Advertisement

Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques

Published:April 22, 2019DOI:https://doi.org/10.1016/j.trsl.2019.02.009
      Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.

      Abbreviations:

      CKD (chronic kidney disease), MRI (magnetic resonance imaging), GFR (glomerular filtration rate), ECM (extracellular matrix), MRE (magnetic resonance elastography), UE (ultrasound elastography), MTI (magnetization transfer imaging), BOLD (blood oxygenation level dependent), ADC (apparent diffusion coefficient), UUO (unilateral ureteral obstruction), IVIM (intravoxel incoherent motion), RAS (renal artery stenosis), DTI (diffusion tensor imaging), FA (fractional anisotropy), DKI (diffusion kurtosis imaging), AKI (acute kidney injury), MT (magnetization transfer), MTR (magnetization transfer ratio), qMT (quantitative magnetization transfer), PSR (pool size ratio), SWI (susceptibility-weighted imaging), SE (strain elastography), SWE (shear wave elastography), CT (computed tomography), PET (positron emission tomography), SPECT (single-photon emission computed tomography)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liu Y.
        Renal fibrosis: new insights into the pathogenesis and therapeutics.
        Kidney Int. 2006; 69: 213-217
        • Wynn T.A.
        Cellular and molecular mechanisms of fibrosis.
        J Pathol. 2008; 214: 199-210
        • Liu Y.
        Cellular and molecular mechanisms of renal fibrosis.
        Nat Rev Nephrol. 2011; 7: 684-696
        • Conway B.
        • Hughes J.
        Cellular orchestrators of renal fibrosis.
        QJM. 2012; 105: 611-615
        • Outcomes K.D.I.G.
        • Group C.W.
        KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int. 2013; 3
        • 2017 USRDS Annual Data Report
        Executive summary.
        Am J Kidney Dis. 2018; 71: S1-S8
        • Jha V.
        • Garcia-Garcia G.
        • Iseki K.
        • et al.
        Chronic kidney disease: global dimension and perspectives.
        Lancet. 2013; 382: 260-272
        • Schainuck L.I.
        • Striker G.E.
        • Cutler R.E.
        • Benditt E.P.
        Structural-functional correlations in renal disease. II. The correlations.
        Hum Pathol. 1970; 1: 631-641
        • Farris A.B.
        • Adams C.D.
        • Brousaides N.
        • et al.
        Morphometric and visual evaluation of fibrosis in renal biopsies.
        J Am Soc Nephrol. 2011; 22: 176-186
        • Grimm P.C.
        • Nickerson P.
        • Gough J.
        • et al.
        Quantitation of allograft fibrosis and chronic allograft nephropathy.
        Pediatr Transplant. 1999; 3: 257-270
        • Choi B.S.
        • Shin M.J.
        • Shin S.J.
        • et al.
        Clinical significance of an early protocol biopsy in living-donor renal transplantation: ten-year experience at a single center.
        Am J Transplant. 2005; 5: 1354-1360
        • Cosio F.G.
        • Grande J.P.
        • Wadei H.
        • Larson T.S.
        • Griffin M.D.
        • Stegall M.D.
        Predicting subsequent decline in kidney allograft function from early surveillance biopsies.
        Am J Transplant. 2005; 5: 2464-2472
        • Risdon R.A.
        • Sloper J.C.
        • De Wardener H.E.
        Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis.
        Lancet. 1968; 2: 363-366
        • Roberts I.S.
        • Cook H.T.
        • Troyanov S.
        • Alpers C.E.
        • Amore A.
        • Barratt J.
        • et al.
        The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility.
        Kidney Int. 2009; 76: 546-556
        • Fleig S.V.
        • Humphreys B.D.
        Rationale of mesenchymal stem cell therapy in kidney injury.
        Nephron Clin Pract. 2014; 127: 75-80
        • Hickson L.J.
        • Eirin A.
        • Lerman L.O.
        Challenges and opportunities for stem cell therapy in patients with chronic kidney disease.
        Kidney Int. 2016; 89: 767-778
        • Zou X.
        • Kwon S.H.
        • Jiang K.
        • et al.
        Renal scattered tubular-like cells confer protective effects in the stenotic murine kidney mediated by release of extracellular vesicles.
        Sci Rep. 2018; 8: 1263
        • Zou X.
        • Jiang K.
        • Puranik A.S.
        • et al.
        Targeting Murine mesenchymal stem cells to kidney injury molecule-1 improves their therapeutic efficacy in chronic ischemic kidney injury.
        Stem Cells Transl Med. 2018; 7: 394-403
        • Street J.M.
        • Souza A.C.
        • Alvarez-Prats A.
        • et al.
        Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy.
        Physiol Rep. 2014; 2 (pii: e12088)
        • Whittier W.L.
        • Korbet S.M.
        Timing of complications in percutaneous renal biopsy.
        J Am Soc Nephrol. 2004; 15: 142-147
        • Marcussen N.
        • Olsen T.S.
        • Benediktsson H.
        • Racusen L.
        • Solez K.
