Advertisement

The connection of circadian rhythm to inflammatory bowel disease

  • Marie Gombert
    Affiliations
    Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain

    Department of Biotechnology, University of La Rochelle, La Rochelle, France
    Search for articles by this author
  • Joaquín Carrasco-Luna
    Affiliations
    Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain

    Department Experimental Sciences, Catholic University of Valencia, Valencia, Spain
    Search for articles by this author
  • Gonzalo Pin-Arboledas
    Affiliations
    Department of Pediatrics, Pediatric Sleep Unit, Hospital Quironsalud, Valencia, Spain
    Search for articles by this author
  • Pilar Codoñer-Franch
    Correspondence
    Reprint requests: Pilar Codoñer-Franch, Department of Pediatrics, Dr. Peset University Hospital, Avenida Gaspar Aguilar 90, Valencia 46017, Spain.
    Affiliations
    Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain

    Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain
    Search for articles by this author
Published:December 18, 2018DOI:https://doi.org/10.1016/j.trsl.2018.12.001
      Inflammatory bowel disease (IBD) comprises a group of chronic, immune system-mediated inflammatory diseases that primarily affect the gastrointestinal tract. The pathogenesis of the intestinal lesions in IBD remains elusive, but the inflammation process could be the result of dysfunction of the innate and adaptive immune systems induced by genetic and environmental factors. In recent years, research has demonstrated a connection between environmental stressors that can influence day–night variations, also called circadian rhythms, and digestive health. In this review, we focus on alterations in the complex interactions between intestinal mucosa, microbial factors, and the immune response in the intestinal milieu. We introduce the mechanisms that establish circadian rhythms and their regulation by the circadian rhythm genes. Evidence of circadian variation in the defense mechanisms of the intestine and its implication in the maintenance of a healthy microbiota are presented. Disruption of the circadian system can increase the activity of the gut immune system and the release of inflammatory factors. The link between chronodisruption or circadian rhythm impairment and IBD demonstrated by experimental and clinical studies illustrates the potential impact of circadian rhythms on treatment of these diseases. Future studies that investigate aspects of this subject are warranted.

      Abbreviations:

      CD (Crohn's disease), DSS (dextran sodium sulfate), IBD (inflammatory bowel disease), IEC (intestinal epithelial cell), IL (interleukin), LPS (lipopolysaccharide), TLRs (Toll-like receptors), UC (ulcerative colitis)
      To read this article in full you will need to make a payment

