Advertisement

Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis

  • Benjamin Korman
    Correspondence
    Reprint requests: Benjamin Korman, Division of Allergy/Immunology & Rheumatology, University of Rochester Medical Center, 601 Elmwood Avenue Room 56216, Box 695, Rochester, NY.
    Affiliations
    Division of Allergy/Immunology & Rheumatology, University of Rochester Medical Center, Rochester, New York
    Search for articles by this author
Published:February 22, 2019DOI:https://doi.org/10.1016/j.trsl.2019.02.010
      Systemic sclerosis (SSc, scleroderma) is a complex multisystem disease characterized by autoimmunity, vasculopathy, and most notably, fibrosis. Multiple lines of evidence demonstrate a variety of emerging cellular and molecular pathways which are relevant to fibrosis in SSc. The myofibroblast remains the key effector cell in SSc. Understanding the development, differentiation, and function of the myofibroblast is therefore crucial to understanding the fibrotic phenotype of SSc. Studies now show that (1) multiple cell types give rise to myofibroblasts, (2) fibroblasts and myofibroblasts are heterogeneous, and (3) that a large number of (primarily immune) cells have important influences on the transition of fibroblasts to an activated myofibroblasts. In SSc, this differentiation process involves multiple pathways, including well known signaling cascades such as TGF-β and Wnt/β-Catenin signaling, as well as epigenetic reprogramming and a number of more recently defined cellular pathways. After reviewing the major and emerging cellular and molecular mechanisms underlying SSc, this article looks to identify clinical applications where this new molecular knowledge may allow for targeted treatment and personalized medicine approaches.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Allanore Y.
        • Simms R.
        • Distler O.
        • et al.
        Systemic sclerosis.
        Nat Rev Dis Primers. 2015; 1: 15002
        • Schoenfeld S.R.
        • Castelino F.V.
        Evaluation and management approaches for scleroderma lung disease.
        Ther Adv Respir Dis. 2017; 11: 327-340
        • Hinz B.
        • Phan S.H.
        • Thannickal V.J.
        • et al.
        Recent developments in myofibroblast biology: paradigms for connective tissue remodeling.
        Am J Pathol. 2012; 180: 1340-1355
        • Ebmeier S.
        • Horsley V.
        Origin of fibrosing cells in systemic sclerosis.
        Curr Opin Rheumatol. 2015; 27: 555-562
        • Shook B.A.
        • Wasko R.R.
        • Rivera-Gonzalez G.C.
        • et al.
        Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair.
        Science. 2018; 362 (pii: eaar2971)https://doi.org/10.1126/science.aar2971
        • Takahashi T.
        • Asano Y.
        • Sugawara K.
        • et al.
        Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: possible roles in scleroderma.
        J Exp Med. 2017; 214: 1129-1151
        • Manetti M.
        • Romano E.
        • Rosa I.
        • et al.
        Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis.
        Ann Rheum Dis. 2017; 76: 924-934
        • Mendoza F.A.
        • Piera-Velazquez S.
        • Farber J.L.
        • Feghali-Bostwick C.
        • Jimenez S.A.
        Endothelial cells expressing endothelial and mesenchymal cell gene products in lung tissue from patients with systemic sclerosis-associated interstitial lung disease.
        Arthritis Rheumatol. 2016; 68: 210-217
        • Reese C.
        • Perry B.
        • Heywood J.
        • et al.
        Caveolin-1 deficiency may predispose African Americans to systemic sclerosis-related interstitial lung disease.
        Arthritis Rheumatol. 2014; 66: 1909-1919
        • Marangoni R.G.
        • Korman B.D.
        • Wei J.
        • et al.
        Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors.
        Arthritis Rheumatol. 2015; 67: 1062-1073
        • Driskell R.R.
        • Lichtenberger B.M.
        • Hoste E.
        • et al.
        Distinct fibroblast lineages determine dermal architecture in skin development and repair.
        Nature. 2013; 504: 277-281
        • Rinkevich Y.
        • Walmsley G.G.
        • Hu M.S.
        • et al.
        Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential.
        Science. 2015; (348:aaa2151)
        • Hu M.S.
        • Moore A.L.
        • Longaker M.T.