        Reproducibility of the Banff classification of renal allograft pathology. Inter- and intraobserver variation.
        Transplantation. 1995; 60: 1083-1089
        • Furness P.N.
        • Taub N.
        International variation in the interpretation of renal transplant biopsies: report of the CERTPAP Project.
        Kidney Int. 2001; 60: 1998-2012
        • Einstein A.
        • Fürth R.
        Investigations on the theory of Brownian movement.
        Dover Publications, New York, N.Y1956
        • Stejskal E.O.
        • Tanner J.E.
        Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient.
        J Chem Phys. 1965; 42: 288-292
        • Le Bihan D.
        • Iima M.
        Diffusion magnetic resonance imaging: what water tells us about biological tissues.
        PLoS Biol. 2015; 13e1002203
        • Thoeny H.C.
        • Zumstein D.
        • Simon-Zoula S.
        • et al.
        Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience.
        Radiology. 2006; 241: 812-821
        • Sigmund E.E.
        • Vivier P.H.
        • Sui D.
        • et al.
        Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges.
        Radiology. 2012; 263: 758-769
        • Eisenberger U.
        • Thoeny H.C.
        • Binser T.
        • et al.
        Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging.
        Eur Radiol. 2010; 20: 1374-1383
        • Lanzman R.S.
        • Ljimani A.
        • Pentang G.
        • et al.
        Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T.
        Radiology. 2013; 266: 218-225
        • Hueper K.
        • Hensen B.
        • Gutberlet M.
        • et al.
        Kidney transplantation: multiparametric functional magnetic resonance imaging for assessment of renal allograft pathophysiology in mice.
        Invest Radiol. 2016; 51: 58-65
        • Cakmak P.
        • Yagci A.B.
        • Dursun B.
        • Herek D.
        • Fenkci S.M.
        Renal diffusion-weighted imaging in diabetic nephropathy: correlation with clinical stages of disease.
        Diagn Interv Radiol. 2014; 20: 374-378
        • Thoeny H.C.
        • De Keyzer F.
        • Oyen R.H.
        • Peeters R.R.
        Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience.
        Radiology. 2005; 235: 911-917
        • Togao O.
        • Doi S.
        • Kuro-o M.
        • Masaki T.
        • Yorioka N.
        • Takahashi M.
        Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction.
        Radiology. 2010; 255: 772-780
        • Inoue T.
        • Kozawa E.
        • Okada H.
        • et al.
        Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging.
        J Am Soc Nephrol. 2011; 22: 1429-1434
        • Ries M.
        • Basseau F.
        • Tyndal B.
        • et al.
        Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent.
        J Magn Reson Imaging. 2003; 17: 104-113
        • Feng Q.
        • Ma Z.
        • Wu J.
        • Fang W.
        DTI for the assessment of disease stage in patients with glomerulonephritis–correlation with renal histology.
        Eur Radiol. 2015; 25: 92-98
        • Xu X.
        • Fang W.
        • Ling H.
        • Chai W.
        • Chen K.
        Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study.
        Eur Radiol. 2010; 20: 978-983
        • Ebrahimi B.
        • Rihal N.
        • Woollard J.R.
        • Krier J.D.
        • Eirin A.
        • Lerman L.O.
        Assessment of renal artery stenosis using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging analysis.
        Invest Radiol. 2014; 49: 640-646
        • Xu X.
        • Palmer S.L.
        • Lin X.
        • et al.
        Diffusion-weighted imaging and pathology of chronic kidney disease: initial study.
        Abdom Radiol (NY). 2018; 43: 1749-1755
        • Woo S.
        • Cho J.Y.
        • Kim S.Y.
        • Kim S.H.
        Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: An experimental study in a rabbit model of unilateral ureter obstruction.
        Magn Reson Imaging. 2018; 51: 104-112
        • Friedli I.
        • Crowe L.A.
        • Berchtold L.
        • et al.
        New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation.
        Sci Rep. 2016; 6: 30088
        • Zhao J.
        • Wang Z.J.
        • Liu M.
        • et al.
        Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI.
        Clin Radiol. 2014; 69: 1117-1122
        • Krier J.D.
        • Ritman E.L.
        • Bajzer Z.
        • Romero J.C.
        • Lerman A.
        • Lerman L.O.
        Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function.
        Am J Physiol Renal Physiol. 2001; 281: F630-F638
        • Kwon S.H.
        • Saad A.
        • Herrmann S.M.
        • Textor S.C.
        • Lerman L.O.
        Determination of single-kidney glomerular filtration rate in human subjects by using CT.
        Radiology. 2015; 276: 490-498
        • Jiang K.
        • Tang H.
        • Mishra P.K.
        • Macura S.I.
        • Lerman L.O.
        Measurement of murine single-kidney glomerular filtration rate using dynamic contrast-enhanced MRI.
        Magn Reson Med. 2018; 79: 2935-2943
        • Boor P.
        • Perkuhn M.
        • Weibrecht M.
        • et al.
        Diffusion-weighted MRI does not reflect kidney fibrosis in a rat model of fibrosis.
