Advertisement

The cellular basis of fibrotic tendon healing: challenges and opportunities

  • Anne E.C. Nichols
    Affiliations
    Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
    Search for articles by this author
  • Katherine T. Best
    Affiliations
    Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
    Search for articles by this author
  • Alayna E. Loiselle
    Correspondence
    Reprint requests: Alayna E. Loiselle, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY 14642.
    Affiliations
    Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
    Search for articles by this author
Published:February 07, 2019DOI:https://doi.org/10.1016/j.trsl.2019.02.002
      Tendon injuries are common and can dramatically impair patient mobility and productivity, resulting in a significant socioeconomic burden and reduced quality of life. Because the tendon healing process results in the formation of a fibrotic scar, injured tendons never regain the mechanical strength of the uninjured tendon, leading to frequent reinjury. Many tendons are also prone to the development of peritendinous adhesions and excess scar formation, which further reduce tendon function and lead to chronic complications. Despite this, there are currently no treatments that adequately improve the tendon healing process due in part to a lack of information regarding the contributions of various cell types to tendon healing and how their activity may be modulated for therapeutic value. In this review, we summarize recent efforts to identify and characterize the distinct cell populations involved at each stage of tendon healing. In addition, we examine the mechanisms through which different cell populations contribute to the fibrotic response to tendon injury, and how these responses can be affected by systemic factors and comorbidities. We then discuss gaps in our current understanding of tendon fibrosis and highlight how new technologies and research areas are shedding light on this clinically important and intractable challenge. A better understanding of the complex cellular environment during tendon healing is crucial to the development of new therapies to prevent fibrosis and promote tissue regeneration.

      Abbreviations:

      αSMA (alpha smooth muscle actin), Col1 (collagen type I), ECM (extracellular matrix), Scx (scleraxis), Tnmd (tenomodulin), TGF-β (transforming growth factor β), TSPC (tendon stem/progenitor cell), T2DM (type II diabetes mellitus), scRNA (single cell RNA-sequencing)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. United States Bone and Joint Initiative: The burden of musculoskeletal diseases in the United States (BMUS). Rosemont, IL. Available at: http://www.boneandjointburden.org.

      2. Bureau of Labor Statistics. Available at: https://www.bls.gov/.

        • Raikin S.M.
        • Garras D.N.
        • Krapchev P.V.
        Achilles tendon injuries in a united states population.
        Foot Ankle Int. 2013; 34: 475-480
        • Paloneva J.
        • Lepola V.
        • Äärimaa V.
        • et al.
        Increasing incidence of rotator cuff repairs–a nationwide registry study in Finland.
        BMC Musculoskelet Disord. 2015; 16: 189
        • de Jong J.P.
        • Nguyen J.T.
        • Sonnema A.J.
        • et al.
        The incidence of acute traumatic tendon injuries in the hand and wrist: a 10-year population-based study.
        Clin Orthop Surg. 2014; 6: 196-202
        • Glaviano N.R.
        • Kew M.
        • Hart J.M.
        • et al.
        Demographic and epidemiological trends in patellofemoral pain.
        Int J Sports Phys Ther. 2015; 10: 281-290
        • Whalen W.P.
        Utilization of scar tissue in bridging tendon defects.
        Ann Surg. 1951; 133: 567-571
        • Tempfer H.
        • Traweger A.
        Tendon vasculature in health and disease.
        Front Physiol. 2015; 6: 330
        • Miyashita H.
        • Ochi M.
        • Ikuta Y.
        Histological and biomechanical observations of the rabbit patellar tendon after removal of its central one-third.
        Arch Orthop Trauma Surg. 1997; 116: 454-462
        • Abate M.
        • Silbernagel K.G.
        • Siljeholm C.
        • et al.
        Pathogenesis of tendinopathies: inflammation or degeneration?.
        Arthritis Res Ther. 2009; 11: 235
        • Astrom M.
        • Rausing A.
        Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings.
        Clin Orthop Relat Res. 1995; : 151-164
        • Longo U.G.
        • Franceschi F.
        • Ruzzini L.
        • et al.
        Histopathology of the supraspinatus tendon in rotator cuff tears.
        Am J Sports Med. 2008; 36: 533-538
        • Watson M.