        A fibroblast is not a fibroblast is not a fibroblast.
        J Invest Dermatol. 2018; 138: 729-730
        • Philippeos C.
        • Telerman S.B.
        • Oules B.
        • et al.
        Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations.
        J Invest Dermatol. 2018; 138: 811-825
        • Tabib T.
        • Morse C.
        • Wang T.
        • Chen W.
        • Lafyatis R.
        SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin.
        J Invest Dermatol. 2018; 138: 802-810
        • Mizoguchi F.
        • Slowikowski K.
        • Wei K.
        • et al.
        Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis.
        Nat Commun. 2018; 9: 789
        • Gyftaki-Venieri D.A.
        • Abraham D.J.
        • Ponticos M.
        Insights into myofibroblasts and their activation in scleroderma: opportunities for therapy.
        Curr Opin Rheumatol. 2018; 30: 581-587
        • Altorok N.
        • Tsou P.S.
        • Coit P.
        • Khanna D.
        • Sawalha A.H.
        Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies.
        Ann Rheum Dis. 2015; 74: 1612-1620
        • He Y.
        • Tsou P.S.
        • Khanna D.
        • Sawalha A.H.
        Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts.
        Ann Rheum Dis. 2018; 77: 1208-1218
        • Bergmann C.
        • Brandt A.
        • Merlevede B.
        • et al.
        The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis.
        Ann Rheum Dis. 2018; 77: 150-158
        • Dees C.
        • Schlottmann I.
        • Funke R.
        • et al.
        The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis.
        Ann Rheum Dis. 2014; 73: 1232-1239
        • Ghosh A.K.
        • Bhattacharyya S.
        • Lafyatis R.
        • et al.
        p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-beta: epigenetic feed-forward amplification of fibrosis.
        J Invest Dermatol. 2013; 133: 1302-1310
        • Wei J.
        • Ghosh A.K.
        • Chu H.
        • et al.
        The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling.
        Arthritis Rheumatol. 2015; 67: 1323-1334
        • Noda S.
        • Asano Y.
        • Nishimura S.
        • et al.
        Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis.
        Nat Commun. 2014; 5: 5797
        • Taniguchi T.
        • Asano Y.
        • Akamata K.
        • et al.
        Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice.
        Arthritis Rheumatol. 2015; 67: 517-526
        • Saigusa R.
        • Asano Y.
        • Nakamura K.
        • et al.
        Systemic sclerosis dermal fibroblasts suppress Th1 cytokine production via galectin-9 overproduction due to Fli1 deficiency.
        J Invest Dermatol. 2017; 137: 1850-1859
        • Chia J.J.
        • Lu T.T.
        Update on macrophages and innate immunity in scleroderma.
        Curr Opin Rheumatol. 2015; 27: 530-536
        • Maier C.
        • Ramming A.
        • Bergmann C.
        • et al.
        Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages.
        Ann Rheum Dis. 2017; 76: 1133-1141
        • Wu M.
        • Pedroza M.
        • Lafyatis R.
        • et al.
        Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis.
        Arthritis Rheumatol. 2014; 66: 1010-1021
        • Christmann R.B.
        • Sampaio-Barros P.
        • Stifano G.
        • et al.
        Association of Interferon- and transforming growth factor beta-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis.
        Arthritis Rheumatol. 2014; 66: 714-725
        • Pincha N.
        • Hajam E.Y.
        • Badarinath K.
        • et al.
        PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.
        J Clin Invest. 2018; 128: 1807-1819
        • Ah Kioon M.D.
        • Tripodo C.
        • Fernandez D.
        • et al.
        Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8.
        Sci Transl Med. 2018; 10
        • Chia J.J.
        • Zhu T.
        • Chyou S.
        • et al.
        Dendritic cells maintain dermal adipose-derived stromal cells in skin fibrosis.
        J Clin Invest. 2016; 126: 4331-4345
        • Gerber E.E.
        • Gallo E.M.
        • Fontana S.C.
        • et al.
        Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma.
        Nature. 2013; 503: 126-130
        • van Bon L.
        • Affandi A.J.
        • Broen J.
        • et al.
        Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis.
        N Engl J Med. 2014; 370: 433-443
        • Bhattacharyya S.