        J Magn Reson Imaging. 2015; 42: 990-998
        • Le Bihan D.
        • Breton E.
        • Lallemand D.
        • Aubin M.L.
        • Vignaud J.
        • Laval-Jeantet M.
        Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.
        Radiology. 1988; 168: 497-505
        • Ichikawa S.
        • Motosugi U.
        • Ichikawa T.
        • Sano K.
        • Morisaka H.
        • Araki T.
        Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction.
        Magn Reson Imaging. 2013; 31: 414-417
        • Ding J.
        • Chen J.
        • Jiang Z.
        • Zhou H.
        • Di J.
        • Xing W.
        Assessment of renal dysfunction with diffusion-weighted imaging: comparing intra-voxel incoherent motion (IVIM) with a mono-exponential model.
        Acta Radiol. 2016; 57: 507-512
        • Ebrahimi B.
        • Saad A.
        • Jiang K.
        • et al.
        Renal adiposity confounds quantitative assessment of markers of renal diffusion with MRI: a proposed correction method.
        Invest Radiol. 2017; 52: 672-679
        • Zhang B.
        • Dong Y.
        • Guo B.
        • et al.
        Application of noninvasive functional imaging to monitor the progressive changes in kidney diffusion and perfusion in contrast-induced acute kidney injury rats at 3.0 T.
        Abdom Radiol (NY). 2018; 43: 655-662
        • Mao W.
        • Zhou J.
        • Zeng M.
        • et al.
        Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging.
        J Magn Reson Imaging. 2018; 47: 1251-1259
        • Feng Y.Z.
        • Chen X.Q.
        • Yu J.
        • et al.
        Intravoxel incoherent motion (IVIM) at 3.0 T: evaluation of early renal function changes in type 2 diabetic patients.
        Abdom Radiol (NY). 2018; 43: 2764-2773
        • Deng Y.
        • Yang B.
        • Peng Y.
        • Liu Z.
        • Luo J.
        • Du G.
        Use of intravoxel incoherent motion diffusion-weighted imaging to detect early changes in diabetic kidneys.
        Abdom Radiol (NY). 2018; 43: 2728-2733
        • Yan Y.Y.
        • Hartono S.
        • Hennedige T.
        • et al.
        Intravoxel incoherent motion and diffusion tensor imaging of early renal fibrosis induced in a murine model of streptozotocin induced diabetes.
        Magn Reson Imaging. 2017; 38: 71-76
        • Ren T.
        • Wen C.L.
        • Chen L.H.
        • et al.
        Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI.
        Magn Reson Imaging. 2016; 34: 908-914
        • Poynton C.B.
        • Lee M.M.
        • Li Y.
        • et al.
        Intravoxel incoherent motion analysis of renal allograft diffusion with clinical and histopathological correlation in pediatric kidney transplant patients: a preliminary cross-sectional observational study.
        Pediatr Transplant. 2017; 21
        • Sulkowska K.
        • Palczewski P.
        • Wojcik D.
        • et al.
        Intravoxel incoherent motion imaging in monitoring the function of kidney allograft.
        Acta Radiol. 2018; 284185118802598
        • Rheinheimer S.
        • Stieltjes B.
        • Schneider F.
        • et al.
        Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters–initial experience.
        Eur J Radiol. 2012; 81: e310-e316
        • Chandarana H.
        • Lee V.S.
        • Hecht E.
        • Taouli B.
        • Sigmund E.E.
        Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience.
        Invest Radiol. 2011; 46: 285-291
        • Cai X.R.
        • Yu J.
        • Zhou Q.C.
        • Du B.
        • Feng Y.Z.
        • Liu X.L.
        Use of intravoxel incoherent motion MRI to assess renal fibrosis in a rat model of unilateral ureteral obstruction.
        J Magn Reson Imaging. 2016; 44: 698-706
        • Hennedige T.
        • Koh T.S.
        • Hartono S.
        • et al.
        Intravoxel incoherent imaging of renal fibrosis induced in a murine model of unilateral ureteral obstruction.
        Magn Reson Imaging. 2015; 33: 1324-1328
        • Mao W.
        • Zhou J.
        • Zeng M.
        • et al.
        Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study.
        Magn Reson Imaging. 2018; 47: 118-124
        • Basser P.J.
        Inferring microstructural features and the physiological state of tissues from diffusion-weighted images.
        NMR Biomed. 1995; 8: 333-344
        • Notohamiprodjo M.
        • Chandarana H.
        • Mikheev A.
        • et al.
        Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy.
        Magn Reson Med. 2015; 73: 1526-1532
        • Ries M.
        • Jones R.A.
        • Basseau F.
        • Moonen C.T.
        • Grenier N.
        Diffusion tensor MRI of the human kidney.
        J Magn Reson Imaging. 2001; 14: 42-49
        • Notohamiprodjo M.
        • Glaser C.
        • Herrmann K.A.
        • et al.
        Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience.
        Invest Radiol. 2008; 43: 677-685
        • Lu L.
        • Sedor J.R.
        • Gulani V.
        • et al.
        Use of diffusion tensor MRI to identify early changes in diabetic nephropathy.
