Advertisement

Translational research in pulmonary fibrosis

  • Author Footnotes
    1 Susan K Mathai, MD is a member of the Interstitial Lung Disease Program at Baylor University Medical Center at Dallas and a Clinical Associate Professor at the Texas A&M University College of Medicine. Dr. Mathai is pursuing a career in clinical care and clinical and translational research in interstitial lung disease.
    Susan K. Mathai
    Correspondence
    Reprint requests: Susan K. Mathai, Interstitial Lung Disease Program, Center for Advanced Heart & Lung Disease, Baylor University Medical Center at Dallas, 3410 Worth Street, #250, Dallas, TX 75246.
    Footnotes
    1 Susan K Mathai, MD is a member of the Interstitial Lung Disease Program at Baylor University Medical Center at Dallas and a Clinical Associate Professor at the Texas A&M University College of Medicine. Dr. Mathai is pursuing a career in clinical care and clinical and translational research in interstitial lung disease.
    Affiliations
    Interstitial Lung Disease Program, Center for Advanced Heart & Lung Disease, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas

    Department of Internal Medicine, Texas A&M University College of Medicine
    Search for articles by this author
  • David A. Schwartz
    Affiliations
    Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
    Search for articles by this author
  • Author Footnotes
    1 Susan K Mathai, MD is a member of the Interstitial Lung Disease Program at Baylor University Medical Center at Dallas and a Clinical Associate Professor at the Texas A&M University College of Medicine. Dr. Mathai is pursuing a career in clinical care and clinical and translational research in interstitial lung disease.
Published:February 05, 2019DOI:https://doi.org/10.1016/j.trsl.2019.02.001
      Pulmonary fibrosis refers to the development of diffuse parenchymal abnormalities in the lung that cause dyspnea, cough, hypoxemia, and impair gas exchange, ultimately leading to respiratory failure. Though pulmonary fibrosis can be caused by a variety of underlying etiologies, ranging from genetic defects to autoimmune diseases to environmental exposures, once fibrosis develops it is irreversible and most often progressive, such that fibrosis of the lung is one of the leading indications for lung transplantation. This review aims to provide a concise summary of the recent advances in our understanding of the genetics and genomics of pulmonary fibrosis, idiopathic pulmonary fibrosis in particular, and how these recent discoveries may be changing the clinical approach to diagnosing and treating patients with fibrotic interstitial lung disease.

      Abbreviations:

      IPF (Idiopathic pulmonary fibrosis), IIP (idiopathic interstitial pneumonia), ILD (interstitial lung disease), ATP (adenosine triphosphate), FIP (Familial Interstitial Pneumonia), GC (ground glass), FVC (forced vital capacity), TNF (tumor necrosis factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Raghu G.
        • Remy-Jardin M.
        • Myers J.L.
        • et al.
        Diagnosis of idiopathic pulmonary fibrosis an official ATS/ERS/JRS/ALAT clinical practice guideline.
        Am J Respir Crit Care Med. 2018; 198: e44-e68
        • Travis W.D.
        • Costabel U.
        • Hansell D.M.
        • et al.
        An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias.
        Am J Respir Crit Care Med. 2013; 188: 733-748
        • Hutchinson J.P.
        • McKeever T.M.
        • Fogarty A.W.
        • Navaratnam V.
        • Hubbard R.B.
        Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century.
        Ann Am Thorac Soc. 2014; 11: 1176-1185
        • Hutchinson J.
        • Fogarty A.
        • Hubbard R.
        • McKeever T.
        Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review.
        Eur Respir J. 2015; 46: 795-806
        • Fingerlin T.E.
        • Murphy E.
        • Zhang W.
        • et al.
        Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis.
        Nat Genet. 2013; 45 (Nature Publishing Group): 613-620
        • Seibold M.A.
        • Wise A.
        • Speer M.
        • et al.