        The determinants of flexor tendon fibrosis following trauma: an experimental study in rabbits.
        Hand. 1978; 10: 150-153
        • Strickland J.W.
        The scientific basis for advances in flexor tendon surgery.
        J Hand Ther. 2005; 18: 94-110
        • Aydin A.
        • Topalan M.
        • Mezdegi A.
        • et al.
        Single-stage flexor tendoplasty in the treatment of flexor tendon injuries.
        Acta Orthop Traumatol Turc. 2004; 38: 54-59
        • Bottagisio M.
        • Lovati A.B.
        A review on animal models and treatments for the reconstruction of Achilles and flexor tendons.
        J Mater Sci Mater Med. 2017; 28: 45
        • Hast M.W.
        • Zuskov A.
        • Soslowsky L.J.
        The role of animal models in tendon research.
        Bone Joint Res. 2014; 3: 193-202
        • Thomopoulos S.
        • Parks W.C.
        • Rifkin D.B.
        • et al.
        Mechanisms of tendon injury and repair.
        J Orthop Res. 2015; 33: 832-839
        • Woo S.L.
        • Gelberman R.H.
        • Cobb N.G.
        • et al.
        The importance of controlled passive mobilization on flexor tendon healing. A biomechanical study.
        Acta Orthop Scand. 1981; 52: 615-622
        • Wada A.
        • Kubota H.
        • Miyanishi K.
        • et al.
        Comparison of postoperative early active mobilization and immobilization in vivo utilising a four-strand flexor tendon repair.
        J Hand Surg Br. 2001; 26: 301-306
        • Winters S.C.
        • Gelberman R.H.
        • Woo S.L.
        • et al.
        The effects of multiple-strand suture methods on the strength and excursion of repaired intrasynovial flexor tendons: A biomechanical study in dogs.
        J Hand Surg Am. 1998; 23: 97-104
        • Kormpakis I.
        • Linderman S.W.
        • Thomopoulos S.
        • et al.
        Enhanced zone ii flexor tendon repair through a new half hitch loop suture configuration.
        PLoS One. 2016; 11e0153822
        • Linderman S.W.
        • Shen H.
        • Yoneda S.
        • et al.
        Effect of connective tissue growth factor delivered via porous sutures on the proliferative stage of intrasynovial tendon repair.
        J Orthop Res. 2018; 36: 2052-2063
        • Shen H.
        • Jayaram R.
        • Yoneda S.
        • et al.
        The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model.
        Sci Rep. 2018; 8: 11078
        • Ackerman J.E.
        • Loiselle A.E.
        Murine flexor tendon injury and repair surgery.
        J Vis Exp. 2016; 115
        • Howell K.
        • Chien C.
        • Bell R.
        • et al.
        Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing.
        Sci Rep. 2017; 7: 45238
        • Lemmon E.A.
        • Locke R.C.
        • Szostek A.K.
        • et al.
        Partial-width injuries of the rat rotator cuff heal with fibrosis.
        Connect Tissue Res. 2018; 59: 437-446
        • Sakabe T.
        • Sakai K.
        • Maeda T.
        • et al.
        Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice.
        J Biol Chem. 2018; 293: 5766-5780
        • Dyment N.A.
        • Liu C.F.
        • Kazemi N.
        • et al.
        The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.
        PLoS One. 2013; 8: e59944
        • Rui Y.F.
        • Lui P.P.
        • Rolf C.G.
        • et al.
        Expression of chondro-osteogenic BMPs in clinical samples of patellar tendinopathy.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 1409-1417
        • Wang P.H.
        • Luh J.J.
        • Chen W.S.
        • et al.
        In vivo photoacoustic micro-imaging of microvascular changes for Achilles tendon injury on a mouse model.
        Biomed Opt Express. 2011; 2: 1462-1469
        • Eliasson P.
        • Andersson T.
        • Aspenberg P.
        Influence of a single loading episode on gene expression in healing rat Achilles tendons.
        J Appl Physiol (1985). 2012; 112: 279-288
        • Killian M.L.
        • Cavinatto L.
        • Shah S.A.
        • et al.
        The effects of chronic unloading and gap formation on tendon-to-bone healing in a rat model of massive rotator cuff tears.