      References

        • Zhang Y.Z.
        • Li Y.Y.
        Inflammatory bowel disease: pathogenesis.
        World J Gastroenterol. 2014; 20: 91-99
        • Levine A.
        • Koletzko S.
        • Turner D.
        • et al.
        ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents.
        J Pediatr Gastroenterol Nutr. 2014; 58: 795-806
        • Matsuoka K.
        • Kobayashi T.
        • Ueno F.
        • et al.
        Evidence-based clinical practice guidelines for inflammatory bowel disease.
        J Gastroenterol. 2018; 53: 305-353
        • Boland K.
        • Nguyen G.C.
        Microscopic colitis: a review of collagenous and lymphocytic colitis.
        Gastroenterol Hepatol. 2017; 13: 671-677
        • Cosnes J.
        • Gower-Rousseau C.
        • Seksik P.
        • et al.
        Epidemiology and natural history of inflammatory bowel diseases.
        Gastroenterology. 2011; 140: 1785-1794
        • Van Limbergen J.
        • Russell R.K.
        • Drummond H.E.
        • et al.
        Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease.
        Gastroenterology. 2008; 135: 1114-1122
        • Schoepfer A.
        • Vavricka S.R.
        • Brüngger B.
        • et al.
        Systematic analysis of annual health resource utilization and costs in hospitalized patients with inflammatory bowel disease in Switzerland.
        Eur J Gastroenterol Hepatol. 2018; 30: 868-875
        • Zhou M.
        • He J.
        • Shen Y.
        • et al.
        New frontiers in genetics, gut microbiota, and immunity: a rosetta stone for the pathogenesis of inflammatory bowel disease.
        Biomed Res Int. 2017; 20178201672
        • Oh-oka K.
        • Kono H.
        • Ishimaru K.
        • et al.
        Expressions of tight junction proteins occludin and claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.
        PLoS One. 2014; 9: e98016
        • Forsyth C.B.
        • Voigt R.M.
        • Burgess H.J.
        • et al.
        Circadian rhythms, alcohol and gut interactions.
        Alcohol. 2015; 49: 389-398
        • Voigt R.M.
        • Forsyth C.B.
        • Green S.J.
        • et al.
        Circadian rhythm and the gut microbiome.
        Int Rev Neurobiol. 2016; 131: 193-205
        • Bishehsari F.
        • Levi F.
        • Turek F.W.
        • et al.
        Circadian rhythms in gastrointestinal health and diseases.
        Gastroenterology. 2016; 151: e1-e5
        • Trott A.J.
        Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1.
        PLoS Genet. 2018; 14e1007156
        • Reddy A.B.
        • Rey G.
        Metabolic and nontranscriptional circadian clocks: eukaryotes.
        Annu Rev Biochem. 2014; 83: 165-189
        • Jenwitheesuk A.
        • Nopparat C.
        • Mukda S.
        • et al.
        Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways.
        Int J Mol Sci. 2014; 15: 16848-16884
        • Slominski R.M.
        • Reiter R.J.
        • Schlabritz-Loutsevitch N.
        • et al.
        Melatonin membrane receptors in peripheral tissues: distribution and functions.
        Mol Cell Endocrinol. 2012; 351: 152-166
        • Esteban-Zubero E.
        • López-Pingarrón L.
        • Alatorre-Jiménez M.A.
        • et al.
        Melatonin's role as a co-adjuvant treatment in colonic diseases: a review.
        Life Sci. 2017; 170: 72-81
        • Bellet M.M.
        • Sassone-Corsi P.
        Mammalian circadian clock and metabolism – the epigenetic link.
        J Cell Sci. 2010; 123: 3837-3848
        • Varcoe T.J.
        • Gatford K.L.
        • Kennaway D.J.
        Maternal circadian rhythms and the programming of adult health and disease.
        Am J Physiol Regul Integr Comp Physiol. 2018; 314: R231-R241
        • Odenwald M.A.
        • Turner J.R.
        The intestinal epithelial barrier: a therapeutic target?.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 9-21
        • Peterson L.W.
        • Artis D.
        Intestinal epithelial cells: regulators of barrier function and immune homeostasis.
        Nat Rev Immunol. 2014; 14: 141-153
        • Bostick J.W.
        • Zhou L.
        Innate lymphoid cells in intestinal immunity and inflammation.
        Cell Mol Life Sci. 2016; 73: 237-252
        • Zihni C.
        • Mills C.
        • Matter K.
        • et al.
        Tight junctions: from simple barriers to multifunctional molecular gates.
        Nat Rev Mol Cell Biol. 2016; 17: 564-580
        • Swanson G.R.
        • Burgess H.J.
