett. 2014; 344: 20-27https://doi.org/10.1016/j.canlet.2013.10.021
        • Zhang J
        • Zhang P
        • Wang L
        • Piao H
        • Ma L
        Long non-coding RNA HOTAIR in carcinogenesis and metastasis identification and characterization of HOTAIR deregulation of HOTAIR in cancers.
        Acta Biochim Biophys Sin. 2014; 46: 1-5https://doi.org/10.1093/abbs/gmt117.Advance
        • Li C
        • Chen J
        • Zhang K
        • Feng B
        • Wang R
        • Chen L
        Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma.
        Cell Physiol Biochem. 2015; 36: 423-434https://doi.org/10.1159/000430109
        • Lv J
        • Yu Y-Q
        • Li S-Q
        • Luo L
        • Wang Q
        Aflatoxin B1 promotes cell growth and invasion in hepatocellular carcinoma HepG2 cells through H19 and E2F1.
        Asian Pac J Cancer Prev. 2014; 15: 2565-2570https://doi.org/10.7314/APJCP.2014.15.6.2565
        • Ketney O
        Food safety legislation regarding of aflatoxins contamination.
        ACTA Univ Cibiniensis. 2015; 67: 18-23https://doi.org/10.1515/aucts-2015-0081
        • The Commission of the European Communities
        Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
        Off J Eur Commun. 2006; L364: 5-24https://doi.org/10.2203/dose-response.06-012.Hanekamp
        • Communities TC of the E
        Commission Regulation (EU) No 165/2010 of 26 February 2010 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins.
        Off J Eur Union. 2010; L 50/8: 5https://doi.org/10.1016/j.foodcont.2011.05.002
        • The Commission of the European Communities
        COMMISSION REGULATION (EU) No 1058/2012 of 12 November 2012 amending regulation (EC) No 1881/2006 as regards maximum levels for aflatoxins in dried figs.
        Food Control. 2011; 22: 1905-1910https://doi.org/10.1016/j.foodcont.2011.05.002
        • Communities TC of the E
        COMMISSION IMPLEMENTING REGULATION (EU) No 884/2014 of 13 August 2014 imposing special conditions governing the import of certain feed and food from certain third countries due to contamination risk by aflatoxins and repealing Regulation (EC) No 1152.
        Off J Eur Commun. 2000; L 269 (https://doi.org/2004R0726 - v.7 of 05.06.2013): 1-15
        • Gianfredi V
        • Vannini S
        • Moretti M
        • et al.
        sulforaphane and epigallocatechin gallate restore estrogen receptor expression by modulating epigenetic events in the breast cancer cell line MDA-MB-231: a systematic review and meta-analysis.
        J Nutrigenet Nutrigenomics. 2017; 10: 126-135https://doi.org/10.1159/000480636
        • Saenglee S
        • Jogloy S
        • Patanothai A
        • Leid M
        • Senawong T
        Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines.
        Pharmacol Rep. 2016; 68: 1102-1110https://doi.org/10.1016/j.pharep.2016.06.017
        • Lee WJ
        • Zhu BT
        Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.
        Carcinogenesis. 2006; 27: 269-277https://doi.org/10.1093/carcin/bgi206
        • Bishayee A
        • Dhir N
        Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis.
        Chem Biol Interact. 2009; https://doi.org/10.1016/j.cbi.2008.11.015