        J Orthop Res. 2014; 32: 439-447
        • Beason D.P.
        • Kuntz A.F.
        • Hsu J.E.
        • et al.
        Development and evaluation of multiple tendon injury models in the mouse.
        J Biomech. 2012; 45: 1550-1553
        • Chamberlain C.S.
        • Crowley E.
        • Vanderby R.
        The spatio-temporal dynamics of ligament healing.
        Wound Repair Regen. 2009; 17: 206-215
        • Chamberlain C.S.
        • Brounts S.H.
        • Sterken D.G.
        • et al.
        Gene profiling of the rat medial collateral ligament during early healing using microarray analysis.
        J Appl Physiol (1985). 2011; 111: 552-565
        • Franchi M.
        • Trire A.
        • Quaranta M.
        • et al.
        Collagen structure of tendon relates to function.
        Scientific World J. 2007; 7: 404-420
        • Biewener A.
        Tendons and ligaments: structure, mechanical behavior and biological function.
        (editor)in: Fratzl P Collagen: Structure and Mechanics. Springer US, Boston, MA2008: 269-284
        • Kannus P.
        Structure of the tendon connective tissue.
        Scand J Med Sci Sports. 2000; 10: 312-320
        • Gelse K.
        • Poschl E.
        • Aigner T.
        Collagens-structure, function, and biosynthesis.
        Adv Drug Deliv Rev. 2003; 55: 1531-1546
        • Thorpe C.T.
        • Screen H.R.
        Tendon structure and composition.
        Adv Exp Med Biol. 2016; 920: 3-10
        • Ali O.J.
        • Comerford E.J.
        • Clegg P.D.
        • et al.
        Variations during ageing in the three-dimensional anatomical arrangement of fascicles within the equine superficial digital flexor tendon.
        Eur Cell Mater. 2018; 35: 87-102
        • Thorpe C.T.
        • Godinho M.S.C.
        • Riley G.P.
        • et al.
        The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.
        J Mech Behav Biomed Mater. 2015; 52: 85-94
        • Taylor S.H.
        • Al-Youha S.
        • Van Agtmael T.
        • et al.
        Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation.
        PLoS One. 2011; 6: e16337
      3. Hartmann. The tendon sheaths and synovial bursae of the foot. 1981;1:247–69.

        • Ahmed I.M.
        • Lagopoulos M.
        • McConnell P.
        • et al.
        Blood supply of the Achilles tendon.
        J Orthop Res. 1998; 16: 591-596
        • Benjamin M.
        • Ralphs J.R.
        Tendons and ligaments- an overview.
        Histol Histopathol. 1997; 12: 1135-1144
        • Schweitzer R.
        • Chyung J.H.
        • Murtaugh L.C.
        • et al.
        Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments.
        Development. 2001; 128: 3855-3866
        • Brandau O.
        • Meindl A.
        • Fassler R.
        • et al.
        A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I.
        Dev Dyn. 2001; 221: 72-80
        • Voleti P.B.
        • Buckley M.R.
        • Soslowsky L.J.
        Tendon healing: repair and regeneration.
        Annu Rev Biomed Eng. 2012; 14: 47-71
        • Carpenter J.E.
        • Hankenson K.D.
        Animal models of tendon and ligament injuries for tissue engineering applications.
        Biomaterials. 2004; 25: 1715-1722
        • Sandrey M.
        Acute and chronic tendon injuries: factors affecting the healing response and treatment.
        J Sport Rehabil. 2003; 12: 70-91
        • Hope M.
        • Saxby T.S.
        Tendon healing.
        Foot Ankle Clin. 2007; 12: 553-567
        • Koob T.J.
        • Summers A.P.
        Tendon- bridging the gap.
        Comp Biochem Physiol A Mol Integr Physiol. 2002; 133: 905-909
        • Garner W.L.
        • McDonald J.A.
        • Koo M.
        • et al.
        Identification of the collagen-producing cells in healing flexor tendons.
        Plast Reconstr Surg. 1989; 83: 875-879
        • Wang E.D.
        Tendon repair.
        J Hand Ther. 1998; 11: 105-110
        • Loiselle A.E.
        • Frisch B.J.