        A common MUC5B promoter polymorphism and pulmonary fibrosis.
        N Engl J Med. 2011; 364: 1503-1512
        • Assad N.
        • Sood A.
        • Campen M.J.
        • Zychowski K.E.
        Metal-induced pulmonary fibrosis.
        Curr Environ Health Rep. 2018; : 1-13
        • Gulati M.
        • Redlich C.A.
        Asbestosis and environmental causes of usual interstitial pneumonia.
        Curr Opin Pulm Med. 2015; 21: 193-200
        • Vehmas T.
        • Oksa P.
        Chest HRCT signs predict deaths in long-term follow-up among asbestos exposed workers.
        Eur J Radiol. 2014; 83: 1983-1987
        • Fontenot A.P.
        • Falta M.T.
        • Kappler J.W.
        • Dai S.
        • McKee A.S.
        Beryllium-induced hypersensitivity: genetic susceptibility and neoantigen generation.
        J Immunol. 2016; 196: 22-27
        • Fontenot A.P.
        • Kotzin B.L.
        Chronic beryllium disease: immune-mediated destruction with implications for organ-specific autoimmunity.
        Tissue Antigens. 2003; 62: 449-458
        • Balmes J.R.
        • Abraham J.L.
        • Dweik R.A.
        • et al.
        An official American Thoracic Society statement: diagnosis and management of beryllium sensitivity and chronic beryllium disease.
        Am J Respir Crit Care Med. 2014; 190: e34-e59
        • Richeldi L.
        • Sorrentino R.
        • Saltini C.
        HLA-DPB1 glutamate 69: a genetic marker of beryllium disease.
        Science. 1993; 262: 242-244
        • Spagnolo P.
        • Rossi G.
        • Cavazza A.
        • et al.
        Hypersensitivity pneumonitis: a comprehensive review.
        J Investig Allergol Clin Immunol. 2015; 25 (quiz follow 250): 237-250
        • Silva C.I.S.
        • Müller N.L.
        • Lynch D.A.
        • et al.
        Chronic hypersensitivity pneumonitis: differentiation from idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia by using thin-section CT.
        Radiology. 2008; 246: 288-297
        • Tochimoto A.
        • Kawaguchi Y.
        • Yamanaka H.
        Genetic susceptibility to interstitial lung disease associated with systemic sclerosis.
        Clin Med Insights Circ Respir Pulm Med. 2015; 9s1: 135-140
        • Briggs D.C.
        • Vaughan R.W.
        • Welsh K.I.
        • Myers A.
        • duBois R.M.
        • Black C.M.
        Immunogenetic prediction of pulmonary fibrosis in systemic sclerosis.
        Lancet. 1991; 338: 661-662
        • Bouros D.
        • Wells A.U.
        • Nicholson A.G.
        • et al.
        Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome.
        Am J Respir Crit Care Med. 2002; 165: 1581-1586
        • Spagnolo P.
        • Lee J.S.
        • Sverzellati N.
        • Rossi G.
        • Cottin V.
        The lung in rheumatoid arthritis: focus on interstitial lung disease.
        Arthritis Rheumatol. 2018; 70: 1544-1554
        • Kim E.J.
        • Elicker B.M.
        • Maldonado F.
        • et al.
        Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease.
        Eur Respir J. 2010; 35: 1322-1328
        • Chen E.S.
        • Wahlström J.
        • Song Z.
        • et al.
        T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen in systemic sarcoidosis.
        J Immunol. 2008; 181: 8784-8796
        • Yunt Z.X.
        • Chung J.H.
        • Hobbs S.
        • et al.
        High resolution computed tomography pattern of usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease: relationship to survival.
        Respir Med. 2017; 126: 100-104
        • Raghu G.
        • Chen S.Y.
        • Hou Q.
        • Yeh W.S.
        • Collard H.R.
        Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old.
        Eur Respir J. 2016; 48: 179-186
        • Lynch D.A.