        • Wang W.
        • Qin W.
        • et al.
        TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung.
        JCI Insight. 2018; 3
        • Bhattacharyya S.
        • Wang W.
        • Morales-Nebreda L.
        • et al.
        Tenascin-C drives persistence of organ fibrosis.
        Nat Commun. 2016; 7: 11703
        • Bhattacharyya S.
        • Tamaki Z.
        • Wang W.
        • et al.
        FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling.
        Sci Transl Med. 2014; 6 (232ra250)
        • Fang F.
        • Marangoni R.G.
        • Zhou X.
        • et al.
        Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor beta-dependent fibroblast activation.
        Arthritis Rheumatol. 2016; 68: 1989-2002
        • Artlett C.M.
        • Sassi-Gaha S.
        • Rieger J.L.
        • Boesteanu A.C.
        • Feghali-Bostwick C.A.
        • Katsikis P.D.
        The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis.
        Arthritis Rheum. 2011; 63: 3563-3574
        • Laurent P.
        • Sisirak V.
        • Lazaro E.
        • et al.
        Innate immunity in systemic sclerosis fibrosis: recent advances.
        Front Immunol. 2018; 9: 1702
        • Denton C.P.
        • Ong V.H.
        • Xu S.
        • et al.
        Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis.
        Ann Rheum Dis. 2018; 77: 1362-1371
        • Castelino F.V.
        • Bain G.
        • Pace V.A.
        • et al.
        An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis.
        Arthritis Rheumatol. 2016; 68: 2964-2974
        • Scherlinger M.
        • Guillotin V.
        • Truchetet M.E.
        • et al.
        Systemic lupus erythematosus and systemic sclerosis: all roads lead to platelets.
        Autoimmun Rev. 2018; 17: 625-635
        • Higgs B.W.
        • Liu Z.
        • White B.
        • et al.
        Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway.
        Ann Rheum Dis. 2011; 70: 2029-2036
        • Sharif R.
        • Mayes M.D.
        • Tan F.K.
        • et al.
        IRF5 polymorphism predicts prognosis in patients with systemic sclerosis.
        Ann Rheum Dis. 2012; 71: 1197-1202
        • Brkic Z.
        • van Bon L.
        • Cossu M.
        • et al.
        The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis.
        Ann Rheum Dis. 2016; 75: 1567-1573
        • Dumoitier N.
        • Chaigne B.
        • Regent A.
        • et al.
        Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor beta and activate fibroblasts.
        Arthritis Rheumatol. 2017; 69: 1078-1089
        • Choi M.Y.
        • Fritzler M.J.
        Progress in understanding the diagnostic and pathogenic role of autoantibodies associated with systemic sclerosis.
        Curr Opin Rheumatol. 2016; 28: 586-594
        • Mavropoulos A.
        • Simopoulou T.
        • Varna A.
        • et al.
        Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis.
        Arthritis Rheumatol. 2016; 68: 494-504
        • Matsushita T.
        • Kobayashi T.
        • Mizumaki K.
        • et al.
        BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance.
        Sci Adv. 2018; (4:eaas9944)
        • Li G.
        • Larregina A.T.
        • Domsic R.T.
        • et al.
        Skin-resident effector memory CD8(+)CD28(-) T cells exhibit a profibrotic phenotype in patients with systemic sclerosis.
        J Invest Dermatol. 2017; 137: 1042-1050
        • Fuschiotti P.
        • Larregina A.T.
        • Ho J.
        • Feghali-Bostwick C.
        • Medsger Jr., T.A.
        Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis.
        Arthritis Rheum. 2013; 65: 236-246
        • Truchetet M.E.
        • Demoures B.
        • Eduardo Guimaraes J.
        • et al.
        Platelets induce thymic stromal lymphopoietin production by endothelial cells: contribution to fibrosis in human systemic sclerosis.
        Arthritis Rheumatol. 2016; 68: 2784-2794
        • Klose C.S.
        • Artis D.
        Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.
        Nat Immunol. 2016; 17: 765-774
        • Roan F.
        • Stoklasek T.A.
        • Whalen E.
        • et al.
        CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis.
        J Immunol. 2016; 196: 2051-2062
        • Maugeri N.