        • Wolenski M.
        • et al.
        Bone marrow-derived matrix metalloproteinase-9 is associated with fibrous adhesion formation after murine flexor tendon injury.
        PLoS One. 2012; 7: e40602
        • Strickland J.W.
        Flexor tendons: Acute injuries.
        in: Green D H.R. Pedersen W. Green's operative hand surgery. Churchill Livingstone, New York, USA1999: 1851-1897
        • Beredjiklian P.K.
        • Favata M.
        • Cartmell J.S.
        • et al.
        Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep.
        Ann Biomed Eng. 2003; 31: 1143-1152
        • Tang Q.M.
        • Chen J.L.
        • Shen W.L.
        • et al.
        Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration.
        Sci Rep. 2014; 4: 5515
        • Marsolais D.
        • Cote C.H.
        • Frenette J.
        Neutrophils and macrophages accumulate sequentially following Achilles tendon injury.
        J Orthop Res. 2001; 19: 1203-1209
        • Wong J.K.
        • Lui Y.H.
        • Kapacee Z.
        • et al.
        The cellular biology of flexor tendon adhesion f ormation: an old problem in a new paradigm.
        Am J Pathol. 2009; 175: 1938-1951
        • Godbout C.
        • Bilodeau R.
        • Van Rooijen N.
        • et al.
        Transient neutropenia increases macrophage accumulation and cell proliferation but does not improve repair following intratendinous rupture of Achilles tendon.
        J Orthop Res. 2010; 28: 1084-1091
        • Martinez F.O.
        • Gordon S.
        The M1 and M2 paradigm of macrophage activation: time for reassessment.
        F1000Prime Rep. 2014; 6: 13
        • Wang N.
        • Liang H.
        • Zen K.
        Molecular mechanisms that influence the macrophage M1-M2 polarization balance.
        Front Immunol. 2014; 5: 614
        • Lech M.
        • Anders H.J.
        Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair.
        Biochim Biophys Acta. 2013; 1832: 989-997
        • Wynn T.A.
        • Vannella K.M.
        Macrophages in tissue repair, regeneration, and fibrosis.
        Immunity. 2016; 44: 450-462
        • Braga T.T.
        • Agudelo J.S.
        • Camara N.O.
        Macrophages during the fibrotic process: M2 as friend and foe.
        Front Immunol. 2015; 6: 602
        • de la Durantaye M.
        • Piette A.B.
        • van Rooijen N.
        • et al.
        Macrophage depletion reduces cell proliferation and extracellular matrix accumulation but increases the ultimate tensile strength of injured Achilles tendons.
        J Orthop Res. 2014; 32: 279-285
        • Hays P.L.
        • Kawamura S.
        • Deng X.H.
        • et al.
        The role of macrophages in early healing of a tendon graft in a bone tunnel.
        J Bone Joint Surg Am. 2008; 90: 565-579
        • Das A.
        • Sinha M.
        • Datta S.
        • et al.
        Monocyte and macrophage plasticity in tissue repair and regeneration.
        Am J Pathol. 2015; 185: 2596-2606
        • Gibbons M.A.
        • MacKinnon A.C.
        • Ramachandran P.
        • et al.
        Ly6chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis.
        Am J Respir Crit Care Med. 2011; 184: 569-581
        • Murray L.A.
        • Chen Q.
        • Kramer M.S.
        • et al.
        TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P.
        Int J Biochem Cell Biol. 2011; 43: 154-162
        • Lin D.
        • Alberton P.
        • Caceres M.D.
        • et al.
        Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing.
        Cell Death Dis. 2017; 8: e3116
        • Ackerman J.E.
        • Geary M.B.
        • Orner C.A.
        • et al.
        Obesity/type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response.
        PLoS One. 2017; 12e0181127
        • Dakin S.G.
        • Werling D.
        • Hibbert A.
        • et al.
        Macrophage sub-populations and the lipoxin a4 receptor implicate active inflammation during equine tendon repair.
        PLoS One. 2012; 7: e32333
        • Davies L.C.
        • Jenkins S.J.
        • Allen J.E.
        • et al.
        Tissue-resident macrophages.
        Nat Immunol. 2013; 14: 986
        • Sugg K.B.