        • Sverzellati N.
        • Travis W.D.
        • et al.
        Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper.
        Lancet Respir Med. 2017; 2600: 1-16
        • Raghu G.
        • Collard H.R.
        • Egan J.J.
        • et al.
        An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
        Am J Respir Crit Care Med. 2011; 183: 788-824
        • Bjoraker J.A.
        • Ryu J.H.
        • Edwin M.K.
        • et al.
        Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 1998; 157: 199-203
        • Ley B.
        • Collard H.R.
        • King T.E.
        Clinical course and prediction of survival in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2011; 183: 431-440
        • Richeldi L.
        • du Bois R.M.
        • Raghu G.
        Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis.
        N Engl J Med. 2014; 370: 2071-2082
        • King T.E.
        • Bradford W.Z.
        • Castro-Bernardini S.
        • et al.
        A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.
        N Engl J Med. 2014; 370: 2083-2092
        • Savarino E.
        • Carbone R.
        • Marabotto E.
        • et al.
        Gastro-oesophageal reflux and gastric aspiration in idiopathic pulmonary fibrosis patients.
        Eur Respir J. 2013; 42: 1322-1331
        • Win T.
        • Screaton N.J.
        • Porter J.C.
        • et al.
        Pulmonary 18F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF).
        Eur J Nucl Med Mol Imaging. 2018; 45: 806-815
        • Justet A.
        • Laurent-Bellue A.
        • Thabut G.
        • et al.
        [18F]FDG PET/CT predicts progression-free survival in patients with idiopathic pulmonary fibrosis.
        Respir Res. 2017; 18: 1-10
        • Hodgson U.
        • Laitinen T.
        • Tukiainen P.
        Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland.
        Thorax. 2002; 57: 338-342
        • Cogan J.D.
        • Kropski J.A.
        • Zhao M.
        • et al.
        Rare variants in RTEL1 are associated with familial interstitial pneumonia.
        Am J Respir Crit Care Med. 2015; 191: 646-655
        • Marshall R.P.
        • Puddicombe a.
        • Cookson W.O.
        • Laurent G.J.
        Adult familial cryptogenic fibrosing alveolitis in the United Kingdom.
        Thorax. 2000; 55: 143-146
        • Lawson W.E.
        • Loyd J.E.
        The genetic approach in pulmonary fibrosis: can it provide clues to this complex disease?.
        Proc Am Thorac Soc. 2006; 3: 345-349
        • Loyd J.E.
        Pulmonary fibrosis in families.
        Am J Respir Cell Mol Biol. 2003; 29: S47-S50
        • Kropski J.A.
        • Mitchell D.B.
        • Markin C.
        • et al.
        A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia.
        Chest. 2014; 146: e1-e7
        • García-Sancho C.
        • Buendía-Roldán I.
        • Fernández-Plata M.R.
        • et al.
        Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis.
        Respir Med. 2011; 105: 1902-1907
        • Bitterman P.B.
        • Rennard S.I.
        • Keogh B.A.
        • Wewers M.D.
        • Adelberg S.
        • Crystal R.G.
        Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members.
        N Engl J Med. 1986; 314: 1343-1347
        • Fernandez B.A.
        • Fox G.
        • Bhatia R.
        • et al.
        A newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features.
        Respir Res. 2012; 13: 64
        • Lawson W.E.
        • Grant S.W.
        • Ambrosini V.
        • et al.
        Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF.
        Thorax. 2004; 59: 977-980
        • Nogee L.M.
        • Dunbar A.E.
        • Wert S.E.
        • Askin F.
        • Hamvas A.
        • Whitsett J.A.
        A mutation in the surfactant protein C gene associated with familial interstitial lung disease.
        N Engl J Med. 2001; 344: 573-579
        • Wang Y.
        • Kuan P.J.
        • Xing C.
        • et al.
        Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer.