        Sleep and circadian hygiene and inflammatory bowel disease.
        Gastroenterol Clin North Am. 2017; 46: 881-893
        • Stokes K.
        • Cooke A.
        • Chang H.
        • et al.
        The circadian clock gene BMAL1 coordinates intestinal regeneration.
        Cell Mol Gastroenterol Hepatol. 2017; 4: 95-114
        • Matsu-Ura T.
        • Moore S.R.
        • Hong C.I.
        WNT takes two to tango: molecular links between the circadian clock and the cell cycle in adult stem cells.
        J Biol Rhythms. 2018; 33: 5-14
        • Balakrishnan A.
        • Stearns A.T.
        • Park P.J.
        • et al.
        MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts.
        Exp Cell Res. 2010; 316: 3512-3521
        • Siffroi-Fernandez S.
        • Dulong S.
        • Li X.M.
        • et al.
        Functional genomics identify Birc5/survivin as a candidate gene involved in the chronotoxicity of cyclin-dependent kinase inhibitors.
        Cell Cycle. 2014; 13: 984-991
        • Iwakiri R.
        • Gotoh Y.
        • Noda T.
        • et al.
        Programmed cell death in rat intestine: effect of feeding and fasting.
        Scand J Gastroenterol. 2001; 36: 39-47
        • Hattori T.
        • Arizono N.
        Cell kinetics and secretion of mucus in the gastrointestinal mucosa, and their diurnal rhythm.
        J Clin Gastroenterol. 1988; 10: S1-S6
        • Caballero S.
        • Pamer E.G.
        Microbiota-mediated inflammation and antimicrobial defense in the intestine.
        Annu Rev Immunol. 2015; 33: 227-256
        • Vaishnava S.
        • Yamamoto M.
        • Severson K.M.
        • et al.
        The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine.
        Science. 2011; 334: 255-258
        • de Kivit S.
        • Tobin M.C.
        • Forsyth C.B.
        • et al.
        Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics.
        Front Immunol. 2014; 5: 60
        • Mukherji A.
        • Kobiita A.
        • Ye T.
        • et al.
        Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs.
        Cell. 2013; 153: 812-827
        • Labrecque N.
        • Cermakian N.
        Circadian clocks in the immune system.
        J Biol Rhythms. 2015; 30: 277-290
        • Curtis A.M.
        • Fagundes C.T.
        • Yang G.
        • et al.
        Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1.
        Proc Natl Acad Sci U S A. 2015; 112: 7231-7236
        • Thaiss C.A.
        • Levy M.
        • Korem T.
        • et al.
        Microbiota diurnal rhythmicity programs host transcriptome oscillations.
        Cell. 2016; 167: 1495-1510.e12
        • Silver A.C.
        • Arjona A.
        • Hughes M.E.
        • et al.
        Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells.
        Brain Behav Immun. 2012; 26: 407-413
        • Keller M.
        • Mazuch J.
        • Abraham U.
        • et al.
        A circadian clock in macrophages controls inflammatory immune responses.
        Proc Natl Acad Sci U S A. 2009; 106: 21407-21412
        • Burns P.
        • Oddi S.
        • Forzani L.
        • et al.
        Variability in gut mucosal secretory IgA in mice along a working day.
        BMC Res Notes. 2018; 11: 98
        • Bollinger T.
        • Leutz A.
        • Leliavski A.
        • et al.
        Circadian clocks in mouse and human CD4+ T cells.
        PLoS One. 2011; 6: e29801
        • Fortier E.E.
        • Rooney J.
        • Dardente H.
        • et al.
        Circadian variation of the response of T cells to antigen.
        J Immunol. 2011; 187: 6291-6300
        • Yu X.
        • Rollins D.
        • Ruhn K.A.
        • et al.
        TH17 cell differentiation is regulated by the circadian clock.
        Science. 2013; 342: 727-730
        • Yang F.
        • Wang D.
        • Li Y.
        • et al.
        Th1/Th2 balance and Th17/treg-mediated immunity in relation to murine resistance to dextran sulfate-induced colitis.
        J Immunol Res. 2017; 20177047201
        • Escobedo G.
        • López-Ortiz E.
        • Torres-Castro I.
        Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance.
        Rev Invest Clin. 2014; 66: 450-459
        • Thaiss C.A.
        • Zmora N.
        • Levy M.
        • et al.
        The microbiome and innate immunity.
        Nature. 2016; 535: 65-74
        • Voigt R.M.
        • Summa K.C.
        • Forsyth C.B.
        • et al.
        The circadian clock mutation promotes intestinal dysbiosis.
        Alcohol Clin Exp Res. 2016; 40: 335-347