        • Lubardic J.
        • Gumucio J.P.
        • et al.
        Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair.
        J Orthop Res. 2014; 32: 944-951
        • Wojciak B.
        • Crossan J.F.
        The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons.
        Clin Exp Immunol. 1993; 93: 108-114
        • Berglund M.E.
        • Hildebrand K.A.
        • Zhang M.
        • et al.
        Neuropeptide, mast cell, and myofibroblast expression after rabbit deep flexor tendon repair.
        J Hand Surg Am. 2010; 35: 1842-1849
        • Connizzo B.K.
        • Yannascoli S.M.
        • Tucker J.J.
        • et al.
        The detrimental effects of systemic ibuprofen delivery on tendon healing are time-dependent.
        Clin Orthop Relat Res. 2014; 472: 2433-2439
        • Virchenko O.
        • Skoglund B.
        • Aspenberg P.
        Parecoxib impairs early tendon repair but improves later remodeling.
        Am J Sports Med. 2004; 32: 1743-1747
        • Ferry S.T.
        • Dahners L.E.
        • Afshari H.M.
        • et al.
        The effects of common anti-inflammatory drugs on the healing rat patellar tendon.
        Am J Sports Med. 2007; 35: 1326-1333
        • Tsai W.C.
        • Tang F.T.
        • Hsu C.C.
        • et al.
        Ibuprofen inhibition of tendon cell proliferation and upregulation of the cyclin kinase inhibitor p21CIP1.
        J Orthop Res. 2004; 22: 586-591
        • Riley G.P.
        • Cox M.
        • Harrall R.L.
        • et al.
        Inhibition of tendon cell proliferation and matrix glycosaminoglycan synthesis by non-steroidal anti-inflammatory drugs in vitro.
        J Hand Surg Br. 2001; 26: 224-228
        • Shen H.
        • Kormpakis I.
        • Havlioglu N.
        • et al.
        The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing.
        Stem Cell Res Ther. 2016; 7: 144
        • Gelberman R.H.
        • Linderman S.W.
        • Jayaram R.
        • et al.
        Combined administration of ASCx and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing.
        Clin Orthop Relat Res. 2017; 475: 2318-2331
        • Juneja S.C.
        • Schwarz E.M.
        • O'Keefe R.J.
        • et al.
        Cellular and molecular factors in flexor tendon repair and adhesions: a histological and gene expression analysis.
        Connect Tissue Res. 2013; 54: 218-226
        • Kajikawa Y.
        • Morihara T.
        • Watanabe N.
        • et al.
        GFP chimeric models exhibited a biphasic pattern of mesenchymal cell invasion in tendon healing.
        J Cell Physiol. 2007; 210: 684-691
        • Thomopoulos S.
        • Das R.
        • Silva M.J.
        • et al.
        Enhanced flexor tendon healing through controlled delivery of PDGF-BB.
        J Orthop Res. 2009; 27: 1209-1215
        • Thomopoulos S.
        • Harwood F.L.
        • Silva M.J.
        • et al.
        Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro.
        J Hand Surg Am. 2005; 30: 441-447
        • Dahlgren L.A.
        • Mohammed H.O.
        • Nixon A.J.
        Temporal expression of growth factors and matrix molecules in healing tendon lesions.
        J Orthop Res. 2005; 23: 84-92
        • Thomopoulos S.
        • Kim H.M.
        • Das R.
        • et al.
        The effects of exogenous basic fibroblast growth factor on intrasynovial flexor tendon healing in a canine model.
        J Bone Joint Surg Am. 2010; 92: 2285-2293
        • Gelberman R.H.
        • Steinberg D.
        • Amiel D.
        • et al.
        Fibroblast chemotaxis after tendon repair.
        J Hand Surg Am. 1991; 16: 686-693
        • Best K.T.
        • Loiselle A.
        Scleraxis lineage cells contribute to organized bridging tissue during tendon healing, and identifies subpopulations of resident tendon cells.
        bioRxiv. 2018;
        • Williams I.F.
        • McCullagh K.G.
        • Silver I.A.
        The distribution of types I and III collagen and fibronectin in the healing equine tendon.
        Connect Tissue Res. 1984; 12: 211-227
        • Khan U.