        Am J Nephrol. 2011; 34: 476-482
        • Liu Z.
        • Xu Y.
        • Zhang J.
        • et al.
        Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR.
        Eur Radiol. 2015; 25: 652-660
        • Hueper K.
        • Gutberlet M.
        • Rodt T.
        • et al.
        Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results.
        Eur Radiol. 2011; 21: 2427-2433
        • Lupica R.
        • Mormina E.
        • Lacquaniti A.
        • et al.
        3 Tesla-diffusion tensor imaging in autosomal dominant polycystic kidney disease: the nephrologist's point of view.
        Nephron. 2016; 134: 73-80
        • Kaimori J.Y.
        • Isaka Y.
        • Hatanaka M.
        • et al.
        Diffusion tensor imaging MRI with spin-echo sequence and long-duration measurement for evaluation of renal fibrosis in a rat fibrosis model.
        Transplant Proc. 2017; 49: 145-152
        • Kaimori J.Y.
        • Isaka Y.
        • Hatanaka M.
        • et al.
        Visualization of kidney fibrosis in diabetic nephropathy by long diffusion tensor imaging MRI with spin-echo sequence.
        Sci Rep. 2017; 7: 5731
        • Hueper K.
        • Khalifa A.A.
        • Brasen J.H.
        • et al.
        Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation.
        J Magn Reson Imaging. 2016; 44: 112-121
        • Li Y.
        • Lee M.M.
        • Worters P.W.
        • MacKenzie J.D.
        • Laszik Z.
        • Courtier J.L.
        Pilot study of renal diffusion tensor imaging as a correlate to histopathology in pediatric renal allografts.
        AJR Am J Roentgenol. 2017; 208: 1358-1364
        • Jensen J.H.
        • Helpern J.A.
        • Ramani A.
        • Lu H.
        • Kaczynski K.
        Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging.
        Magn Reson Med. 2005; 53: 1432-1440
        • Jensen J.H.
        • Helpern J.A.
        MRI quantification of non-Gaussian water diffusion by kurtosis analysis.
        NMR Biomed. 2010; 23: 698-710
        • Yin J.
        • Sun H.
        • Wang Z.
        • Ni H.
        • Shen W.
        • Sun P.Z.
        Diffusion kurtosis imaging of acute infarction: comparison with routine diffusion and follow-up MR imaging.
        Radiology. 2018; 287: 651-657
        • Zhu L.H.
        • Zhang Z.P.
        • Wang F.N.
        • Cheng Q.H.
        • Guo G.
        Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations.
        Neural Regen Res. 2019; 14: 272-279
        • Yuan L.
        • Sun M.
        • Chen Y.
        • et al.
        Non-Gaussian diffusion alterations on diffusion kurtosis imaging in patients with early Alzheimer's disease.
        Neurosci Lett. 2016; 616: 11-18
        • Falangola M.F.
        • Jensen J.H.
        • Babb J.S.
        • et al.
        Age-related non-Gaussian diffusion patterns in the prefrontal brain.
        J Magn Reson Imaging. 2008; 28: 1345-1350
        • Pentang G.
        • Lanzman R.S.
        • Heusch P.
        • et al.
        Diffusion kurtosis imaging of the human kidney: a feasibility study.
        Magn Reson Imaging. 2014; 32: 413-420
        • Le Bihan D.
        • Poupon C.
        • Amadon A.
        • Lethimonnier F.
        Artifacts and pitfalls in diffusion MRI.
        J Magn Reson Imaging. 2006; 24: 478-488
        • Friedli I.
        • Crowe L.A.
        • Viallon M.
        • et al.
        Improvement of renal diffusion-weighted magnetic resonance imaging with readout-segmented echo-planar imaging at 3T.
        Magn Reson Imaging. 2015; 33: 701-708
        • Wittsack H.J.
        • Lanzman R.S.
        • Mathys C.
        • Janssen H.
        • Modder U.
        • Blondin D.
        Statistical evaluation of diffusion-weighted imaging of the human kidney.
        Magn Reson Med. 2010; 64: 616-622
        • Heusch P.
        • Wittsack H.J.
        • Pentang G.
        • et al.
        Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys.
        Acta Radiol. 2013; 54: 1210-1217
        • van Baalen S.
        • Leemans A.
        • Dik P.
        • Lilien M.R.
        • Ten Haken B.
        • Froeling M.
        Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit.
        J Magn Reson Imaging. 2017; 46: 228-239
        • Cox E.F.
        • Buchanan C.E.
        • Bradley C.R.
        • et al.
        Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease.
        Front Physiol. 2017; 8: 696
        • Zhang J.L.
        • Sigmund E.E.
        • Rusinek H.
        • et al.
        Optimization of b-value sampling for diffusion-weighted imaging of the kidney.
        Magn Reson Med. 2012; 67: 89-97
        • Fine L.G.
        • Norman J.T.
        Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics.
        Kidney Int. 2008; 74: 867-872
        • Nangaku M.
        Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
        J Am Soc Nephrol. 2006; 17: 17-25
        • Brezis M.