        Am J Hum Genet. 2009; 84: 52-59
        • Amin R.S.
        • Wert S.E.
        • Baughman R.P.
        • et al.
        Surfactant protein deficiency in familial interstitial lung disease.
        J Pediatr. 2001; 139: 85-92
        • Whitsett J.A.
        • Weaver T.E.
        Hydrophobic surfactant proteins in lung function and disease.
        N Engl J Med. 2002; 347: 2141-2148
        • Glasser S.W.
        • Detmer E.A.
        • Ikegami M.
        • Na C.-L.
        • Stahlman M.T.
        • Whitsett J.A.
        Pneumonitis and emphysema in SP-C gene targeted mice.
        J Biol Chem. 2003; 278: 14291-14298
        • Glasser S.W.
        • Eszterhas S.K.
        • Detmer E.A.
        • Maxfield M.D.
        • Korfhagen T.R.
        The murine SP-C promoter directs type II cell-specific expression in transgenic mice.
        Am J Physiol Lung Cell Mol Physiol. 2005; 288: L625-L632
        • Kröner C.
        • Reu S.
        • Teusch V.
        • et al.
        Genotype alone does not predict the clinical course of SFTPC deficiency in paediatric patients.
        Eur Respir J. 2015; 46: 197-206
        • Brasch F.
        • Birzele J.
        • Ochs M.
        • et al.
        Surfactant proteins in pulmonary alveolar proteinosis in adults.
        Eur Respir J. 2004; 24: 426-435
        • Cameron H.S.
        • Somaschini M.
        • Carrera P.
        • et al.
        A common mutation in the surfactant protein C gene associated with lung disease.
        J Pediatr. 2005; 146: 370-375
        • Hamvas A.
        • Nogee L.M.
        • White F.V.
        • et al.
        Progressive lung disease and surfactant dysfunction with a deletion in surfactant protein C gene.
        Am J Respir Cell Mol Biol. 2004; 30: 771-776
        • Nogee L.M.
        • Dunbar A.E.
        • Wert S.
        • Askin F.
        • Hamvas A.
        • Whitsett J.A.
        Mutations in the surfactant protein C gene associated with interstitial lung disease.
        Chest. 2002; 121: 20S-21S
        • Tredano M.
        • Griese M.
        • Brasch F.
        • et al.
        Mutation of SFTPC in infantile pulmonary alveolar proteinosis with or without fibrosing lung disease.
        Am J Med Genet A. 2004; 126A: 18-26
        • Van Moorsel C.H.M.
        • Van Oosterhout M.F.M.
        • Barlo N.P.
        • et al.
        Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a Dutch cohort.
        Am J Respir Crit Care Med. 2010; 182: 1419-1425
        • Bullard J.E.
        • Wert S.E.
        • Whitsett J.A.
        • Dean M.
        • Nogee L.M.
        ABCA3 mutations associated with pediatric interstitial lung disease.
        Am J Respir Crit Care Med. 2005; 172: 1026-1031
        • Bullard J.E.
        • Nogee L.M.
        Heterozygosity for ABCA3 mutations modifies the severity of lung disease associated with a surfactant protein C gene (SFTPC) mutation.
        Pediatr Res. 2007; 62: 176-179
        • Young L.R.
        • Nogee L.M.
        • Barnett B.
        • Panos R.J.
        • Colby T V.
        • Deutsch G.H.
        Usual interstitial pneumonia in an adolescent with ABCA3 mutations.
        Chest. 2008; 134: 192-195
        • Beers M.F.
        • Mulugeta S.
        Surfactant protein C biosynthesis and its emerging role in conformational lung disease.
        Annu Rev Physiol. 2005; 67: 663-696
        • Lawson W.E.
        • Crossno P.F.
        • Polosukhin V V.
        • et al.
        Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection.
        Am J Physiol Lung Cell Mol Physiol. 2008; 294: L1119-L1126
        • Bridges J.P.