        • Capobianco A.
        • Rovere-Querini P.
        • et al.
        Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis.
        Sci Transl Med. 2018; 10
        • Serrati S.
        • Chilla A.
        • Laurenzana A.
        • et al.
        Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor beta-dependent mesenchymal-to-mesenchymal transition.
        Arthritis Rheum. 2013; 65: 258-269
        • Maurer B.
        • Distler A.
        • Suliman Y.A.
        • et al.
        Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis.
        Ann Rheum Dis. 2014; 73: 1880-1887
        • Makino K.
        • Makino T.
        • Stawski L.
        • Lipson K.E.
        • Leask A.
        • Trojanowska M.
        Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis.
        Arthritis Res Ther. 2017; 19: 134
        • Akashi K.
        • Saegusa J.
        • Sendo S.
        • et al.
        Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice.
        Arthritis Res Ther. 2016; 18: 113
        • Lagares D.
        • Busnadiego O.
        • Garcia-Fernandez R.A.
        • Lamas S.
        • Rodriguez-Pascual F.
        Adenoviral gene transfer of endothelin-1 in the lung induces pulmonary fibrosis through the activation of focal adhesion kinase.
        Am J Respir Cell Mol Biol. 2012; 47: 834-842
        • Wei J.
        • Melichian D.
        • Komura K.
        • et al.
        Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma.
        Arthritis Rheum. 2011; 63: 1707-1717
        • Wei J.
        • Ghosh A.K.
        • Sargent J.L.
        • et al.
        PPARgamma downregulation by TGFss in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis.
        PLoS One. 2010; 5: e13778
        • Wei J.
        • Zhu H.
        • Komura K.
        • et al.
        A synthetic PPAR-gamma agonist triterpenoid ameliorates experimental fibrosis: PPAR-gamma-independent suppression of fibrotic responses.
        Ann Rheum Dis. 2014; 73: 446-454
        • Ruzehaji N.
        • Frantz C.
        • Ponsoye M.
        • et al.
        Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis.
        Ann Rheum Dis. 2016; 75: 2175-2183
        • Korman B.
        • Marangoni R.G.
        • Lord G.
        • Olefsky J.
        • Tourtellotte W.
        • Varga J.
        Adipocyte-specific repression of PPAR-gamma by NCoR contributes to scleroderma skin fibrosis.
        Arthritis Res Ther. 2018; 20: 145
        • Marangoni R.G.
        • Masui Y.
        • Fang F.
        • et al.
        Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target.
        Sci Rep. 2017; 7: 4397
        • Taroni J.N.
        • Greene C.S.
        • Martyanov V.
        • et al.
        A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.
        Genome Med. 2017; 9: 27
        • Taroni J.N.
        • Martyanov V.
        • Mahoney J.M.
        • Whitfield M.L.
        A functional genomic meta-analysis of clinical trials in systemic sclerosis: toward precision medicine and combination therapy.
        J Invest Dermatol. 2017; 137: 1033-1041
        • McCoy S.S.
        • Reed T.J.
        • Berthier C.C.
        • et al.
        Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.
        Rheumatology. 2017; 56: 1970-1981
        • Lafyatis R.
        Transforming growth factor beta–at the centre of systemic sclerosis.
        Nat Rev Rheumatol. 2014; 10: 706-719
        • Kendall R.T.
        • Feghali-Bostwick C.A.
        Fibroblasts in fibrosis: novel roles and mediators.
        Front Pharmacol. 2014; 5: 123
        • Piersma B.
        • Bank R.A.
        • Boersema M.
        Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge.
        Front Med. 2015; 2: 59
        • Sacchetti C.
        • Bai Y.
        • Stanford S.M.
        • et al.
        PTP4A1 promotes TGFbeta signaling and fibrosis in systemic sclerosis.
        Nat Commun. 2017; 8: 1060
        • Rice L.M.
        • Padilla C.M.
        • McLaughlin S.R.
        • et al.
        Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients.
        J Clin Invest. 2015; 125: 2795-2807
        • Wei J.
        • Fang F.
        • Lam A.P.
        • et al.
        Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells.
        Arthritis Rheum. 2012; 64: 2734-2745
        • Beyer C.
        • Reichert H.