        • Rosen S.
        • Silva P.
        • Epstein F.H.
        Renal ischemia: a new perspective.
        Kidney Int. 1984; 26: 375-383
        • Ogawa S.
        • Lee T.M.
        • Kay A.R.
        • Tank D.W.
        Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
        Proc Natl Acad Sci U S A. 1990; 87: 9868-9872
        • Prasad P.V.
        • Edelman R.R.
        • Epstein F.H.
        Noninvasive evaluation of intrarenal oxygenation with BOLD MRI.
        Circulation. 1996; 94: 3271-3275
        • Brezis M.
        • Agmon Y.
        • Epstein F.H.
        Determinants of intrarenal oxygenation. I. Effects of diuretics.
        Am J Physiol. 1994; 267: F1059-F1062
        • Juillard L.
        • Lerman L.O.
        • Kruger D.G.
        • et al.
        Blood oxygen level-dependent measurement of acute intra-renal ischemia.
        Kidney Int. 2004; 65: 944-950
        • Pedersen M.
        • Dissing T.H.
        • Morkenborg J.
        • et al.
        Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction.
        Kidney Int. 2005; 67: 2305-2312
        • Ebrahimi B.
        • Crane J.A.
        • Knudsen B.E.
        • Macura S.I.
        • Grande J.P.
        • Lerman L.O.
        Evolution of cardiac and renal impairment detected by high-field cardiovascular magnetic resonance in mice with renal artery stenosis.
        J Cardiovasc Magn Reson. 2013; 15: 98
        • Jiang K.
        • Ponzo T.A.
        • Tang H.
        • Mishra P.K.
        • Macura S.I.
        • Lerman L.O.
        Multi-parametric MRI detects longitudinal evolution of folic acid-induced nephropathy in mice.
        Am J Physiol Renal Physiol. 2018; 315: F1252-F1260
        • Priatna A.
        • Epstein F.H.
        • Spokes K.
        • Prasad P.V.
        Evaluation of changes in intrarenal oxygenation in rats using multiple gradient-recalled echo (mGRE) sequence.
        J Magn Reson Imaging. 1999; 9: 842-846
        • Warner L.
        • Glockner J.F.
        • Woollard J.
        • Textor S.C.
        • Romero J.C.
        • Lerman L.O.
        Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics.
        Invest Radiol. 2011; 46: 41-47
        • Ding J.
        • Xing W.
        • Wu D.
        • et al.
        Evaluation of renal oxygenation level changes after water loading using susceptibility-weighted imaging and T2* mapping.
        Korean J Radiol. 2015; 16: 827-834
        • Xin-Long P.
        • Jing-Xia X.
        • Jian-Yu L.
        • Song W.
        • Xin-Kui T.
        A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease.
        Magn Reson Imaging. 2012; 30: 330-335
        • Yin W.J.
        • Liu F.
        • Li X.M.
        • et al.
        Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI.
        Eur J Radiol. 2012; 81: 1426-1431
        • Djamali A.
        • Sadowski E.A.
        • Muehrer R.J.
        • et al.
        BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction.
        Am J Physiol Renal Physiol. 2007; 292: F513-F522
        • Textor S.C.
        • Glockner J.F.
        • Lerman L.O.
        • et al.
        The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis.
        J Am Soc Nephrol. 2008; 19: 780-788
        • Khatir D.S.
        • Pedersen M.
        • Jespersen B.
        • Buus N.H.
        Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging.
        Am J Kidney Dis. 2015; 66: 402-411
        • Michaely H.J.
        • Metzger L.
        • Haneder S.
        • Hansmann J.
        • Schoenberg S.O.
        • Attenberger U.I.
        Renal BOLD-MRI does not reflect renal function in chronic kidney disease.
        Kidney Int. 2012; 81: 684-689
        • Pruijm M.
        • Hofmann L.
        • Piskunowicz M.
        • et al.
        Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans.
        PLoS One. 2014; 9: e95895
        • Wang Z.J.
        • Kumar R.
        • Banerjee S.
        • Hsu C.Y.
        Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy: preliminary experience.
        J Magn Reson Imaging. 2011; 33: 655-660
        • Prasad P.V.
        • Li W.
        • Raj D.S.
        • et al.
        Multicenter study evaluating intrarenal oxygenation and fibrosis using magnetic resonance imaging in individuals with advanced CKD.
        Kidney Int Rep. 2018; 3: 1467-1472
        • Prasad P.V.
        Update on renal blood oxygenation level-dependent MRI to assess intrarenal oxygenation in chronic kidney disease.
        Kidney Int. 2018; 93: 778-780
        • Zhang J.L.
        • Morrell G.
        • Rusinek H.
        • et al.
        Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling.
        Am J Physiol Renal Physiol. 2014; 306: F579-F587
        • Pohlmann A.
        • Arakelyan K.
        • Hentschel J.
        • et al.
        Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements.
        Invest Radiol. 2014; 49: 547-560
        • Zha T.
        • Ren X.
        • Xing Z.
        • et al.