        • Wert S.E.
        • Nogee L.M.
        • Weaver T.E.
        Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice.
        J Biol Chem. 2003; 278: 52739-52746
        • Mulugeta S.
        • Maguire J.A.
        • Newitt J.L.
        • Russo S.J.
        • Kotorashvili A.
        • Beers M.F.
        Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms.
        Am J Physiol Lung Cell Mol Physiol. 2007; 293: L720-L729
        • Mulugeta S.
        • Nguyen V.
        • Russo S.J.
        • Muniswamy M.
        • Beers M.F.
        A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation.
        Am J Respir Cell Mol Biol. 2005; 32: 521-530
        • Nureki S.-I.
        • Tomer Y.
        • Venosa A.
        • et al.
        Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis.
        J Clin Invest. 2018; 128: 4008-4024
        • Armanios M.
        • Blackburn E.H.
        The telomere syndromes.
        Nat Rev Genet. 2012; 13: 693-704
        • Armanios M.Y.
        • Chen J.J.-L.
        • Cogan J.D.
        • et al.
        Telomerase mutations in families with idiopathic pulmonary fibrosis.
        N Engl J Med. 2007; 356: 1317-1326
        • Tsakiri K.D.
        • Cronkhite J.T.
        • Kuan P.J.
        • et al.
        Adult-onset pulmonary fibrosis caused by mutations in telomerase.
        Proc Natl Acad Sci USA. 2007; 104: 7552-7557
        • Vulliamy T.
        • Dokal I.
        Dyskeratosis congenita.
        Semin Hematol. 2006; 43: 157-166
        • Armanios M.
        • Chen J.-L.
        • Chang Y.-P.C.
        • et al.
        Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita.
        Proc Natl Acad Sci USA. 2005; 102: 15960-15964
        • Vulliamy T.
        • Marrone A.
        • Szydlo R.
        • Walne A.
        • Mason P.J.
        • Dokal I.
        Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC.
        Nat Genet. 2004; 36: 447-449
        • Vulliamy T.
        • Marrone A.
        • Goldman F.
        • et al.
        The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.
        Nature. 2001; 413: 432-435
        • Alder J.K.
        • Chen J.J.-L.
        • Lancaster L.
        • et al.
        Short telomeres are a risk factor for idiopathic pulmonary fibrosis.
        Proc Natl Acad Sci USA. 2008; 105: 13051-13056
        • Cronkhite J.
        • Xing C.
        • Raghu G.
        Telomere shortening in familial and sporadic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2008; 178: 729-737
        • Borie R.
        • Tabèze L.
        • Thabut G.
        • et al.
        Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis.
        Eur Respir J. 2016; 48: 1721-1731
        • Parry E.M.
        • Alder J.K.
        • Qi X.
        • Chen J.J.-L.
        • Armanios M.
        Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase.
        Blood. 2011; 117: 5607-5611
        • Stuart B.D.
        • Choi J.
        • Zaidi S.
        • et al.
        Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening.
        Nat Genet. 2015; 47 (Nature Publishing Group): 512-517
        • Kannengiesser C.
        • Borie R.
        • Menard C.
        • et al.
        Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.
        Eur Respir J. 2015; 46: 474-485
        • Juge P.-A.
        • Borie R.
        • Kannengiesser C.
        • et al.
        Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis.
        Eur Respir J. 2017; 491602314
        • Alder J.K.
        • Barkauskas C.E.
        • Limjunyawong N.
        • et al.
        Telomere dysfunction causes alveolar stem cell failure.
        Proc Natl Acad Sci. 2015; 112201504780
        • Mushiroda T.
        • Wattanapokayakit S.
        • Takahashi A.
        • et al.
        A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis.
        J Med Genet. 2008; 45: 654-656
        • Seibold M.A.
        • Wise A.L.
        • Speer M.C.
        • et al.
        A common MUC5B promoter polymorphism and pulmonary fibrosis.