        • Akan H.
        • et al.
        Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis.
        Ann Rheum Dis. 2013; 72: 1255-1258
        • Lafyatis R.
        • Mantero J.C.
        • Gordon J.
        • et al.
        Inhibition of beta-catenin signaling in the skin rescues cutaneous adipogenesis in systemic sclerosis: a randomized, double-blind, placebo-controlled trial of C-82.
        J Invest Dermatol. 2017; 137: 2473-2483
        • Horn A.
        • Palumbo K.
        • Cordazzo C.
        • et al.
        Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis.
        Arthritis Rheum. 2012; 64: 2724-2733
        • Dees C.
        • Zerr P.
        • Tomcik M.
        • et al.
        Inhibition of notch signaling prevents experimental fibrosis and induces regression of established fibrosis.
        Arthritis Rheum. 2011; 63: 1396-1404
        • Toyama T.
        • Looney A.P.
        • Baker B.M.
        • et al.
        Therapeutic targeting of TAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis.
        J Invest Dermatol. 2018; 138: 78-88
        • Distler A.
        • Lang V.
        • Del Vecchio T.
        • et al.
        Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability.
        Ann Rheum Dis. 2014; 73: 1264-1268
        • Wernig G.
        • Chen S.Y.
        • Cui L.
        • et al.
        Unifying mechanism for different fibrotic diseases.
        Proc Natl Acad Sci USA. 2017; 114: 4757-4762
        • Maurer B.
        • Reich N.
        • Juengel A.
        • et al.
        Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis.
        Ann Rheum Dis. 2012; 71: 1382-1387
        • Elhai M.
        • Avouac J.
        • Hoffmann-Vold A.M.
        • et al.
        OX40L blockade protects against inflammation-driven fibrosis.
        Proc Natl Acad Sci USA. 2016; 113: E3901-E3910
        • Chakraborty D.
        • Sumova B.
        • Mallano T.
        • et al.
        Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis.
        Nat Commun. 2017; 8: 1130
        • McGarry T.
        • Orr C.
        • Wade S.
        • et al.
        JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis.
        Arthritis Rheumatol. 2018; 70: 1959-1970
        • Avouac J.
        • Furnrohr B.G.
        • Tomcik M.
        • et al.
        Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis.
        Arthritis Rheum. 2011; 63: 800-809
        • Gourh P.
        • Agarwal S.K.
        • Divecha D.
        • et al.
        Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines.
        Arthritis Rheum. 2009; 60: 3794-3806
        • Makino K.
        • Makino T.
        • Stawski L.
        • et al.
        Blockade of PDGF receptors by crenolanib has therapeutic effect in patient fibroblasts and in preclinical models of systemic sclerosis.
        J Invest Dermatol. 2017; 137: 1671-1681
        • Luckhardt T.R.
        • Thannickal V.J.
        Systemic sclerosis-associated fibrosis: an accelerated aging phenotype.
        Curr Opin Rheumatol. 2015; 27: 571-576
        • Akamata K.
        • Wei J.
        • Bhattacharyya M.
        • et al.
        SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis.
        Oncotarget. 2016; 7: 69321-69336
        • Wyman A.E.
        • Noor Z.
        • Fishelevich R.
        • et al.
        Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts.
        Am J Physiol Lung Cell Mol Physiol. 2017; 312: L945-L958
        • Zerr P.
        • Palumbo-Zerr K.
        • Huang J.
        • et al.
        Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis.
        Ann Rheum Dis. 2016; 75: 226-233
        • Zank D.C.
        • Bueno M.
        • Mora A.L.
        • Rojas M.
        Idiopathic pulmonary fibrosis: aging, mitochondrial dysfunction, and cellular bioenergetics.
        Front Med. 2018; 5: 10
        • Zhang Y.
        • Potter S.
        • Chen C.W.
        • et al.
        Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis.
        Ann Rheum Dis. 2018; 77: 744-751
        • Sun H.
        • Zhu Y.
        • Pan H.
        • et al.
        Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic sclerodermatous lung microenvironment and in bleomycin-induced pulmonary fibrosis.
        Arthritis Rheumatol. 2016; 68: 1251-1261
        • Young-Min S.A.
        • Beeton C.