        Evaluating renal fibrosis with R2* histogram analysis of the whole cortex in a unilateral ureteral obstruction model.
        Acad Radiol. 2018; (pii: S1076-6332, 30378-7. [Epub ahead of print])
        • Gomez S.I.
        • Warner L.
        • Haas J.A.
        • et al.
        Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension.
        Am J Physiol Renal Physiol. 2009; 297: F981-F986
        • Wells R.G.
        Tissue mechanics and fibrosis.
        Biochim Biophys Acta. 2013; 1832: 884-890
        • Venkatesh S.K.
        • Ehman R.L.
        Magnetic resonance elastography of abdomen.
        Abdom Imaging. 2015; 40: 745-759
        • Muthupillai R.
        • Lomas D.J.
        • Rossman P.J.
        • Greenleaf J.F.
        • Manduca A.
        • Ehman R.L.
        Magnetic resonance elastography by direct visualization of propagating acoustic strain waves.
        Science. 1995; 269: 1854-1857
        • Rouviere O.
        • Yin M.
        • Dresner M.A.
        • et al.
        MR elastography of the liver: preliminary results.
        Radiology. 2006; 240: 440-448
        • Huwart L.
        • Sempoux C.
        • Vicaut E.
        • et al.
        Magnetic resonance elastography for the noninvasive staging of liver fibrosis.
        Gastroenterology. 2008; 135: 32-40
        • Kim D.
        • Kim W.R.
        • Talwalkar J.A.
        • Kim H.J.
        • Ehman R.L.
        Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography.
        Radiology. 2013; 268: 411-419
        • Vag T.
        • Heck M.M.
        • Beer A.J.
        • et al.
        Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusion-weighted imaging and 11C-choline PET/CT.
        Eur Radiol. 2014; 24: 1821-1826
        • Shah N.S.
        • Kruse S.A.
        • Lager D.J.
        • et al.
        Evaluation of renal parenchymal disease in a rat model with magnetic resonance elastography.
        Magn Reson Med. 2004; 52: 56-64
        • Korsmo M.J.
        • Ebrahimi B.
        • Eirin A.
        • et al.
        Magnetic resonance elastography noninvasively detects in vivo renal medullary fibrosis secondary to swine renal artery stenosis.
        Invest Radiol. 2013; 48: 61-68
        • Zhang X.
        • Zhu X.
        • Ferguson C.M.
        • et al.
        Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney.
        MAGMA. 2018; 31: 375-382
        • Rouviere O.
        • Souchon R.
        • Pagnoux G.
        • Menager J.M.
        • Chapelon J.Y.
        Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults.
        J Magn Reson Imaging. 2011; 34: 880-886
        • Lee C.U.
        • Glockner J.F.
        • Glaser K.J.
        • et al.
        MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study.
        Acad Radiol. 2012; 19: 834-841
        • Kim J.K.
        • Yuen D.A.
        • Leung G.
        • et al.
        Role of magnetic resonance elastography as a noninvasive measurement tool of fibrosis in a renal allograft: a case report.
        Transplant Proc. 2017; 49: 1555-1559
        • Kirpalani A.
        • Hashim E.
        • Leung G.
        • et al.
        Magnetic resonance elastography to assess fibrosis in kidney allografts.
        Clin J Am Soc Nephrol. 2017; 12: 1671-1679
        • Warner L.
        • Yin M.
        • Glaser K.J.
        • et al.
        Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography.
        Invest Radiol. 2011; 46: 509-514
        • Gennisson J.L.
        • Grenier N.
        • Combe C.
        • Tanter M.
        Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy.
        Ultrasound Med Biol. 2012; 38: 1559-1567
        • Wolff S.D.
        • Balaban R.S.
        Magnetization transfer imaging: practical aspects and clinical applications.
        Radiology. 1994; 192: 593-599
        • Dousset V.
        • Grossman R.I.
        • Ramer K.N.
        • et al.
        Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging.
        Radiology. 1992; 182: 483-491
        • Ge Y.
        • Grossman R.I.
        • Udupa J.K.
        • Babb J.S.
        • Kolson D.L.
        • McGowan J.C.
        Magnetization transfer ratio histogram analysis of gray matter in relapsing-remitting multiple sclerosis.
        AJNR Am J Neuroradiol. 2001; 22: 470-475
        • Kuzo R.S.
        • Kormano M.J.
        • Lipton M.J.
        Magnetization transfer magnetic resonance imaging of parenchymal lung disease.
        Invest Radiol. 1995; 30: 118-122
        • Adler J.
        • Swanson S.D.
        • Schmiedlin-Ren P.
        • et al.
        Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease.
        Radiology. 2011; 259: 127-135
        • Martens M.H.
        • Lambregts D.M.
        • Papanikolaou N.
        • et al.
        Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer.
        Invest Radiol. 2014; 49: 29-34
        • Wang F.
        • Jiang R.
        • Takahashi K.
        • et al.
        Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging.
        Magn Reson Imaging. 2014; 32: 1125-1132
        • Kline T.L.
        • Irazabal M.V.
        • Ebrahimi B.
        • et al.
        Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease.
        Magn Reson Med. 2016; 75: 1466-1473
        • Jiang K.
        • Ferguson C.M.
        • Ebrahimi B.
        • et al.
        Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis.
        Radiology. 2017; 283: 77-86
        • Jiang K.
        • Ferguson C.M.
        • Woollard J.R.
        • Zhu X.
        • Lerman L.O.
        Magnetization transfer magnetic resonance imaging noninvasively detects renal fibrosis in swine atherosclerotic renal artery stenosis at 3.0 T.
        Invest Radiol. 2017; 52: 686-692
        • Ramani A.
        • Dalton C.
        • Miller D.H.
        • Tofts P.S.
        • Barker G.J.
        Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times.
        Magn Reson Imaging. 2002; 20: 721-731
        • Sinclair C.D.
        • Samson R.S.
        • Thomas D.L.
        • et al.
        Quantitative magnetization transfer in in vivo healthy human skeletal muscle at 3 T.
        Magn Reson Med. 2010; 64: 1739-1748
        • Henkelman R.M.
        • Huang X.
        • Xiang Q.S.
        • Stanisz G.J.
        • Swanson S.D.
        • Bronskill M.J.
        Quantitative interpretation of magnetization transfer.
        Magn Reson Med. 1993; 29: 759-766
        • Sled J.G.
        • Pike G.B.
        Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences.
        J Magn Reson. 2000; 145: 24-36
        • Wang F.
        • Takahashi K.
        • Li H.
        • et al.
        Assessment of unilateral ureter obstruction with multi-parametric MRI.
        Magn Reson Med. 2018; 79: 2216-2227
        • Wang F.
        • Katagiri D.
        • Li K.
        • et al.
        Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI.
        Magn Reson Med. 2018; 80: 2655-2669
        • Lee V.S.
        • Kaur M.
        • Bokacheva L.
        • et al.
        What causes diminished corticomedullary differentiation in renal insufficiency?.
        J Magn Reson Imaging. 2007; 25: 790-795
        • Zhang J.G.
        • Xing Z.Y.
        • Zha T.T.
        • et al.
        Longitudinal assessment of rabbit renal fibrosis induced by unilateral ureteral obstruction using two-dimensional susceptibility weighted imaging.
        J Magn Reson Imaging. 2018; 47: 1572-1577
        • Zhang J.G.
        • Xing Z.Y.
        • Zha T.T.
        • et al.
        [Feasibility of susceptibility weighted imaging in the evaluation of renal fibrosis induced by unilateral ureteral obstruction in white rabbits].
        Zhonghua Yi Xue Za Zhi. 2017; 97: 3573-3578
        • Xie L.
        • Sparks M.A.
        • Li W.
        • et al.
        Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.
        NMR Biomed. 2013; 26: 1853-1863
        • Polasek M.
        • Fuchs B.C.
        • Uppal R.
        • et al.
        Molecular MR imaging of liver fibrosis: a feasibility study using rat and mouse models.
        J Hepatol. 2012; 57: 549-555
        • Zhu B.
        • Wei L.
        • Rotile N.
        • et al.
        Combined magnetic resonance elastography and collagen molecular magnetic resonance imaging accurately stage liver fibrosis in a rat model.
        Hepatology. 2017; 65: 1015-1025
        • Chen H.H.
        • Waghorn P.A.
        • Wei L.
        • et al.
        Molecular imaging of oxidized collagen quantifies pulmonary and hepatic fibrogenesis.
        JCI Insight. 2017; 2
        • Farrar C.T.
        • Gale E.M.
        • Kennan R.
        • et al.
        CM-101: type I collagen-targeted MR imaging probe for detection of liver fibrosis.
        Radiology. 2018; 287: 581-589
        • Waghorn P.A.
        • Jones C.M.
        • Rotile N.J.
        • et al.
        Molecular magnetic resonance imaging of lung fibrogenesis with an oxyamine-based probe.
        Angew Chem Int Ed Engl. 2017; 56: 9825-9828
        • Polasek M.
        • Yang Y.
        • Schuhle D.T.
        • et al.
        Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer.
        Sci Rep. 2017; 7: 8114
        • Orlacchio A.
        • Chegai F.
        • Del Giudice C.
        • et al.
        Kidney transplant: usefulness of real-time elastography (RTE) in the diagnosis of graft interstitial fibrosis.
        Ultrasound Med Biol. 2014; 40: 2564-2572
        • Gao J.
        • Rubin J.M.
        • Weitzel W.
        • et al.
        Comparison of ultrasound corticomedullary strain with Doppler parameters in assessment of renal allograft interstitial fibrosis/tubular atrophy.
        Ultrasound Med Biol. 2015; 41: 2631-2639
        • Gao J.
        • Weitzel W.
        • Rubin J.M.
        • et al.
        Renal transplant elasticity ultrasound imaging: correlation between normalized strain and renal cortical fibrosis.
        Ultrasound Med Biol. 2013; 39: 1536-1542
        • Gao J.
        • Min R.
        • Hamilton J.
        • et al.