        N Engl J Med. 2012; 364: 1503-1512
        • Seibold M.A.
        • Smith R.W.
        • Urbanek C.
        • et al.
        The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary pseudostratified epithelium.
        PLoS One. 2013; 8e58658
        • Zhang Y.
        • Noth I.
        • Garcia J.G.N.
        • Kaminski N.
        A variant in the promoter of MUC5B and idiopathic pulmonary fibrosis NT5E mutations and arterial calcifications.
        N Engl J Med. 2011; 364: 1576-1577
        • Stock C.J.
        • Sato H.
        • Fonseca C.
        • et al.
        Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis.
        Thorax. 2013; 68: 436-441
        • Noth I.
        • Zhang Y.
        • Ma S.-F.
        • et al.
        Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study.
        Lancet Respir Med. 2013; 1 (Elsevier Ltd): 309-317
        • Borie R.
        • Crestani B.
        • Dieude P.
        • et al.
        The MUC5B variant is associated with idiopathic pulmonary fibrosis but not with systemic sclerosis interstitial lung disease in the European Caucasian population.
        PLoS One. 2013; 8: e70621
        • Wei R.
        • Li C.
        • Zhang M.
        • et al.
        Association between MUC5B and TERT polymorphisms and different interstitial lung disease phenotypes.
        Transl Res Mosby. 2014; 163 (Inc): 494-502
        • Horimasu Y.
        • Ohshimo S.
        • Bonella F.
        • et al.
        MUC5B promoter polymorphism in Japanese patients with idiopathic pulmonary fibrosis.
        Respirology. 2015; 20: 439-444
        • Peljto A.L.
        • Selman M.
        • Kim D.S.
        • et al.
        The MUC5B promoter polymorphism is associated with idiopathic pulmonary fibrosis in a Mexican cohort but is rare among Asian ancestries.
        Chest. 2015; 147: 460-464
        • Ley B.
        • Collard H.R.
        Epidemiology of idiopathic pulmonary fibrosis.
        Clin Epidemiol. 2013; 5: 483-492
      1. (NCBI) NC for BI. dbSNP entry for rs35705950. http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=357.

        • Yang I.V.
        • Schwartz D.A.
        Epigenetics of idiopathic pulmonary fibrosis.
        Transl Res. 2015; 165 (Elsevier Inc): 48-60
        • Ley B.
        • Newton C.A.
        • Arnould I.
        • et al.
        The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. 5. Lancet Respir Med. Elsevier Ltd, 2017: 639-647
        • Juge P.-A.
        • Lee J.S.
        • Ebstein E.
        • et al.
        MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease.
        N Engl J Med. 2018; 379: 2209-2219
        • Mathai S.K.
        • Yang I.V.
        • Schwarz M.I
        • Schwartz D.A.
        Incorporating genetics into the identification and treatment of idiopathic pulmonary fibrosis.
        BMC Med. 2015; 13: 191
        • Yang I.V.
        • Fingerlin T.E.
        • Evans C.M
        • Schwarz M.I.
        • Schwartz D.A.
        MUC5B and idiopathic pulmonary fibrosis.
        Ann Am Thorac Soc. 2015; 12: S193-S199
        • Mathai S.K.
        • Schwartz D.A.
        • Warg L.A.
        Genetic susceptibility and pulmonary fibrosis.
        Curr Opin Pulm Med. 2014; 20: 429-435
        • Noth I.
        • Zhang Y.
        • Ma S.F.
        • et al.
        Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study.
        Lancet Respir Med. 2013; 1: 309-317
        • Oldham J.M.
        • Ma S.F.
        • Martinez F.J.
        • et al.
        TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2015; 192: 1475-1482
        • Dressen A.
        • Abbas A.R.
        • Cabanski C.
        • et al.
        Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study.
        Lancet Respir Med. 2018; 2600 (Elsevier Ltd): 1-12
        • Hancock L.A.