        • Laughton R.
        • et al.
        Serum TIMP-1, TIMP-2, and MMP-1 in patients with systemic sclerosis, primary Raynaud's phenomenon, and in normal controls.
        Ann Rheum Dis. 2001; 60: 846-851
        • Giannandrea M.
        • Parks W.C.
        Diverse functions of matrix metalloproteinases during fibrosis.
        Dis Model Mech. 2014; 7: 193-203
        • Raghu G.
        • Selman M.
        Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions.
        Am J Respir Crit Care Med. 2015; 191: 252-254
        • Volkmann E.R.
        • Tashkin D.P.
        • Li N.
        • et al.
        Mycophenolate mofetil versus placebo for systemic sclerosis-related interstitial lung disease: an analysis of scleroderma lung studies I and II.
        Arthritis Rheumatol. 2017; 69: 1451-1460
        • Sullivan K.M.
        • Goldmuntz E.A.
        • Keyes-Elstein L.
        • et al.
        Myeloablative autologous stem-cell transplantation for severe scleroderma.
        N Engl J Med. 2018; 378: 35-47
        • Chung L.
        • Denton C.P.
        • Distler O.
        • Furst D.E.
        • Khanna D.
        • Merkel P.A.
        • Scleroderma Clinical Trials C
        Clinical trial design in scleroderma: where are we and where do we go next.
        Clin Exp Rheumatol. 2012; 30: S97-102
        • Khanna D.
        • Berrocal V.J.
        • Giannini E.H.
        • et al.
        The American College of Rheumatology Provisional Composite Response Index for clinical trials in early diffuse cutaneous systemic sclerosis.
        Arthritis Rheumatol. 2016; 68: 299-311
        • Martyanov V.
        • Whitfield M.L.
        Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data.
        Curr Opin Rheumatol. 2016; 28: 83-88
        • Schulz J.N.
        • Plomann M.
        • Sengle G.
        • Gullberg D.
        • Krieg T.
        • Eckes B.
        New developments on skin fibrosis—essential signals emanating from the extracellular matrix for the control of myofibroblasts.
        Matrix Biol. 2018; 68–69: 522-532
        • Distler O.
        • Cozzio A.
        Systemic sclerosis and localized scleroderma—current concepts and novel targets for therapy.
        Semin Immunopathol. 2016; 38: 87-95
        • Baron M.
        Targeted therapy in systemic sclerosis.
        Rambam Maimonides Med J. 2016; 7
        • van Caam A.
        • Vonk M.
        • van den Hoogen F.
        • van Lent P.
        • van der Kraan P.
        Unraveling SSc pathophysiology; the myofibroblast.
        Front Immunol. 2018; 9: 2452
        • Lofgren S.
        • Hinchcliff M.
        • Carns M.
        • et al.
        Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity.
        JCI Insight. 2016; 1: e89073
        • Hinchcliff M.
        • Huang C.C.
        • Wood T.A.
        • et al.
        Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis.
        J Invest Dermatol. 2013; 133: 1979-1989
        • Castelino F.V.
        • Varga J.
        Emerging cellular and molecular targets in fibrosis: implications for scleroderma pathogenesis and targeted therapy.
        Curr Opin Rheumatol. 2014; 26: 607-614
        • Cipriani P.
        • Di Benedetto P.
        • Ruscitti P.
        • et al.
        Perivascular cells in diffuse cutaneous systemic sclerosis overexpress activated ADAM12 and are involved in myofibroblast transdifferentiation and development of fibrosis.
        J Rheumatol. 2016; 43: 1340-1349
        • Christmann R.B.
        • Mathes A.
        • Affandi A.J.
        • et al.
        Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor beta.
        Arthritis Rheum. 2013; 65: 1335-1346
        • Liu X.
        • Mayes M.D.
        • Tan F.K.
        • et al.
        Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis.
        Arthritis Rheum. 2013; 65: 226-235
        • Tsou P.S.
        • Wren J.D.
        • Amin M.A.
        • et al.
        Histone deacetylase 5 is overexpressed in scleroderma endothelial cells and impairs angiogenesis via repression of proangiogenic factors.
        Arthritis Rheumatol. 2016; 68: 2975-2985