        • Michielan A.
        • D'Incà R.
        Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut.
        Mediators Inflamm. 2015; 2015628157
        • Hoogerwerf W.A.
        Role of clock genes in gastrointestinal motility.
        Am J Physiol Gastrointest Liver Physiol. 2010; 299: G549-G555
        • Ho Mien I.
        • Chua E.C.
        • Lau P.
        • et al.
        Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction.
        PLoS One. 2014; 9: e96532
        • Xu L.
        • Wu T.
        • Li H.
        • et al.
        An individual 12-h shift of the light-dark cycle alters the pancreatic and duodenal circadian rhythm and digestive function.
        Acta Biochim Biophys Sin. 2017; 49: 954-961
        • Johnson C.H.
        • Zhao C.
        • Xu Y.
        • et al.
        Timing the day: what makes bacterial clocks tick?.
        Nat Rev Microbiol. 2017; 15: 232-242
        • Marcinkevicius E.V.
        • Shirasu-Hiza M.M.
        Message in a biota: gut microbes signal to the circadian clock.
        Cell Host Microbe. 2015; 17: 541-543
        • Deaver J.A.
        • Eum S.Y.
        • Toborek M.
        Circadian disruption changes gut microbiome taxa and functional gene composition.
        Front Microbiol. 2018; 9: 737
        • Paulose J.K.
        • Wright J.M.
        • Patel A.G.
        • et al.
        Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity.
        PLoS One. 2016; 11e0146643
        • Zarrinpar A.
        • Chaix A.
        • Yooseph S.
        • et al.
        Diet and feeding pattern affect the diurnal dynamics of the gut microbiome.
        Cell Metab. 2014; 20: 1006-1017
        • Voigt R.M.
        • Forsyth C.B.
        • Green S.J.
        • et al.
        Circadian disorganization alters intestinal microbiota.
        PLoS One. 2014; 9: e97500
        • Liang X.
        • Bushman F.D.
        • FitzGerald G.A.
        Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock.
        Proc Natl Acad Sci U S A. 2015; 112: 10479-10484
        • Leone V.
        • Gibbons S.M.
        • Martinez K.
        • et al.
        Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
        Cell Host Microbe. 2015; 17: 681-689
        • Zarrinpar A.
        • Chaix A.
        • Xu Z.Z.
        • et al.
        Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism.
        Nat Commun. 2018; 9: 2872
        • Liang X.
        • Bultman S.J.
        Ticking in place for the microbiome to message out.
        Cell Metab. 2016; 24: 775-777
        • Round J.L.
        • O'Connell R.M.
        • Mazmanian S.K.
        Coordination of tolerogenic immune responses by the commensal microbiota.
        J Autoimmun. 2010; 34: J220-J225
        • Rapozo D.C.
        • Bernardazzi C.
        • de Souza H.S.
        Diet and microbiota in inflammatory bowel disease: the gut in disharmony.
        World J Gastroenterol. 2017; 23: 2124-2140
        • Kaczmarek J.L.
        • Thompson S.V.
        • Holscher H.D.
        Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health.
        Nutr Rev. 2017; 75: 673-682
        • Rosselot A.E.
        • Hong C.I.
        • Moore S.R.
        Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections.
        Curr Opin Gastroenterol. 2016; 32: 7-11
        • Polidarová L.
        • Houdek P.
        • Sumová A.
        Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon.
        Chronobiol Int. 2017; 34: 1273-1287
        • Pagel R.
        • Bär F.
        • Schröder T.
        • et al.
        Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.
        FASEB J. 2017; 31: 4707-4719
        • Xu H.
        • Li H.
        • Woo S.L.
        • et al.
        Myeloid cell-specific disruption of Period1 and Period2 exacerbates diet-induced inflammation and insulin resistance.
        J Biol Chem. 2014; 289: 16374-16388
        • Summa K.C.
        • Voigt R.M.
        • Forsyth C.B.
        • et al.
        Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation.
        PLoS One. 2013; 8: e67102
        • Liu X.
        • Yu R.
        • Zhu L.
        • et al.
        Bidirectional regulation of circadian disturbance and inflammation in inflammatory bowel disease.
        Inflamm Bowel Dis. 2017; 23: 1741-1751
        • Wu G.
        • Tang W.
        • He Y.
        • et al.
        Light exposure influences the diurnal oscillation of gut microbiota in mice.
        Biochem Biophys Res Commun. 2018; 501: 16-23
        • Poroyko V.A.