        • Hennessy C.E.
        • Solomon G.M.
        • et al.
        Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice.
        Nat Commun. 2018; 9: 5363
        • Peljto A.L.
        • Zhang Y.
        • Fingerlin T.E.
        • et al.
        Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis.
        JAMA. 2013; 309: 2232-2239
      2. Dudbridge F, Allen RJ, Sheehan NA, et al. Adjustment for index event bias in genome-wide association studies of subsequent events. bioRxiv 2018, bioRxiv.

        • de Leon A.D.
        • Cronkhite J.T.
        • Katzenstein AL a
        • et al.
        Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations.
        PLoS One. 2010; 5: e10680
        • Diaz De Leon A.
        • Cronkhite J.T.
        • Yilmaz C.
        • et al.
        Subclinical lung disease, macrocytosis, and premature graying in kindreds with telomerase (TERT) mutations.
        Chest. 2011; 140: 753-763
        • Newton C.A.
        • Batra K.
        • Torrealba J.
        • et al.
        Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive.
        Eur Respir J. 2016; 093096: 1-11
        • Stuart B.D.
        • Lee J.S.
        • Kozlitina J.
        • et al.
        Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation.
        Lancet Respir Med. 2014; 2 (Elsevier Ltd): 557-565
        • Yang I.V.
        • Coldren C.D.
        • Leach S.M.
        • et al.
        Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis.
        Thorax. 2013; 68: 1114-1121
        • Herazo-Maya J.D.
        • Noth I.
        • Duncan S.R
        • et al.
        Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis.
        Sci Transl Med. 2013; 5 (205ra136)
        • Huang Y.
        • Ma S.-F.
        • Vij R.
        • et al.
        A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis.
        BMC Pulm Med. 2015; 15: 147
        • Raghu G.
        • Anstrom K.J.
        • King T.E.
        • Lasky J.A.
        • Martinez F.J.
        Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis.
        N Engl J Med. 2012; 366: 1968-1977
        • Martinez F.J.
        • de Andrade J.A.
        • Anstrom K.J.
        • King T.E.
        • Raghu G.
        • Idiopathic Pulmonary Fibrosis Clinical Research Network
        Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis.
        N Engl J Med. 2014; 370: 2093-2101
        • Tokman S.
        • Singer J.P.
        • Devine M.S.
        • et al.
        Clinical outcomes of lung transplant recipients with telomerase mutations.
        J Heart Lung Transplant. 2015; 34 (Elsevier): 1318-1324
        • Silhan L.L.
        • Shah P.D.
        • Chambers D.C.
        • et al.
        Lung transplantation in telomerase mutation carriers with pulmonary fibrosis.
        Eur Respir J. 2014; 44: 178-187
        • Borie R.
        • Kannengiesser C.
        • Hirschi S.
        • et al.
        Severe hematologic complications after lung transplantation in patients with telomerase complex mutations.
        J Heart Lung Transplant. 2015; 34 (Elsevier): 538-546
        • Newton C.A.
        • Kozlitina J.
        • Lines J.R.
        • Kaza V.
        • Torres F.
        • Garcia C.K.
        Telomere length in patients with pulmonary fibrosis associated with chronic lung allograft dysfunction and post-lung transplantation survival.
        J Heart Lung Transplant. 2017; 36 (Elsevier Inc.): 845-853
        • Ando M.
        • Hirayama K.
        • Soda K.
        • Okubo R.
        • Araki S.
        • Sasazuki T.
        HLA-DQw3 in Japanese summer-type hypersensitivity pneumonitis induced by trichosporon cutaneum.
        Am Rev Respir Dis. 1989; 140: 948-950
        • Camarena A.
        • Juarez A.
        • Mejia M.
        • et al.
        Major histocompatibility complex and tumor necrosis factor-alpha polymorphisms in pigeon breeder's disease.