        • Edwards J.C.
        • McGrouther D.A.
        Patterns of cellular activation after tendon injury.
        J Hand Surg Br. 1996; 21: 813-820
        • Cadby J.A.
        • Buehler E.
        • Godbout C.
        • et al.
        Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair.
        PLoS One. 2014; 9: e92474
        • Tan Q.
        • Lui P.P.
        • Lee Y.W.
        In vivo identity of tendon stem cells and the roles of stem cells in tendon healing.
        Stem Cells Dev. 2013; 22: 3128-3140
        • Bi Y.
        • Ehirchiou D.
        • Kilts T.M.
        • et al.
        Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche.
        Nat Med. 2007; 13: 1219-1227
        • Salingcarnboriboon R.
        • Yoshitake H.
        • Tsuji K.
        • et al.
        Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property.
        Exp Cell Res. 2003; 287: 289-300
        • Xu W.
        • Sun Y.
        • Zhang J.
        • et al.
        Perivascular-derived stem cells with neural crest characteristics are involved in tendon repair.
        Stem Cells Dev. 2015; 24: 857-868
        • Tempfer H.
        • Wagner A.
        • Gehwolf R.
        • et al.
        Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers.
        Histochem Cell Biol. 2009; 131: 733-741
        • Pryce B.A.
        • Brent A.E.
        • Murchison N.D.
        • et al.
        Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene.
        Dev Dyn. 2007; 236: 1677-1682
        • Ackerman J.E.
        • Best K.T.
        • O'Keefe R.J.
        • et al.
        Deletion of EP4 in s100a4-lineage cells reduces scar tissue formation during early but not later stages of tendon healing.
        Sci Rep. 2017; 7: 8658
        • Ackerman J.E.
        • Studentsova V.
        • Best K.T.
        • Knapp E.
        • Loiselle A.E.
        Cell-non-autonomous functions of s100a4 drive fibrotic tendon healing.
        bioRxiv. 2019;
        • Meran S.
        • Steadman R.
        Fibroblasts and myofibroblasts in renal fibrosis.
        Int J Exp Pathol. 2011; 92: 158-167
        • Phan S.H.
        The myofibroblast in pulmonary fibrosis.
        Chest. 2002; 122: 286S-289S
        • Iwaisako K.
        • Jiang C.
        • Zhang M.
        • et al.
        Origin of myofibroblasts in the fibrotic liver in mice.
        Proc Natl Acad Sci USA. 2014; 111: E3297-EE305
        • Darby I.A.
        • Laverdet B.
        • Bonté F.
        • et al.
        Fibroblasts and myofibroblasts in wound healing.
        Clin Cosmet Investig Dermatol. 2014; 7: 301-311
        • Hu B.
        • Phan S.H.
        Myofibroblasts.
        Curr Opin Rheumatol. 2013; 25: 71-77
        • Williams I.F.
        • Heaton A.
        • McCullagh K.G.
        Cell morphology and collagen types in equine tendon scar.
        Res Vet Sci. 1980; 28: 302-310
        • Weiler A.
        • Unterhauser F.N.
        • Bail H.J.
        • et al.
        Alpha-smooth muscle actin is expressed by fibroblastic cells of the ovine anterior cruciate ligament and its free tendon graft during remodeling.
        J Orthop Res. 2002; 20: 310-317
        • Dyment N.A.
        • Hagiwara Y.
        • Matthews B.G.
        • et al.
        Lineage tracing of resident tendon progenitor cells during growth and natural healing.
        PLoS One. 2014; 9: e96113
        • Zhou B.
        • Zhou Y.
        • Tang K.
        An overview of structure, mechanical properties, and treatment for age-related tendinopathy.
        J Nutr Health Aging. 2014; 18: 441-448
        • Ackerman J.E.
        • Bah I.
        • Jonason J.H.
        • et al.
        Aging does not alter tendon mechanical properties during homeostasis, but does impair flexor tendon healing.
        J Orthop Res. 2017; 35: 2716-2724
        • Franceschi F.
        • Papalia R.
        • Paciotti M.
        • et al.
        Obesity as a risk factor for tendinopathy: a systematic review.
        Int J Endocrinol. 2014; 2014670262
        • O'Neill S.