        • Carreras A.
        • Khalyfa A.
        • et al.
        Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice.
        Sci Rep. 2016; 6: 35405
        • Swanson G.R.
        • Gorenz A.
        • Shaikh M.
        • et al.
        Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking.
        Am J Physiol Gastrointest Liver Physiol. 2016; 311: G192-G201
        • Puttonen S.
        • Viitasalo K.
        • Härmä M.
        Effect of shiftwork on systemic markers of inflammation.
        Chronobiol Int. 2011; 28: 528-535
        • Zimmerman J.
        Extraintestinal symptoms in irritable bowel syndrome and inflammatory bowel diseases: nature, severity, and relationship to gastrointestinal symptoms.
        Dig Dis Sci. 2003; 48: 743-749
        • Keefer L.
        • Stepanski E.J.
        • Ranjbaran Z.
        • et al.
        An initial report of sleep disturbance in inactive inflammatory bowel disease.
        J Clin Sleep Med. 2006; 2: 409-416
        • Ranjbaran Z.
        • Keefer L.
        • Farhadi A.
        • et al.
        Impact of sleep disturbances in inflammatory bowel disease.
        J Gastroenterol Hepatol. 2007; 22: 1748-1753
        • Pirinen T.
        • Kolho K.L.
        • Simola P.
        • et al.
        Parent and self-report of sleep-problems and daytime tiredness among adolescents with inflammatory bowel disease and their population-based controls.
        Sleep. 2010; 33: 1487-1493
        • Burgess H.J.
        • Swanson G.R.
        • Keshavarzian A.
        Endogenous melatonin profiles in asymptomatic inflammatory bowel disease.
        Scand J Gastroenterol. 2010; 45: 759-761
        • Graff L.A.
        • Vincent N.
        • Walker J.R.
        • et al.
        A population-based study of fatigue and sleep difficulties in inflammatory bowel disease.
        Inflamm Bowel Dis. 2011; 17: 1882-1889
        • Mazzoccoli G.
        • Palmieri O.
        • Corritore G.
        • et al.
        Association study of a polymorphism in clock gene PERIOD3 and risk of inflammatory bowel disease.
        Chronobiol Int. 2012; 29: 994-1003
        • Ali T.
        • Madhoun M.F.
        • Orr W.C.
        • et al.
        Assessment of the relationship between quality of sleep and disease activity in inflammatory bowel disease patients.
        Inflamm Bowel Dis. 2013; 19: 2440-2443
        • Graff L.A.
        • Clara I.
        • Walker J.R.
        • et al.
        Changes in fatigue over 2 years are associated with activity of inflammatory bowel disease and psychological factors.
        Clin Gastroenterol Hepatol. 2013; 11: 1140-1146
        • Benhayon D.
        • Youk A.
        • McCarthy F.N.
        • et al.
        Characterization of relations among sleep, inflammation, and psychiatric dysfunction in depressed youth with Crohn disease.
        J Pediatr Gastroenterol Nutr. 2013; 57: 335-342
        • Ananthakrishnan A.N.
        • Long M.D.
        • Martin C.F.
        • et al.
        Sleep disturbance and risk of active disease in patients with Crohn's disease and ulcerative colitis.
        Clin Gastroenterol Hepatol. 2013; 11: 965-971
        • Ananthakrishnan A.N.
        • Khalili H.
        • Konijeti G.G.
        • et al.
        Sleep duration affects risk for ulcerative colitis: a prospective cohort study.
        Clin Gastroenterol Hepatol. 2014; 12: 1879-1886
        • Wilson R.G.
        • Stevens B.W.
        • Guo A.Y.
        • et al.
        High C-reactive protein is associated with poor sleep quality independent of nocturnal symptoms in patients with inflammatory bowel disease.
        Dig Dis Sci. 2015; 60: 2136-2143
        • van Langenberg D.R.
        • Papandony M.C.
        • Gibson P.R.
        Sleep and physical activity measured by accelerometry in Crohn's disease.
        Aliment Pharmacol Ther. 2015; 41: 991-1004
        • Palmieri O.
        • Mazzoccoli G.
        • Bossa F.
        • et al.
        Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome.
        Chronobiol Int. 2015; 32: 903-916
        • Chrobak A.A.
        • Nowakowski J.
        • Zwolińska-Wcisło M.
        • et al.
        Associations between chronotype, sleep disturbances and seasonality with fatigue and inflammatory bowel disease symptoms.
        Chronobiol Int. 2018; 8: 1-11
        • Chakradeo P.S.
        • Keshavarzian A.
        • Singh S.
        • et al.
        Chronotype, social jet lag, sleep debt and food timing in inflammatory bowel disease.
        Sleep Med. 2018; 52: 188-195