        Am J Respir Crit Care Med. 2001; 163: 1528-1533
        • Selman M.
        • Terán L.
        • Mendoza A.
        • et al.
        Increase of HLA-DR7 in pigeon breeder's lung in a Mexican population.
        Clin Immunol Immunopathol. 1987; 44: 63-70
        • Selman M.
        • Pardo A.
        • King T.E.
        Hypersensitivity pneumonitis: insights in diagnosis and pathobiology.
        Am J Respir Crit Care Med. 2012; 186: 314-324
        • Janssen R.
        • Kruit A.
        • Grutters J.C.
        • Ruven H.J.T.
        • Van Moorsel C.M.H.
        • Van Den Bosch J.M.M.
        TIMP-3 promoter gene polymorphisms in BFL.
        Thorax. 2005; 60: 974
        • Hill M.R.
        • Briggs L.
        • Montaño M.M.
        • et al.
        Promoter variants in tissue inhibitor of metalloproteinase-3 (TIMP-3) protect against susceptibility in pigeon breeders’ disease.
        Thorax. 2004; 59: 586-590
        • Camarena Á.
        • Aquino-Galvez A.
        • Falfán-Valencia R.
        • et al.
        PSMB8 (LMP7) but not PSMB9 (LMP2) gene polymorphisms are associated to pigeon breeder's hypersensitivity pneumonitis.
        Respir Med. 2010; 104: 889-894
        • Aquino-Galvez A.
        • Camarena Á.
        • Montaño M.
        • et al.
        Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis.
        Exp Mol Pathol. 2008; 84: 173-177
        • Schaaf B.M.
        • Seitzer U.
        • Pravica V.
        • Aries S.P.
        • Zabel P.
        Tumor necrosis factor-α-308 promoter gene polymorphism and increased tumor necrosis factor serum bioactivity in farmer's lung patients.
        Am J Respir Crit Care Med. 2001; 163: 379-382
        • Radstake T.R.D.J.
        • Gorlova O.
        • Rueda B.
        • et al.
        Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus.
        Nat Genet. 2010; 42: 426-429
        • Gourh P.
        • Agarwal S.K.
        • Divecha D.
        • et al.
        Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene–gene interaction and alterations in Th1/Th2 cytokines.
        Arthritis Rheum. 2009; 60: 3794-3806
        • Dieudé P.
        • Guedj M.
        • Wipff J.
        • et al.
        Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis.
        Arthritis Rheum. 2009; 60: 225-233
        • Rueda B.
        • Broen J.
        • Simeon C.
        • et al.
        The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype.
        Hum Mol Genet. 2009; 18: 2071-2077
        • Kawaguchi Y.
        • Ota Y.
        • Kawamoto M.
        • et al.
        Association study of a polymorphism of the CTGF gene and susceptibility to systemic sclerosis in the Japanese population.
        Ann Rheum Dis. 2009; 68: 1921-1924
        • Zhou X.
        • Tan F.K.
        • Wang N.
        • et al.
        Genome-wide association study for regions of systemic sclerosis susceptibility in a Choctaw Indian population with high disease prevalence.
        Arthritis Rheum. 2003; 48: 2585-2592
        • Hunninghake G.M.
        • Hatabu H.
        • Okajima Y.
        • et al.
        MUC5B promoter polymorphism and interstitial lung abnormalities.
        N Engl J Med. 2013; 368: 2192-2200
        • Putman R.K.
        • Hatabu H.
        • Araki T.
        • et al.
        Association between interstitial lung abnormalities and all-cause mortality.
        JAMA. 2016; 315: 672
        • Araki T.
        • Putman R.K.
        • Hatabu H.
        • et al.
        Development and progression of interstitial lung abnormalities in the Framingham Heart Study.
        Am J Respir Crit Care Med. 2016; 194 (Epub ahead of print): 1514-1522

      CHORUS Manuscript

      View Open Manuscript