        • Watson P.J.
        • Barry S.
        A delphi study of risk factors for Achilles tendinopathy- opinions of world tendon experts.
        Int J Sports Phys Ther. 2016; 11: 684-697
        • Silbernagel K.G.
        • Brorsson A.
        • Olsson N.
        • et al.
        Sex differences in outcome after an acute Achilles tendon rupture.
        Orthop J Sports Med. 2015; 32325967115586768
        • Fryhofer G.W.
        • Freedman B.R.
        • Hillin C.D.
        • et al.
        Postinjury biomechanics of Achilles tendon vary by sex and hormone status.
        J Appl Physiol (1985). 2016; 121: 1106-1114
        • Snedeker J.G.
        • Gautieri A.
        The role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly.
        Muscles Ligaments Tendons J. 2014; 4: 303-308
        • Abboud J.A.
        • Kim J.S.
        The effect of hypercholesterolemia on rotator cuff disease.
        Clin Orthop Relat Res. 2010; 468: 1493-1497
        • Tsouli S.G.
        • Kiortsis D.N.
        • Argyropoulou M.I.
        • et al.
        Pathogenesis, detection and treatment of Achilles tendon xanthomas.
        Eur J Clin Invest. 2005; 35: 236-244
        • Agladioglu K.
        • Akkaya N.
        • Gungor H.R.
        • et al.
        Effects of cigarette smoking on elastographic strain ratio measurements of patellar and Achilles tendons.
        J Ultrasound Med. 2016; 35: 2431-2438
        • Baumgarten K.M.
        • Gerlach D.
        • Galatz L.M.
        • et al.
        Cigarette smoking increases the risk for rotator cuff tears.
        Clin Orthop Relat Res. 2010; 468: 1534-1541
        • Carbone S.
        • Gumina S.
        • Arceri V.
        • et al.
        The impact of preoperative smoking habit on rotator cuff tear: cigarette smoking influences rotator cuff tear sizes.
        J Shoulder Elbow Surg. 2012; 21: 56-60
        • Albers I.S.
        • Zwerver J.
        • Diercks R.L.
        • et al.
        Incidence and prevalence of lower extremity tendinopathy in a dutch general practice population: a cross-sectional study.
        BMC Musculoskelet Disord. 2016; 17: 16
        • de Jonge S.
        • van den Berg C.
        • de Vos R.J.
        • et al.
        Incidence of midportion Achilles tendinopathy in the general population.
        Br J Sports Med. 2011; 45: 1026-1028
        • Gumina S.
        • Carbone S.
        • Campagna V.
        • et al.
        The impact of aging on rotator cuff tear size.
        Musculoskelet Surg. 2013; 97: 69-72
        • Nestorson J.
        • Movin T.
        • Moller M.
        • et al.
        Function after Achilles tendon rupture in the elderly: 25 patients older than 65 years followed for 3 years.
        Acta Orthop Scand. 2000; 71: 64-68
        • Svensson R.B.
        • Heinemeier K.M.
        • Couppe C.
        • et al.
        Effect of aging and exercise on the tendon.
        J Appl Physiol (1985). 2016; 121: 1237-1246
        • Peffers M.J.
        • Thorpe C.T.
        • Collins J.A.
        • et al.
        Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation.
        J Biol Chem. 2014; 289: 25867-25878
        • Birch H.L.
        • Bailey J.V.
        • Bailey A.J.
        • et al.
        Age-related changes to the molecular and cellular components of equine flexor tendons.
        Equine Vet J. 1999; 31: 391-396
        • Tsai W.C.
        • Chang H.N.
        • Yu T.Y.
        • et al.
        Decreased proliferation of aging tenocytes is associated with down-regulation of cellular senescence-inhibited gene and up-regulation of p27.
        J Orthop Res. 2011; 29: 1598-1603
        • Zhou Z.
        • Akinbiyi T.
        • Xu L.
        • et al.
        Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate.
        Aging Cell. 2010; 9: 911-915
        • Kohler J.
        • Popov C.
        • Klotz B.
        • et al.
        Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration.
        Aging Cell. 2013; 12: 988-999
        • Schmidt F.M.
        • Weschenfelder J.