        Corticomedullary strain ratio: a quantitative marker for assessment of renal allograft cortical fibrosis.
        J Ultrasound Med. 2013; 32: 1769-1775
        • Guo L.H.
        • Xu H.X.
        • Fu H.J.
        • Peng A.
        • Zhang Y.F.
        • Liu L.N.
        Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings.
        PLoS One. 2013; 8: e68925
        • Hu Q.
        • Wang X.Y.
        • He H.G.
        • Wei H.M.
        • Kang L.K.
        • Qin G.C.
        Acoustic radiation force impulse imaging for non-invasive assessment of renal histopathology in chronic kidney disease.
        PLoS One. 2014; 9e115051
        • Bob F.
        • Grosu I.
        • Sporea I.
        • et al.
        Ultrasound-based shear wave elastography in the assessment of patients with diabetic kidney disease.
        Ultrasound Med Biol. 2017; 43: 2159-2166
        • Samir A.E.
        • Allegretti A.S.
        • Zhu Q.
        • et al.
        Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys.
        BMC Nephrol. 2015; 16: 119
        • Wang L.
        • Xia P.
        • Lv K.
        • et al.
        Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease.
        Eur Radiol. 2014; 24: 1694-1699
        • Arndt R.
        • Schmidt S.
        • Loddenkemper C.
        • et al.
        Noninvasive evaluation of renal allograft fibrosis by transient elastography–a pilot study.
        Transpl Int. 2010; 23: 871-877
        • Nakao T.
        • Ushigome H.
        • Nakamura T.
        • et al.
        Evaluation of renal allograft fibrosis by transient elastography (Fibro Scan).
        Transplant Proc. 2015; 47: 640-643
        • Ma M.K.
        • Law H.K.
        • Tse K.S.
        • et al.
        Non-invasive assessment of kidney allograft fibrosis with shear wave elastography: a radiological-pathological correlation analysis.
        Int J Urol. 2018; 25: 450-455
        • Syversveen T.
        • Brabrand K.
        • Midtvedt K.
        • et al.
        Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification–a pilot study.
        Transpl Int. 2011; 24: 100-105
        • Grenier N.
        • Poulain S.
        • Lepreux S.
        • et al.
        Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study.
        Eur Radiol. 2012; 22: 2138-2146
        • Syversveen T.
        • Midtvedt K.
        • Berstad A.E.
        • Brabrand K.
        • Strom E.H.
        • Abildgaard A.
        Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients.
        Eur Radiol. 2012; 22: 2130-2137
        • Asano K.
        • Ogata A.
        • Tanaka K.
        • et al.
        Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?.
        J Ultrasound Med. 2014; 33: 793-801
        • Wang H.K.
        • Lai Y.C.
        • Lin Y.H.
        • Chiou H.J.
        • Chou Y.H.
        Acoustic radiation force impulse imaging of the transplant kidney: correlation between cortical stiffness and arterial resistance in early post-transplant period.
        Transplant Proc. 2017; 49: 1001-1004
        • Wong P.C.
        • Li Z.
        • Guo J.
        • Zhang A.
        Pathophysiology of contrast-induced nephropathy.
        Int J Cardiol. 2012; 158: 186-192
        • Early H.M.
        • Cheang E.C.
        • Aguilera J.M.
        • et al.
        Utility of shear wave elastography for assessing allograft fibrosis in renal transplant recipients: a pilot study.
        J Ultrasound Med. 2018; 37: 1455-1465
        • Sommerer C.
        • Scharf M.
        • Seitz C.
        • et al.
        Assessment of renal allograft fibrosis by transient elastography.
        Transpl Int. 2013; 26: 545-551
        • Zhu X.Y.
        • Zou X.
        • Mukherjee R.
        • et al.
        Targeted imaging of renal fibrosis using antibody-conjugated gold nanoparticles in renal artery stenosis.
        Invest Radiol. 2018; 53: 623-628
        • Desogere P.
        • Tapias L.F.
        • Hariri L.P.
        • et al.
        Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models.
        Sci Transl Med. 2017; 9 (pii: eaaf4696)
        • Kim H.
        • Lee S.J.
        • Davies-Venn C.
        • et al.
        64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI.
        Nucl Med Commun. 2016; 37: 188-196
        • Li F.
        • Song Z.
        • Li Q.
        • et al.
        Molecular imaging of hepatic stellate cell activity by visualization of hepatic integrin alphavbeta3 expression with SPECT in rat.
        Hepatology. 2011; 54: 1020-1030
        • Solez K.
        • Colvin R.B.
        • Racusen L.C.
        • et al.
        Banff 07 classification of renal allograft pathology: updates and future directions.
        Am J Transplant. 2008; 8: 753-760
        • Stevens P.E.
        • Levin A.
        Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline.
        Ann Intern Med. 2013; 158: 825-830
        • Park W.D.
        • Griffin M.D.
        • Cornell L.D.
        • Cosio F.G.
        • Stegall M.D.
        Fibrosis with inflammation at one year predicts transplant functional decline.
        J Am Soc Nephrol. 2010; 21: 1987-1997