        • Sander C.
        • et al.
        Inflammatory cytokines in general and central obesity and modulating effects of physical activity.
        PLoS One. 2015; 10e0121971
        • Devaraj S.
        • Dasu M.R.
        • Jialal I.
        Diabetes is a proinflammatory state: a translational perspective.
        Expert Rev Endocrinol Metab. 2010; 5: 19-28
        • Lumeng C.N.
        • Bodzin J.L.
        • Saltiel A.R.
        Obesity induces a phenotypic switch in adipose tissue macrophage polarization.
        J Clin Invest. 2007; 117: 175-184
        • Reddy M.A.
        • Chen Z.
        • Park J.T.
        • et al.
        Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA.
        Diabetes. 2014; 63: 4249-4261
        • Ahmed A.S.
        • Schizas N.
        • Li J.
        • et al.
        Type 2 diabetes impairs tendon repair after injury in a rat model.
        J Appl Physiol (1985). 2012; 113: 1784-1791
        • David M.A.
        • Jones K.H.
        • Inzana J.A.
        • et al.
        Tendon repair is compromised in a high fat diet-induced mouse model of obesity and type 2 diabetes.
        PLoS One. 2014; 9: e91234
        • Haley P.J.
        Species differences in the structure and function of the immune system.
        Toxicology. 2003; 188: 49-71
        • Seok J.
        • Warren H.S.
        • Cuenca A.G.
        • et al.
        Genomic responses in mouse models poorly mimic human inflammatory diseases.
        Proc Natl Acad Sci USA. 2013; 110: 3507-3512
        • Skelly D.A.
        • Squiers G.T.
        • McLellan M.A.
        • et al.
        Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart.
        Cell Reports. 2018; 22: 600-610
        • MacParland S.A.
        • Liu J.C.
        • Ma X.-Z.
        • et al.
        Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.
        Nat Commun. 2018; 9: 4383
        • Cho D.S.
        • Doles J.D.
        Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity.
        Gene. 2017; 636: 54-63
        • Tritschler S.
        • Theis F.J.
        • Lickert H.
        • et al.
        Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas.
        Mole Metabol. 2017; 6: 974-990
        • Chen L.
        • Li J.
        • Zhang J.
        • et al.
        S100a4 promotes liver fibrosis via activation of hepatic stellate cells.
        J Hepatol. 2015; 62: 156-164
        • Li Y.
        • Bao J.
        • Bian Y.
        • et al.
        S100a4(+) macrophages are necessary for pulmonary fibrosis by activating lung fibroblasts.
        Front Immunol. 2018; 9: 1776
        • Stolk M.
        • Klatte-Schulz F.
        • Schmock A.
        • et al.
        New insights into tenocyte-immune cell interplay in an in vitro model of inflammation.
        Sci Rep. 2017; 7: 9801
        • Meng X.M.
        • Nikolic-Paterson D.J.
        • Lan H.Y.
        TGF-beta: the master regulator of fibrosis.
        Nat Rev Nephrol. 2016; 12: 325-338
        • Chang J.
        • Thunder R.
        • Most D.
        • et al.
        Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion.
        Plast Reconstr Surg. 2000; 105: 148-155
        • Jorgensen H.G.
        • McLellan S.D.
        • Crossan J.F.
        • et al.
        Neutralisation of TGF beta or binding of VLA-4 to fibronectin prevents rat tendon adhesion following transection.
        Cytokine. 2005; 30: 195-202
        • Katzel E.B.
        • Wolenski M.
        • Loiselle A.E.
        • et al.
        Impact of SMAD3 loss of function on scarring and adhesion formation during tendon healing.
        J Orthop Res. 2011; 29: 684-693
        • Loiselle A.E.
        • Yukata K.
        • Geary M.B.
        • et al.
        Development of antisense oligonucleotide (ASO) technology against TGF-beta signaling to prevent scarring during flexor tendon repair.
        J Orthop Res. 2015; 33: 859-866
        • Freeberg M.A.T.
        • Farhat Y.M.
        • Easa A.
        • et al.
        Serpine1 knockdown enhances mmp activity after flexor tendon injury in mice: implications for adhesions therapy.
        Sci Rep. 2018; 8: 5810